1
|
Jain P, Parikh S, Patel P, Shah S, Patel K. Comprehensive insights into herbal P-glycoprotein inhibitors and nanoformulations for improving anti-retroviral therapy efficacy. J Drug Target 2024; 32:884-908. [PMID: 38748868 DOI: 10.1080/1061186x.2024.2356751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
The worldwide HIV cases were 39.0 million (33.1-45.7 million) in 2022. Due to genetic variations, HIV-1 is more easily transmitted than HIV-2 and favours CD4 + T cells and macrophages, producing AIDS. Conventional HIV drug therapy has many drawbacks, including adherence issues leading to resistance, side effects that lower life quality, drug interactions, high costs limiting global access, inability to eliminate viral reservoirs, chronicity requiring lifelong treatment, emerging toxicities, and a focus on managing infections. Conventional dosage forms have bioavailability issues due to intestinal P-glycoprotein (P-gp) efflux, which can reduce anti-retroviral drug efficacy and lead to resistance. Use of phyto-constituents with P-gp regulating actions has great benefits for semi-synthetic modification to create formulations with greater bioavailability and reduced toxicity, which improves drug effectiveness. Lipid-based nanocarriers, solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanocarriers, and inorganic nanoparticles may inhibit P-gp efflux. Employing potent P-gp inhibitors within nanocarriers as a Trojan horse approach can enhance the intracellular accumulation of anti-retroviral drugs (ARDs), which are substrates for efflux transporters. This technique increases oral bioavailability and offers lower-dose options, boosting HIV patient compliance and lowering costs. Molecular docking of the inhibitor with P-gp may anticipate optimum binding and function, allowing drug efflux to be minimised.
Collapse
Affiliation(s)
- Prexa Jain
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Shreni Parikh
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Paresh Patel
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| |
Collapse
|
2
|
Taheri A, Bremmell KE, Joyce P, Prestidge CA. Battle of the milky way: Lymphatic targeted drug delivery for pathogen eradication. J Control Release 2023; 363:507-524. [PMID: 37797891 DOI: 10.1016/j.jconrel.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Many viruses, bacteria, and parasites rely on the lymphatic system for survival, replication, and dissemination. While conventional anti-infectives can combat infection-causing agents in the bloodstream, they do not reach the lymphatic system to eradicate the pathogens harboured there. This can result in ineffective drug exposure and reduce treatment effectiveness. By developing effective lymphatic delivery strategies for antiviral, antibacterial, and antiparasitic drugs, their systemic pharmacokinetics may be improved, as would their ability to reach their target pathogens within the lymphatics, thereby improving clinical outcomes in a variety of acute and chronic infections with lymphatic involvement (e.g., acquired immunodeficiency syndrome, tuberculosis, and filariasis). Here, we discuss approaches to targeting anti-infective drugs to the intestinal and dermal lymphatics, aiming to eliminate pathogen reservoirs and interfere with their survival and reproduction inside the lymphatic system. These include optimized lipophilic prodrugs and drug delivery systems that promote lymphatic transport after oral and dermal drug intake. For intestinal lymphatic delivery via the chylomicron pathway, molecules should have logP values >5 and long-chain triglyceride solubilities >50 mg/g, and for dermal lymphatic delivery via interstitial lymphatic drainage, nanoparticle formulations with particle size between 10 and 100 nm are generally preferred. Insight from this review may promote new and improved therapeutic solutions for pathogen eradication and combating infective diseases, as lymphatic system involvement in pathogen dissemination and drug resistance has been neglected compared to other pathways leading to treatment failure.
Collapse
Affiliation(s)
- Ali Taheri
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
3
|
Ejazi SA, Louisthelmy R, Maisel K. Mechanisms of Nanoparticle Transport across Intestinal Tissue: An Oral Delivery Perspective. ACS NANO 2023. [PMID: 37410891 DOI: 10.1021/acsnano.3c02403] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Oral drug administration has been a popular choice due to patient compliance and limited clinical resources. Orally delivered drugs must circumvent the harsh gastrointestinal (GI) environment to effectively enter the systemic circulation. The GI tract has a number of structural and physiological barriers that limit drug bioavailability including mucus, the tightly regulated epithelial layer, immune cells, and associated vasculature. Nanoparticles have been used to enhance oral bioavailability of drugs, as they can act as a shield to the harsh GI environment and prevent early degradation while also increasing uptake and transport of drugs across the intestinal epithelium. Evidence suggests that different nanoparticle formulations may be transported via different intracellular mechanisms to cross the intestinal epithelium. Despite the existence of a significant body of work on intestinal transport of nanoparticles, many key questions remain: What causes the poor bioavailability of the oral drugs? What factors contribute to the ability of a nanoparticle to cross different intestinal barriers? Do nanoparticle properties such as size and charge influence the type of endocytic pathways taken? In this Review, we summarize the different components of intestinal barriers and the types of nanoparticles developed for oral delivery. In particular, we focus on the various intracellular pathways used in nanoparticle internalization and nanoparticle or cargo translocation across the epithelium. Understanding the gut barrier, nanoparticle characteristics, and transport pathways may lead to the development of more therapeutically useful nanoparticles as drug carriers.
