1
|
Ibnidris A, Liaskos N, Eldem E, Gunn A, Streffer J, Gold M, Rea M, Teipel S, Gardiol A, Boccardi M. Facilitating the use of the target product profile in academic research: a systematic review. J Transl Med 2024; 22:693. [PMID: 39075460 PMCID: PMC11288132 DOI: 10.1186/s12967-024-05476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The Target Product Profile (TPP) is a tool used in industry to guide development strategies by addressing user needs and fostering effective communication among stakeholders. However, they are not frequently used in academic research, where they may be equally useful. This systematic review aims to extract the features of accessible TPPs, to identify commonalities and facilitate their integration in academic research methodology. METHODS We searched peer-reviewed papers published in English developing TPPs for different products and health conditions in four biomedical databases. Interrater agreement, computed on random abstract and paper sets (Cohen's Kappa; percentage agreement with zero tolerance) was > 0.91. We interviewed experts from industry contexts to gain insight on the process of TPP development, and extracted general and specific features on TPP use and structure. RESULTS 138 papers were eligible for data extraction. Of them, 92% (n = 128) developed a new TPP, with 41.3% (n = 57) focusing on therapeutics. The addressed disease categories were diverse; the largest (47.1%, n = 65) was infectious diseases. Only one TPP was identified for several fields, including global priorities like dementia. Our analyses found that 56.5% of papers (n = 78) was authored by academics, and 57.8% of TPPs (n = 80) featured one threshold level of product performance. The number of TPP features varied widely across and within product types (n = 3-44). Common features included purpose/context of use, shelf life for drug stability and validation aspects. Most papers did not describe the methods used to develop the TPP. We identified aspects to be taken into account to build and report TPPs, as a starting point for more focused initiatives guiding use by academics. DISCUSSION TPPs are used in academic research mostly for infectious diseases and have heterogeneous features. Our extraction of key features and common structures helps to understand the tool and widen its use in academia. This is of particular relevance for areas of notable unmet needs, like dementia. Collaboration between stakeholders is key for innovation. Tools to streamline communication such as TPPs would support the development of products and services in academia as well as industry.
Collapse
Affiliation(s)
- Aliaa Ibnidris
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Neuroscience Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Nektarios Liaskos
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, The Netherlands
| | - Ece Eldem
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | | | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Michael Gold
- AriLex Life Sciences LLC, 780 Elysian Way, Deerfield, IL, 60015, USA
| | | | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany
| | - Alejandra Gardiol
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, The Netherlands
- Queen Mary University of London, London, UK
| | - Marina Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany.
| |
Collapse
|
2
|
Rana H, Panchal M, Thakkar V, Gandhi T, Dholakia M. Investigating in-vitro functionality and in-vivo taste assessment of eco-friendly Tadalafil Pastilles. Heliyon 2024; 10:e29543. [PMID: 38660288 PMCID: PMC11040062 DOI: 10.1016/j.heliyon.2024.e29543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Tadalafil (TDL) has poor bioavailability due to the less aqueous solubility and bitter taste. Oral solid dosage forms, especially tablets, have a broad market worldwide. Constraints of tablets are a long process, pollution, high processing cost, and requiring more excipient. The research was performed to optimize an eco-friendly immediate-acting pastille of TDL to put forward an alternate formulation to a tablet using advanced data mining tools. Another objective is to assess the taste masking of TDL using the Brief Access Taste Aversion (BATA) model. The amount of PEG-4000, Polyox N-10, and Kyron T-314 were chosen as critical material attributes from failure mode effect analysis. Box-Behnken design (BBD) was utilized to optimize the pastilles and ascertained the significant impact of chosen variables on disintegration time and % CDR at 10 min. The control strategy and optimal region were located using an overlay plot. The pastilles were able to release the drug within 15 min due to faster disintegration. The formulated pastilles were of uniform size, shape, and mechanical strength. The bitter taste of TDL was masked and confirmed by the BATA model. The newer formulation may be helpful in the industry due to its eco-friendly, single-step, and economical process. It unlocks a new direction in the field of oral solid dosage form as an alternative to tablets.