Collapse
Affiliation(s)
- Sarfaraz Ahmad Ejazi
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Rebecca Louisthelmy
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Almeida Furquim de Camargo B, Fonseca-Santos B, Gonçalves Carvalho S, Corrêa Carvalho G, Delello Di Filippo L, Sousa Araújo VH, Lobato Duarte J, Polli Silvestre AL, Bauab TM, Chorilli M. Functionalized lipid-based drug delivery nanosystems for the treatment of human infectious diseases. Crit Rev Microbiol 2023; 49:214-230. [PMID: 35634703 DOI: 10.1080/1040841x.2022.2047007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases are still public health problems. Microorganisms such as fungi, bacteria, viruses, and parasites are the main causing agents related to these diseases. In this context, the search for new effective strategies in prevention and/or treatment is considered essential, since current drugs often have side effects or end up, causing microbial resistance, making it a serious health problem. As an alternative to these limitations, nanotechnology has been widely used. The use of lipid-based drug delivery nanosystems (DDNs) has some advantages, such as biocompatibility, low toxicity, controlled release, the ability to carry both hydrophilic and lipophilic drugs, in addition to be easel scalable. Besides, as an improvement, studies involving the conjugation of signalling molecules on the surfaces of these nanocarriers can allow the target of certain tissues or cells. Thus, this review summarizes the performance of functionalized lipid-based DDNs for the treatment of infectious diseases caused by viruses, including SARS-CoV-2, bacteria, fungi, and parasites.
Collapse
Affiliation(s)
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, Campinas State University (UNICAMP), Campinas, Brazil
| | | | | | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
5
|
Jitta SR, Salwa, Bhaskaran NA, Marques SM, Kumar L. Recent advances in nanoformulation development of Ritonavir, a key protease inhibitor used in the treatment of HIV-AIDS. Expert Opin Drug Deliv 2022; 19:1133-1148. [PMID: 36063032 DOI: 10.1080/17425247.2022.2121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION AIDS is one of the world's most serious public health challenges. Protease inhibitors are key components of AIDS treatment regimen. Ritonavir is a well-known protease inhibitor with low aqueous solubility belonging to BCS class II category. Some of the severe adverse effects associated with this drug restricted its use in the treatment of AIDS. However, several attempts were made by researchers in the past to enhance the oral bioavailability of Ritonavir. AREAS COVERED The current review mainly focuses on the adverse effects of Ritonavir and recent approaches followed by researchers on the development of nanoformulations of Ritonavir. Further, various patents filed on Ritonavir have also been discussed in the current review. EXPERT OPINION Most research on nanoformulation development for Ritonavir is mainly focused on enhancing the solubility and oral bioavailability of the drug. Some of the researchers focused on the lymphatic targeting of the drug in order to bypass the hepatic metabolism of the drug. However, most of the research topics did not cover the toxicity evaluation of the developed formulation. Since the major issue of Ritonavir is not only oral bioavailability but also drug-induced toxicity, this area needs to be considered during the formulation development.
Collapse
Affiliation(s)
- Srinivas Reddy Jitta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Navya Ajitkumar Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India.,Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, Government of NCT of Delhi, New Delhi, India
| |
Collapse
|
6
|
Rojekar S, Abadi LF, Pai R, Prajapati MK, Kulkarni S, Vavia PR. Mannose-Anchored Nano-Selenium Loaded Nanostructured Lipid Carriers of Etravirine for Delivery to HIV Reservoirs. AAPS PharmSciTech 2022; 23:230. [PMID: 35978154 DOI: 10.1208/s12249-022-02377-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
The present investigation aims to develop and explore mannosylated lipid-based carriers to deliver an anti-HIV drug, Etravirine (TMC) and Selenium nanoparticles (SeNPs), to the HIV reservoirs via the mannose receptor. The successful mannosylation was evaluated by the change in zeta potential and lectin binding assay using fluorescence microscopy. Electron microscopy and scattering studies were employed to study the structure and surface of the nanocarrier system. The presence of selenium at the core-shell of the nanocarrier system was confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray analysis. Further, the in vitro anti-HIV1 efficacy was assessed using HIV1 infected TZM-bl cells followed by in vivo biodistribution studies to evaluate distribution to various reservoirs of HIV. The results exhibited higher effectiveness and a significant increase in the therapeutic index as against the plain drug. The confocal microscopy and flow cytometry studies exhibited the efficient uptake of the coumarin-6 tagged respective formulations. The protective effect of nano selenium toward oxidative stress was evaluated in rats, demonstrating the potential of the lipidic nanoparticle-containing selenium in mitigating oxidative stress in all the major organs. The in vivo biodistribution assessment in rats showed a 12.44, 8.05 and 9.83-fold improvement in the brain, ovary, and lymph node biodistribution, respectively as compared with plain TMC. Delivery of such a combination via mannosylated nanostructured lipid carriers could be an efficient approach for delivering drugs to reservoirs of HIV while simultaneously reducing the oxidative stress induced by such long-term therapies by co-loading Nano-Selenium.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Leila Fotooh Abadi
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune, 411 026, India
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Smita Kulkarni
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune, 411 026, India
| | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
7
|
Fotooh Abadi L, Damiri F, Zehravi M, Joshi R, Pai R, Berrada M, Massoud EES, Rahman MH, Rojekar S, Cavalu S. Novel Nanotechnology-Based Approaches for Targeting HIV Reservoirs. Polymers (Basel) 2022; 14:3090. [PMID: 35956604 PMCID: PMC9370744 DOI: 10.3390/polym14153090] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Highly active anti-retroviral therapy (HAART) is prescribed for HIV infection and, to a certain extent, limits the infection's spread. However, it cannot completely eradicate the latent virus in remote and cellular reservoir areas, and due to the complex nature of the infection, the total eradication of HIV is difficult to achieve. Furthermore, monotherapy and multiple therapies are not of much help. Hence, there is a dire need for novel drug delivery strategies that may improve efficacy, decrease side effects, reduce dosing frequency, and improve patient adherence to therapy. Such a novel strategy could help to target the reservoir sites and eradicate HIV from different biological sanctuaries. In the current review, we have described HIV pathogenesis, the mechanism of HIV replication, and different biological reservoir sites to better understand the underlying mechanisms of HIV spread. Further, the review deliberates on the challenges faced by the current conventional drug delivery systems and introduces some novel drug delivery strategies that have been explored to overcome conventional drug delivery limitations. In addition, the review also summarizes several nanotechnology-based approaches that are being explored to resolve the challenges of HIV treatment by the virtue of delivering a variety of anti-HIV agents, either as combination therapies or by actively targeting HIV reservoir sites.
Collapse
Affiliation(s)
- Leila Fotooh Abadi
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune 411026, Maharashtra, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rohit Joshi
- Precision NanoSystem Inc., Vancouver, BC V6P 6T7, Canada;
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India;
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza 3725004, Egypt
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea;
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
8
|
Nanoparticle-based strategies to target HIV-infected cells. Colloids Surf B Biointerfaces 2022; 213:112405. [PMID: 35255375 DOI: 10.1016/j.colsurfb.2022.112405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Antiretroviral drugs employed for the treatment of human immunodeficiency virus (HIV) infections have remained largely ineffective due to their poor bioavailability, numerous adverse effects, modest uptake in infected cells, undesirable drug-drug interactions, the necessity for long-term drug therapy, and lack of access to tissues and reservoirs. Nanotechnology-based interventions could serve to overcome several of these disadvantages and thereby improve the therapeutic efficacy of antiretrovirals while reducing the morbidity and mortality due to the disease. However, attempts to use nanocarriers for the delivery of anti-retroviral drugs have started gaining momentum only in the past decade. This review explores in-depth the various nanocarriers that have been employed for the treatment of HIV infections highlighting their merits and possible demerits.
Collapse
|
9
|
Desai J, Thakkar H. Mechanistic evaluation of lymphatic targeting efficiency of Atazanavir sulfate loaded lipid nanocarriers: In-vitro and in-vivo studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Latronico T, Rizzi F, Panniello A, Laquintana V, Arduino I, Denora N, Fanizza E, Milella S, Mastroianni CM, Striccoli M, Curri ML, Liuzzi GM, Depalo N. Luminescent PLGA Nanoparticles for Delivery of Darunavir to the Brain and Inhibition of Matrix Metalloproteinase-9, a Relevant Therapeutic Target of HIV-Associated Neurological Disorders. ACS Chem Neurosci 2021; 12:4286-4301. [PMID: 34726377 PMCID: PMC9297288 DOI: 10.1021/acschemneuro.1c00436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
Human
immunodeficiency virus (HIV) can independently replicate
in the central nervous system (CNS) causing neurocognitive impairment
even in subjects with suppressed plasma viral load. The antiretroviral
drug darunavir (DRV) has been approved for therapy of HIV-infected
patients, but its efficacy in the treatment of HIV-associated neurological
disorders (HAND) is limited due to the low penetration through the
blood–brain barrier (BBB). Therefore, innovations in DRV formulations,
based on its encapsulation in optically traceable nanoparticles (NPs),
may improve its transport through the BBB, providing, at the same
time, optical monitoring of drug delivery within the CNS. The aim
of this study was to synthesize biodegradable polymeric NPs loaded
with DRV and luminescent, nontoxic carbon dots (C-Dots) and investigate
their ability to permeate through an artificial BBB and to inhibit in vitro matrix metalloproteinase-9 (MMP-9) that represents
a factor responsible for the development of HIV-related neurological
disorders. Biodegradable poly(lactic-co-glycolic)
acid (PLGA)-based nanoformulations resulted characterized by an average
hydrodynamic size less than 150 nm, relevant colloidal stability in
aqueous medium, satisfactory drug encapsulation efficiency, and retained
emitting optical properties in the visible region of the electromagnetic
spectrum. The assay on the BBB artificial model showed that a larger
amount of DRV was able to cross BBB when incorporated in the PLGA
NPs and to exert an enhanced inhibition of matrix metalloproteinase-9
(MMP-9) expression levels with respect to free DRV. The overall results
reveal the great potential of this class of nanovectors of DRV for
an efficacious treatment of HANDs.
Collapse
Affiliation(s)
- Tiziana Latronico
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Annamaria Panniello
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Elisabetta Fanizza
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Serafina Milella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Claudio M. Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University, AOU Policlinico Umberto 1, 00185 Rome, Italy
| | - Marinella Striccoli
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Maria Lucia Curri
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Grazia M. Liuzzi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nicoletta Depalo
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
11
|
Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. J Control Release 2021; 337:258-284. [PMID: 34293319 PMCID: PMC8289726 DOI: 10.1016/j.jconrel.2021.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.