Collapse
Affiliation(s)
- Hardik Rana
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Meghna Panchal
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Vaishali Thakkar
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Tejal Gandhi
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Mansi Dholakia
- Faculty of Pharmacy, Dharamsinh Desai University, Nadiad, Gujarat, India
| |
Collapse
|
3
|
Kang SJ, Kim JE. Development of Clinically Optimized Sitagliptin and Dapagliflozin Complex Tablets: Pre-Formulation, Formulation, and Human Bioequivalence Studies. Pharmaceutics 2023; 15:pharmaceutics15041246. [PMID: 37111730 PMCID: PMC10141516 DOI: 10.3390/pharmaceutics15041246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The purpose of this study is to derive an optimal drug release formulation with human clinical bioequivalence in developing a sitagliptin phosphate monohydrate-dapagliflozin propanediol hydrate fixed-dose combination (FDC) tablet as a treatment for type 2 diabetes mellitus. As a treatment for type 2 diabetes mellitus, the combined prescription of dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium-glucose cotransporter-2 (SGLT-2) inhibitors is common. Therefore, this study simplified the number of individual drugs taken and improved drug compliance by developing FDC tablets containing sitagliptin phosphate monohydrate as a DPP-4 inhibitor and dapagliflozin propanediol hydrate as an SGLT-2 inhibitor. To derive the optimal dosage form, we prepared single-layer tablets, double-layer tablets, and dry-coated tablets and evaluated the drug control release ability, tableting manufacturability, quality, and stability. Single-layer tablets caused problems with stability and drug dissolution patterns. When the dissolution test was performed on the dry-coated tablets, a corning effect occurred, and the core tablet did not completely disintegrate. However, in the quality evaluation of the double-layer tablets, the hardness was 12-14 kilopond, the friability was 0.2%, and the disintegration was within 3 min. In addition, the stability test revealed that the double-layer tablet was stable for 9 months under room temperature storage conditions and 6 months under accelerated storage conditions. In the drug release test, only the FDC double-layer tablet showed the optimal drug release pattern that satisfied each drug release rate. In addition, the FDC double-layer tablet showed a high dissolution rate of over 80% in the form of immediate-release tablets within 30 min in a pH 6.8 dissolution solution. In the human clinical trial, we co-administered a single dose of a sitagliptin phosphate monohydrate-dapagliflozin propanediol hydrate FDC double-layered tablet and the reference drug (Forxiga®, Januvia®) in healthy adult volunteers. This study showed clinically equivalent results in the stability and pharmacodynamic characteristics between the two groups.
Collapse
Affiliation(s)
- So-Jin Kang
- Department of Pharmaceutical Engineering, Catholic University of Daegu, Hayang-Ro 13-13, Gyeongsan 38430, Republic of Korea
| | - Joo-Eun Kim
- Department of Biopharmaceutical Chemistry, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
4
|
Wang F, Li Z, Gan XY, Lu XL, Jiao BH, Shen MH. Quality by design driven development and evaluation of thermosensitive hydrogel loaded with IgY and LL37-SLNs to combat experimental periodontitis. Eur J Pharm Sci 2023; 185:106444. [PMID: 37044199 DOI: 10.1016/j.ejps.2023.106444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/14/2023]
Abstract
Egg yolk immunoglobulin (IgY) and LL37, potent antibacterial substances, can fight against periodontitis. This work aimed to develop a locally injectable hydrogel for potential co-delivery of special IgY and LL37-loaded solid lipid nanoparticles (LL37-SLNs) to synergistically inhibit the proliferation of oral pathogens, thus relieving periodontal inflammation and redness. The formulation of thermosensitive hydrogel loaded with IgY and LL37-SLNs was developed by adopting the Quality by Design approach. Then the formulations were optimized by two-factor three-level full factorial design by Design-Expert software. Finally, the optimized formulation was characterized and estimated in vitro and in vivo. In vitro release and antibacterial activity studies have revealed that the optimized formulation was homogeneous and can be released slowly, with sustainably antibacterial power. And the physical and chemical composition analysis and morphological observations further confirmed the sustained-release capability. On the other hand, in vivo studies proved that the optimized formulation significantly decreased gingival redness, bleeding, and plaque formation, avoided excessive resorption of alveolar bone, and reduced the levels of inflammatory factor in periodontitis rats. In conclusion, the optimized thermosensitive hydrogel loaded with IgY and LL37-SLNs may be a promising local sustained-release preparation for the effective treatment of periodontal diseases.