Collapse
Affiliation(s)
- Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt.
| | - Sara El Safy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Shahenda Ramadan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva Krakor
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
12
|
Whittle E, Martín-Illana A, Cazorla-Luna R, Notario-Perez F, Veiga-Ochoa MD, Rubio J, Tamayo A. Silane Modification of Mesoporous Materials for the Optimization of Antiviral Drug Adsorption and Release Capabilities in Vaginal Media. Pharmaceutics 2021; 13:1416. [PMID: 34575491 PMCID: PMC8468001 DOI: 10.3390/pharmaceutics13091416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Three different functionalities have been incorporated into mesoporous materials by means of a coupling reaction with the siloxanes 3-glycidoxypropyl-trimethoxysilane (GLYMO), 3-methacryloxypropyl-trimethoxysilane (MEMO), and 3-mercaptopropyl-trimethoxysilane (MPTMS). The disposition of the different functional groups, as well as the interaction mechanism, with the mesoporous substrate has been identified. The amount of the antiviral drug acyclovir (ACV) adsorbed depends not only on the available surface area but also on the chemical or physicochemical interactions between functionalities. The drug adsorption isotherm of the materials functionalized with GLYMO and MPTMS follow mechanisms dependent on the different surface coverage and the possibilities to establish physicochemical interactions between the drug molecule and the functionalities. On the contrary, when functionalizing with MEMO, the dominant adsorption mechanism is characteristic of chemically bonded adsorbates. The ACV release kinetics is best fitted to the Weibull model in all the functionalized materials. When the MTPMS is used as a functionalizing agent, the drug diffusion occurs at low kinetics and homogeneously along the mesoporous channels.
Collapse
Affiliation(s)
- Elena Whittle
- Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense, s/n, 28040 Madrid, Spain;
| | - Araceli Martín-Illana
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s.n, 28007 Madrid, Spain; (A.M.-I.); (R.C.-L.); (F.N.-P.); (M.D.V.-O.)
| | - Raul Cazorla-Luna
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s.n, 28007 Madrid, Spain; (A.M.-I.); (R.C.-L.); (F.N.-P.); (M.D.V.-O.)
| | - Fernando Notario-Perez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s.n, 28007 Madrid, Spain; (A.M.-I.); (R.C.-L.); (F.N.-P.); (M.D.V.-O.)
| | - María Dolores Veiga-Ochoa
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s.n, 28007 Madrid, Spain; (A.M.-I.); (R.C.-L.); (F.N.-P.); (M.D.V.-O.)
| | - Juan Rubio
- Institute of Ceramics and Glass, CSIC, Kelsen 5, 28049 Madrid, Spain;
| | - Aitana Tamayo
- Institute of Ceramics and Glass, CSIC, Kelsen 5, 28049 Madrid, Spain;
| |
Collapse
|
13
|
Lipid Nanocarriers for Anti-HIV Therapeutics: A Focus on Physicochemical Properties and Biotechnological Advances. Pharmaceutics 2021; 13:pharmaceutics13081294. [PMID: 34452255 PMCID: PMC8398060 DOI: 10.3390/pharmaceutics13081294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Since HIV was first identified, and in a relatively short period of time, AIDS has become one of the most devastating infectious diseases of the 21st century. Classical antiretroviral therapies were a major step forward in disease treatment options, significantly improving the survival rates of HIV-infected individuals. Even though these therapies have greatly improved HIV clinical outcomes, antiretrovirals (ARV) feature biopharmaceutic and pharmacokinetic problems such as poor aqueous solubility, short half-life, and poor penetration into HIV reservoir sites, which contribute to the suboptimal efficacy of these regimens. To overcome some of these issues, novel nanotechnology-based strategies for ARV delivery towards HIV viral reservoirs have been proposed. The current review is focused on the benefits of using lipid-based nanocarriers for tuning the physicochemical properties of ARV to overcome biological barriers upon administration. Furthermore, a correlation between these properties and the potential therapeutic outcomes has been established. Biotechnological advancements using lipid nanocarriers for RNA interference (RNAi) delivery for the treatment of HIV infections were also discussed.
Collapse
|
14
|
Rojekar S, Pai R, Abadi LF, Mahajan K, Prajapati MK, Kulkarni S, Vavia P. Dual loaded nanostructured lipid carrier of nano-selenium and Etravirine as a potential anti-HIV therapy. Int J Pharm 2021; 607:120986. [PMID: 34389421 DOI: 10.1016/j.ijpharm.2021.120986] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023]
Abstract
There is a dire need for dual-long-acting therapy that could simultaneously target different stages of the HIV life cycle and providing a dual-prolonged strategy for improved anti-HIV therapy while reducing oxidative stress associated with the prolonged treatment. Thus, in the present work, nanostructured lipid carriers of Etravirine were developed and modified with nano-selenium. The dual-loaded nanocarrier system was fabricated using the double emulsion solvent evaporation method, further screened and optimized using the design of experiments methodology. The spherical core-shell type of a system was confirmed with an electron microscope and small-angle neutron scattering, while XPS confirmed the presence of selenium at the core-shell of the nanocarrier. In vitro assessment against HIV1 (R5 and X4 strains) infected TZM-bl cells exhibited higher efficacy for the dual-loaded nanocarrier system than the plain drug, which could be attributed to the synergistic effect of the nano-selenium. Confocal microscopy and flow cytometry results exhibited enhanced uptake in TZM-bl cells compared to plain drug. A significant increase of GSH, SOD, CAT was observed in animals administered with the dual-loaded nanocarrier system containing nano-selenium, suggesting the protective potential of the lipidic nanoparticle containing the nano-selenium. Improvement in the in vivo pharmacokinetic parameters was also observed, along with a higher accumulation of the dual-loaded nanocarrier in remote HIV reservoir organs like the brain, ovary, and lymph node. The results suggest the potential of a dual-loaded formulation for synergistically targeting the HIV1 infection while simultaneously improving the intracellular anti-oxidant balance for improving a prolonged anti-HIV therapy.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Leila Fotooh Abadi
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune 411026, India
| | - Ketan Mahajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Smita Kulkarni
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune 411026, India
| | - Pradeep Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
15
|
Punjabi MS, Naha A, Shetty D, Nayak UY. Lymphatic Drug Transport and Associated Drug Delivery Technologies: A Comprehensive Review. Curr Pharm Des 2021; 27:1992-1998. [PMID: 33272166 DOI: 10.2174/1381612826999201203214247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Lymphatic system is the secondary circulation system of the human body after the systemic circulation. Various problems, including the first-pass metabolism through oral administration of medicines, can be resolved by lymphatic targeting. Lymphatic absorption has been explored in detail, and studies reveal the improved bioavailability of medicines. In the case of cancer, AIDS, and various other health problems, lymphatic targeting has been focused on due to the fact that lymph nodes are involved greatly in tumor metastasis. This article reviews lymphatic absorption and its exploration in the treatment of various health problems. The physiology of the lymphatic system, the mechanisms of absorption, and the various formulation systems suitable for lymphatic absorption have been discussed. Some recent novel approaches like hydrodynamically driven device (HDD) and carbon nanotubes for lymphatic delivery have also been appraised.