Collapse
Affiliation(s)
- Fang Wang
- Shanghai university of Medicine and Health Sciences Affiliated Zhoupu hospital, Shanghai, 201318, China; Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Zhen Li
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xin-Yue Gan
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiao-Ling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Bing-Hua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Min-Hua Shen
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
5
|
Adnan M, Afzal O, S A Altamimi A, Alamri MA, Haider T, Faheem Haider M. Development and optimization of transethosomal gel of apigenin for topical delivery: In-vitro, ex-vivo and cell line assessment. Int J Pharm 2023; 631:122506. [PMID: 36535455 DOI: 10.1016/j.ijpharm.2022.122506] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The main aim of this study was to optimize the transethosomes of apigenin formulated by the thin film hydration method using surfactant Span 80. Response surface Box-Behnken design with three levels of three factors was used to design and optimize the formulations. The prepared transethosomal formulations were characterized for entrapment efficiency, vesicle size, and flux to obtain the optimized formulation batch. The optimized batch was further incorporated into the gel and characterized for the in-vitro, ex-vivo, and cytotoxic studies. The result showed the optimized transethosomes were smooth, nanosized, unilamellar, and spherical with an entrapment efficiency of 78.75 ± 3.14 %, a vesicle size of 108.75 ± 2.31 nm, and a flux of 4.10 ± 0.63 µg/cm2/h. In-vitro cumulative drug release of transethosomal gel of apigenin (TEL gel) and the conventional gel was 92.25 ± 3.5 % and 53.40 ± 3.10 %, respectively, after 24 h study. Ex-vivo permeation of TEL gel and conventional gel showed 86.20 ± 3.60 % and 51.20 ± 3.20 % permeation of apigenin at 24 h, respectively. A cytotoxic study confirmed that TEL gel significantly reduces cell viability compared to conventional gel. The results suggested that topical application of apigenin transethosomal gel may be a better treatment strategy for skin cancer because of the prolonged sustained release of the drug and the better permeability of apigenin through the skin.
Collapse
Affiliation(s)
- Mohammad Adnan
- Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Tanweer Haider
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474005, India.
| | - Md Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| |
Collapse
|
6
|
Pandit J, Alam MS, Javed MN, Waziri A, Imam SS. Emerging Roles of Carbon Nanohorns As Sustainable Nanomaterials in Sensor, Catalyst, and Biomedical Applications. HANDBOOK OF GREEN AND SUSTAINABLE NANOTECHNOLOGY 2023:1721-1747. [DOI: 10.1007/978-3-031-16101-8_48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
7
|
Alam T. Quality by design based development of nanostructured lipid carrier: a risk based approach. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this review is to discuss the development of nanostructured lipid carrier (NLC) by the application of quality by design (QbD). QbD started with the evolution of the quality concept and slow adaptation of quality guidelines, which has now become a regulatory requirement. In this review, brief history and elements of QbD including risk assessment (RA) have been discussed followed by the design of experiments (DoEs) that acts as a tool to analyze the input whose variation can optimize the output with the desired goal. NLC is a versatile delivery system as researchers widely use it to administer therapeutics with different physicochemical properties. The surface of NLC can be modified, making it a suitable delivery system with targeting potential for therapeutics. Implementation of QbD provides a high-quality robust formulation that can consistently meet the patient’s requirement throughout its life cycle without compromising the safety and effectiveness of the drug and delivery system. This review discusses QbD concepts followed by the systematic development of NLC by the application of DoE. Process analytical technology (PAT) and six sigma concepts have also been included which can benefit in the development of optimized NLC.
Collapse
Affiliation(s)
- Tausif Alam
- School of Pharmaceutical Sciences, Lingaya’s Vidyapeeth, Faridabad 121002, India
| |
Collapse
|
8
|
Quality by Design (QbD) application for the pharmaceutical development process. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Javed MN, Akhter MH, Taleuzzaman M, Faiyazudin M, Alam MS. Cationic nanoparticles for treatment of neurological diseases. FUNDAMENTALS OF BIONANOMATERIALS 2022:273-292. [DOI: 10.1016/b978-0-12-824147-9.00010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
|
10
|
Taleuzzaman M, Sartaz A, Alam MJ, Javed MN. Emergence of Advanced Manufacturing Techniques for Engineered Polymeric Systems in Cancer Treatment. ADVANCES IN CHEMICAL AND MATERIALS ENGINEERING 2022:152-172. [DOI: 10.4018/978-1-7998-9574-9.ch009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Clinical performances of chemotherapeutic drugs which are used to manage different stages of cancers are usually facing numerous pharmacological challenges such as tumor microenvironment, high dose requirements, poor selectivity towards cancer cells, life-threatening cytotoxicity, and frequent drug resistance incidences, in addition to pharmacotechnical issues such as poor aqueous solubility, uncontrolled drug-release, low stability, non-specific bio-distribution, and erratic bioavailability profiles. The chapter aims to provide a brief account of advancements made in nanotechnology-enabled manufacturing engineering tools for manipulating polymeric materials as efficient carriers so that loaded anti-cancer drugs would exhibit better therapeutic applications and optimized clinical significance in cancers.