Collapse
Affiliation(s)
| | - Anup Naha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Disha Shetty
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| |
Collapse
|
16
|
Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability. Pharmaceutics 2021; 13:pharmaceutics13071103. [PMID: 34371794 PMCID: PMC8309061 DOI: 10.3390/pharmaceutics13071103] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023] Open
Abstract
P-glycoprotein (P-gp) is crucial in the active transport of various substrates with diverse structures out of cells, resulting in poor intestinal permeation and limited bioavailability following oral administration. P-gp inhibitors, including small molecule drugs, natural constituents, and pharmaceutically inert excipients, have been exploited to overcome P-gp efflux and enhance the oral absorption and bioavailability of many P-gp substrates. The co-administration of small molecule P-gp inhibitors with P-gp substrates can result in drug–drug interactions and increased side effects due to the pharmacological activity of these molecules. On the other hand, pharmaceutically inert excipients, including polymers, surfactants, and lipid-based excipients, are safe, pharmaceutically acceptable, and are not absorbed from the gut. Notably, they can be incorporated in pharmaceutical formulations to enhance drug solubility, absorption, and bioavailability due to the formulation itself and the P-gp inhibitory effects of the excipients. Different formulations with inherent P-gp inhibitory activity have been developed. These include micelles, emulsions, liposomes, solid lipid nanoparticles, polymeric nanoparticles, microspheres, dendrimers, and solid dispersions. They can bypass P-gp by different mechanisms related to their properties. In this review, we briefly introduce P-gp and P-gp inhibitors, and we extensively summarize the current development of oral drug delivery systems that can bypass and inhibit P-gp to improve the oral absorption and bioavailability of P-gp substrates. Since many drugs are limited by P-gp-mediated efflux, this review is helpful for designing suitable formulations of P-gp substrates to enhance their oral absorption and bioavailability.
Collapse
|
17
|
Rojekar S, Fotooh Abadi L, Pai R, Mahajan K, Kulkarni S, Vavia PR. Multi-organ targeting of HIV-1 viral reservoirs with etravirine loaded nanostructured lipid carrier: An in-vivo proof of concept. Eur J Pharm Sci 2021; 164:105916. [PMID: 34166780 DOI: 10.1016/j.ejps.2021.105916] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022]
Abstract
The inadequate bioavailability and toxicity potential of antiretroviral therapy limit their effectiveness in the complete eradication of HIV from viral reservoirs. The penetration of these drugs into the brain is challenging because of the unfavorable physicochemical properties required to cross the membranes, limiting the transport of the drugs. Thus, in the current study, the authors report a nanocarrier-based drug delivery of a highly hydrophobic drug to overcome the existing limitations of the conventional therapies. An explicitly simple approach was used to overcome the limitations of existing anti-HIV therapies. The monophasic hot homogenized solution of lipid, drug, and solubilizer was diluted with the predetermined hot surfactant solution followed by the ultrasonication to generate the polydisperse nanoparticles with the size range of 50-1000 nm. The anti-HIV1 potential of nanostructured lipid carriers of Etravirine on HIV-infected cell lines showed efficacy with an appreciable increase in the therapeutic index as compared with the plain drug. Further, the results obtained from confocal microscopy along with flow cytometry exhibited efficient uptake of the nanocarrier loaded with coumarin-6 in cells. The pharmacokinetics of Etravirine nanostructured carriers was significantly better in all aspects compared to the plain drug solution, which could be attributed to molecular dispersion in the lipid matrix of the nanocarrier. A significant enhancement of Etravirine concentration of several-fold was also observed in the liver, ovary, lymph node, and brain, respectively, as compared to plain drug solution when assessed by biodistribution studies in rats. In conclusion, ETR-NLC systems could serve as a promising approach for simultaneous multi-site targeting and could provide therapeutic benefits for the efficient eradication of HIV/AIDS infections.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Center for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai 400019, India
| | - Leila Fotooh Abadi
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune 411026, India
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Ketan Mahajan
- Department of Pharmaceutical Sciences and Technology, Center for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai 400019, India
| | - Smita Kulkarni
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune 411026, India
| | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Center for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
18
|
Devanathan AS, Cottrell ML. Pharmacology of HIV Cure: Site of Action. Clin Pharmacol Ther 2021; 109:841-855. [PMID: 33540481 DOI: 10.1002/cpt.2187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Despite significant advances in HIV treatment over the past 30 years, critical barriers to an HIV cure persist. The HIV reservoir, defined at both the cellular and anatomical level, constitutes the main barrier to cure. While the mechanisms underlying the reservoir are not yet well understood, one theory to explain persistence at the anatomical level is that subtherapeutic exposure to antiretroviral therapy (ART) within certain tissue compartments permits ongoing replication. Characterizing ART pharmacology throughout the body is important in the context of these potential pharmacologic sanctuaries and for maximizing the probability of success with forthcoming cure strategies that rely on latency reversal and require ART to prevent reseeding the reservoir. In this review, we provide a comprehensive overview of ART and latency reversal agent distribution at the site of action for HIV cure (i.e., anatomical sites commonly associated with HIV persistence, such as lymphoid organs and the central nervous system). We also discuss methodologic approaches that provide insight into HIV cure pharmacology, including experimental design and advances within the computational, pharmaceutical, and analytical chemistry fields. The information discussed in this review will assist in streamlining the development of investigational cure strategies by providing a roadmap to ensure therapeutic exposure within the site of action for HIV cure.
Collapse
Affiliation(s)
- Aaron S Devanathan
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Mackenzie L Cottrell
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Ngowi EE, Wang YZ, Qian L, Helmy YASH, Anyomi B, Li T, Zheng M, Jiang ES, Duan SF, Wei JS, Wu DD, Ji XY. The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders. Front Bioeng Biotechnol 2021; 9:629832. [PMID: 33738278 PMCID: PMC7960921 DOI: 10.3389/fbioe.2021.629832] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Brain is by far the most complex organ in the body. It is involved in the regulation of cognitive, behavioral, and emotional activities. The organ is also a target for many diseases and disorders ranging from injuries to cancers and neurodegenerative diseases. Brain diseases are the main causes of disability and one of the leading causes of deaths. Several drugs that have shown potential in improving brain structure and functioning in animal models face many challenges including the delivery, specificity, and toxicity. For many years, researchers have been facing challenge of developing drugs that can cross the physical (blood–brain barrier), electrical, and chemical barriers of the brain and target the desired region with few adverse events. In recent years, nanotechnology emerged as an important technique for modifying and manipulating different objects at the molecular level to obtain desired features. The technique has proven to be useful in diagnosis as well as treatments of brain diseases and disorders by facilitating the delivery of drugs and improving their efficacy. As the subject is still hot, and new research findings are emerging, it is clear that nanotechnology could upgrade health care systems by providing easy and highly efficient diagnostic and treatment methods. In this review, we will focus on the application of nanotechnology in the diagnosis and treatment of brain diseases and disorders by illuminating the potential of nanoparticles.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China.,Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yasmeen Ahmed Saleheldin Hassan Helmy
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Bright Anyomi
- Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - En-She Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Nursing and Health, Institutes of Nursing and Health, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jian-She Wei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
20
|
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196:111305. [DOI: 10.1016/j.colsurfb.2020.111305] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
|
21
|
Banoub MG, Bade AN, Lin Z, Cobb D, Gautam N, Dyavar Shetty BL, Wojtkiewicz M, Alnouti Y, McMillan J, Gendelman HE, Edagwa B. Synthesis and Characterization of Long-Acting Darunavir Prodrugs. Mol Pharm 2019; 17:155-166. [PMID: 31742407 DOI: 10.1021/acs.molpharmaceut.9b00871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antiretroviral therapy (ART) has improved the quality of life in patients infected with HIV-1. However, complete viral suppression within anatomical compartments remains unattainable. This is complicated by adverse side effects and poor adherence to lifelong therapy leading to the emergence of viral drug resistance. Thus, there is an immediate need for cellular and tissue-targeted long-acting (LA) ART formulations. Herein, we describe two LA prodrug formulations of darunavir (DRV), a potent antiretroviral protease inhibitor. Two classes of DRV prodrugs, M1DRV and M2DRV, were synthesized as lipophilic and hydrophobic prodrugs and stabilized into aqueous suspensions designated NM1DRV and NM2DRV. The formulations demonstrated enhanced intracellular prodrug levels with sustained drug retention and antiretroviral activities for 15 and 30 days compared to native DRV formulation in human monocyte-derived macrophages. Pharmacokinetics tests of NM1DRV and NM2DRV administered to mice demonstrated sustained drug levels in blood and tissues for 30 days. These data, taken together, support the idea that LA DRV with sustained antiretroviral responses through prodrug nanoformulations is achievable.
Collapse
|
22
|
Gao X, Rosales A, Karttunen H, Bommana GM, Tandoh B, Yi Z, Habib Z, D'Agati V, Zhang W, Ross MJ. The HIV protease inhibitor darunavir prevents kidney injury via HIV-independent mechanisms. Sci Rep 2019; 9:15857. [PMID: 31676833 PMCID: PMC6825220 DOI: 10.1038/s41598-019-52278-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
HIV-associated nephropathy (HIVAN) is a rapidly progressive kidney disease that is caused by HIV infection of renal epithelial cells with subsequent expression of viral genes, including vpr. Antiretroviral therapy ameliorates HIVAN without eradicating HIV from the kidneys and the mechanism by which it protects kidneys is poorly understood. Since HIV protease inhibitors have "off target" cellular effects, we studied whether darunavir, the most commonly prescribed protease inhibitor, protects kidneys from HIV-induced injury via mechanisms independent of HIV protease and viral replication. Renal epithelial cells were transduced with lentiviruses encoding HIV (lacking protease and reverse transcriptase), Vpr, or vector control. Darunavir attenuated HIV and Vpr-induced activation of Stat3, Src, Erk, and cytokines, which are critical for HIVAN pathogenesis. We then studied HIV-transgenic mice, which develop HIVAN in the absence of HIV protease or reverse transcriptase. Mice were treated with darunavir, zidovudine, darunavir + zidovudine, or control. Darunavir and darunavir + zidovudine reduced albuminuria and histologic kidney injury and normalized expression of dysregulated proteins. RNA-seq analyses demonstrated that darunavir suppressed HIV-induced upregulation of immune response genes in human kidney cells. These data demonstrate that darunavir protects against HIV-induced renal injury via mechanisms that are independent of inhibition of HIV protease.
Collapse
Affiliation(s)
- Xiaobo Gao
- Division of Nephrology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Alan Rosales
- Division of Nephrology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Heidi Karttunen
- Division of Nephrology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | | | - Buadi Tandoh
- Division of Nephrology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Zhengzi Yi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Vivette D'Agati
- Department of Pathology, Columbia University, College of Physicians & Surgeons, New York, NY, USA
| | - Weijia Zhang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael J Ross
- Division of Nephrology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Gong Y, Chowdhury P, Nagesh PKB, Cory TJ, Dezfuli C, Kodidela S, Singh A, Yallapu MM, Kumar S. Nanotechnology approaches for delivery of cytochrome P450 substrates in HIV treatment. Expert Opin Drug Deliv 2019; 16:869-882. [PMID: 31328582 DOI: 10.1080/17425247.2019.1646725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: Antiretroviral therapy (ART) has led to a significant reduction in HIV-1 morbidity and mortality. Many antiretroviral drugs (ARVs) are metabolized by cytochrome P450 (CYP) pathway, and the majority of these drugs are also either CYP inhibitors or inducers and few possess both activities. These CYP substrates, when used for HIV treatment in the conventional dosage form, have limitations such as low systemic bioavailability, potential drug-drug interactions, and short half-lives. Thus, an alternative mode of delivery is needed in contrast to conventional ARVs. Areas covered: In this review, we summarized the limitations of conventional ARVs in HIV treatment, especially for ARVs which are CYP substrates. We also discussed the preclinical and clinical studies using the nanotechnology strategy to overcome the limitations of these CYP substrates. The preclinical studies and clinical studies published from 2000 to February 2019 were discussed. Expert opinion: Since preclinical and clinical studies for prevention and treatment of HIV using nanotechnology approaches have shown considerable promise in recent years, nanotechnology could become an alternative strategy for daily oral therapy as a future treatment.
Collapse
Affiliation(s)
- Yuqing Gong
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Pallabita Chowdhury
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Prashanth K B Nagesh
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Theodore J Cory
- b Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Chelsea Dezfuli
- b Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Sunitha Kodidela
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ajay Singh
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Murali M Yallapu
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Santosh Kumar
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
24
|
Gong Y, Haque S, Chowdhury P, Cory TJ, Kodidela S, Yallapu MM, Norwood JM, Kumar S. Pharmacokinetics and pharmacodynamics of cytochrome P450 inhibitors for HIV treatment. Expert Opin Drug Metab Toxicol 2019; 15:417-427. [PMID: 30951643 DOI: 10.1080/17425255.2019.1604685] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Drugs used in HIV treatment; all protease inhibitors, some non-nucleoside reverse transcriptase inhibitors, and pharmacoenhancers ritonavir and cobicistat can inhibit cytochrome P450 (CYP) enzymes. CYP inhibition can cause clinically significant drug-drug interactions (DDI), leading to increased drug exposure and potential toxicity. Areas covered: A complete understanding of pharmacodynamics and CYP-mediated DDI is crucial to prevent adverse side effects and to achieve optimal efficacy. We summarized the pharmacodynamics of all the CYP inhibitors used for HIV treatment, followed by a discussion of drug interactions between these CYP inhibitors and other drugs, and a discussion on the effect of CYP polymorphisms. We also discussed the potential advancements in improving the pharmacodynamics of these CYP inhibitors by using nanotechnology strategy. Expert opinion: The drug-interactions in HIV patients receiving ARV drugs are complicated, especially when patients are on CYP inhibitors-based ART regimens. Therefore, evaluation of CYP-mediated drug interactions is necessary prior to prescribing ARV drugs to HIV subjects. To improve the treatment efficacy and minimize DDI, novel approaches such as nanotechnology may be the potential alternative approach. However, further studies with large cohort need to be conducted to provide strong evidence for the use of nano-formulated ARVs to effectively treat HIV patients.
Collapse
Affiliation(s)
- Yuqing Gong
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Sanjana Haque
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Pallabita Chowdhury
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Theodore J Cory
- b Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Sunitha Kodidela
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Murali M Yallapu
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - John M Norwood
- c Department of Infectious Disease , College of Medicine, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Santosh Kumar
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
25
|
Vishwakarma N, Jain A, Sharma R, Mody N, Vyas S, Vyas SP. Lipid-Based Nanocarriers for Lymphatic Transportation. AAPS PharmSciTech 2019; 20:83. [PMID: 30673895 DOI: 10.1208/s12249-019-1293-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
The effectiveness of any drug is dependent on to various factors like drug solubility, bioavailability, selection of appropriate delivery system, and proper route of administration. The oral route for the delivery of drugs is undoubtedly the most convenient, safest and has been widely used from past few decades for the effective delivery of drugs. However, despite of the numerous advantages that oral route offers, it often suffers certain limitations like low bioavailability due to poor water solubility as well as poor permeability of drugs, degradation of the drug in the physiological pH of the stomach, hepatic first-pass metabolism, etc. The researchers have been continuously working extensively to surmount and address appropriately the inherent drawbacks of the oral drug delivery. The constant and continuous efforts have led to the development of lipid-based nano drug delivery system to overcome the aforesaid associated challenges of the oral delivery through lymphatic transportation. The use of lymphatic route has demonstrated its critical and crucial role in overcoming the problem associated and related to low bioavailability of poorly water-soluble and poorly permeable drugs by bypassing intestinal absorption and possible first-pass metabolism. The current review summarizes the bonafide perks of using the lipid-based nanocarriers for the delivery of drugs using the lymphatic route. The lipid-based nanocarriers seem to be a promising delivery system which can be optimized and further explored as an alternative to the conventional dosage forms for the enhancement of oral bioavailability of drugs, with better patient compliance, minimum side effect, and improved the overall quality of life.
Collapse
|
26
|
Nabi B, Rehman S, Baboota S, Ali J. Insights on Oral Drug Delivery of Lipid Nanocarriers: a Win-Win Solution for Augmenting Bioavailability of Antiretroviral Drugs. AAPS PharmSciTech 2019; 20:60. [PMID: 30623263 DOI: 10.1208/s12249-018-1284-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
The therapeutic functionality of innumerable antiretroviral drugs is supposedly obscured owing to their low metabolic stability in the gastrointestinal tract and poor solubilization property leading to poor oral bioavailability. Dictated by such needs, lipid-based formulations could be tailored using nanotechnology which would be instrumental in ameliorating the attributes of such drugs. The stupendous advantages which lipid nanocarriers offer including improved drug stability and peroral bioavailability coupled with sustained drug release profile and feasibility to incorporate wide array of drugs makes it a potential candidate for pharmaceutical formulations. Furthermore, they also impart targeted drug delivery thereby widening their arena for use. Therefore, the review will encompass the details pertaining to numerous lipid nanocarriers such as nanoemulsion, solid lipid nanoparticle, nanostructured lipid carriers, and so on. These nanocarriers bear the prospective of improving the mucosal adhesion property of the drugs which ultimately upgrades its pharmacokinetic profile. The biodegradable and physiological nature of the lipid excipients used in the formulation is the key parameter and advocates for their safe use. Nevertheless, these lipid-based nanocarriers are amenable to alterations which could be rightly achieved by changing the excipients used or by modifying the process parameters. Thus, the review will systematically envisage the impending benefits and future perspectives of different lipid nanocarriers used in oral delivery of antiretroviral drugs.
Collapse
|
27
|
Kala S, Watson B, Zhang JG, Papp E, Guzman Lenis M, Dennehy M, Cameron DW, Harrigan PR, Serghides L. Improving the clinical relevance of a mouse pregnancy model of antiretroviral toxicity; a pharmacokinetic dosing-optimization study of current HIV antiretroviral regimens. Antiviral Res 2018; 159:45-54. [PMID: 30236532 DOI: 10.1016/j.antiviral.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
Animal models can be useful tools for the study of HIV antiretroviral (ARV) safety/toxicity in pregnancy and the mechanisms that underlie ARV-associated adverse events. The utility and translatability of animal model-based ARV safety/toxicity data is improved if ARVs are tested in clinically relevant concentrations. The objective of this work was to improve the clinical relevance of our mouse pregnancy model of ARV toxicity, by determining the doses of currently prescribed ARV regimens that would yield human therapeutic plasma concentrations. Pregnant mice were administered increasing doses of ARV combinations by oral gavage, followed by measurement of drug concentrations in the maternal plasma and amniotic fluid. Concentrations of ten different ARVs in maternal plasma and amniotic fluid samples of pregnant mice are presented, with dosing optimization to yield human pregnancy-relevant plasma drug concentrations. We have proposed optimal dosing for different regimen component drugs to achieve human therapeutic plasma levels, so that a clinically relevant standard dosing is established. A review of related ARV pharmacokinetic studies in (pregnant/non-pregnant) rodents and human pregnancy is also shown. We hope these data will inform and encourage the use of mouse pregnancy models in the study of ARV safety/toxicity.
Collapse
Affiliation(s)
- Smriti Kala
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Canada
| | - Birgit Watson
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Jeremy Guijun Zhang
- Clinical Investigation Unit at the Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa at the Ottawa Hospital / Research Institute, Ottawa, Canada
| | - Eszter Papp
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Canada
| | - Monica Guzman Lenis
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Canada
| | - Michelle Dennehy
- Clinical Investigation Unit at the Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa at the Ottawa Hospital / Research Institute, Ottawa, Canada
| | - D William Cameron
- Clinical Investigation Unit at the Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa at the Ottawa Hospital / Research Institute, Ottawa, Canada
| | - P Richard Harrigan
- Division of AIDS, Department of Medicine, University of British Columbia, Vancouver Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Canada; Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Canada; Women's College Research Institute, Women's College Hospital, Toronto, Canada.
| |
Collapse
|