Collapse
|
11
|
Naseh MF, Ansari JR, Alam MS, Javed MN. Sustainable Nanotorus for Biosensing and Therapeutical Applications. HANDBOOK OF GREEN AND SUSTAINABLE NANOTECHNOLOGY 2022:1-21. [DOI: 10.1007/978-3-030-69023-6_47-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/28/2021] [Indexed: 09/22/2024]
|
12
|
Pandit J, Alam MS, Javed MN, Waziri A, Imam SS. Emerging Roles of Carbon Nanohorns As Sustainable Nanomaterials in Sensor, Catalyst, and Biomedical Applications. HANDBOOK OF GREEN AND SUSTAINABLE NANOTECHNOLOGY 2022:1-27. [DOI: 10.1007/978-3-030-69023-6_48-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 09/22/2024]
|
13
|
Saha P, Bose S, Javed MN, Srivastava AK. Clinical potential of nanotechnlogy as smart therapeutics: A step toward targeted drug delivery. ADVANCES IN NANOTECHNOLOGY-BASED DRUG DELIVERY SYSTEMS 2022:133-154. [DOI: 10.1016/b978-0-323-88450-1.00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
14
|
Verma R, Vyas P, Kaur J, Javed MN, Sarafroz M, Ahmad M, Gilani SJ, Taleuzzaman M. Approaches for ear-targeted delivery systems in neurosensory disorders to avoid chronic hearing loss mediated neurological diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:479-491. [PMID: 34477535 DOI: 10.2174/1871527320666210903102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/17/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE Hearing loss is a common audio-vestibular-related neurosensory disability of inner ears, in which patients exhibit clinical symptoms of dizziness, gait unsteadiness, and oscillopsia, at an initial stage. While, if such disorders are untreated for a prolonged duration then the progression of disease into a chronic state significantly decreases GABA level as well as an alteration in the neurotransmission of CNS systems. Hence, to control the progression of disease into a chronic state, timely and targeted delivery of the drug into the site of action in the ear is now attracting the interest of neurologists for effective and safe treatment of such disorders. Among delivery systems, owing to small dimension, better penetration, rate-controlled release, higher bioavailability; nanocarriers are preferred to overcome delivery barriers, improvement in residence time, and enhanced the performance of loaded drugs. Subsequently, these carriers also stabilize encapsulated drugs while the opportunity to modify the surface of carriers favors guided direction for site-specific targeting. Conventional routes of drug delivery such as oral. intravenous, and intramuscular are poorer in performance because of inadequate blood supply to the inner ear and limited penetration of blood-inner ear barrier. CONCLUSION This review summarized novel aspects of non-invasive and biocompatible nanoparticles-based approaches for targeted delivery of drugs into the cochlea of the ear to reduce the rate, and extent of the emergence of any hearing loss mediated neurological disorders.
Collapse
Affiliation(s)
- Rishabh Verma
- Department of Pharmacology, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Preeti Vyas
- Department of Pharmacology, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Jasmeet Kaur
- Department of Pharmacognosy, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Md Noushad Javed
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, City Dammam, Saudi Arabia
| | - Makhmur Ahmad
- Department of Pharmaceutics, Buraydah College of Pharmacy and Dentistry, P.O Box- 31717, Buraydah- 51452, Al-Qassim, Saudi Arabia
| | - Sadaf Jamal Gilani
- College of Basic Health Science, Princess Nourah bint Abdulrahman University, Riyadh. Saudi Arabia
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Jodhpur, 342802, Rajasthan, India
| |
Collapse
|
15
|
Waghule T, Dabholkar N, Gorantla S, Rapalli VK, Saha RN, Singhvi G. Quality by design (QbD) in the formulation and optimization of liquid crystalline nanoparticles (LCNPs): A risk based industrial approach. Biomed Pharmacother 2021; 141:111940. [PMID: 34328089 DOI: 10.1016/j.biopha.2021.111940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
The intersection of lipid-based nanoparticles and lyotropic liquid crystals has provided a novel type of nanocarrier system known as 'lipid-based lyotropic liquid crystals' or 'liquid crystalline nanoparticles' (LCNPs). The unique advantages and immense popularity of LCNPs can be exploited in a better way if the formulation of LCNPs is done using the approach of quality by design (QbD). QbD is a systematic method that can be utilized in formulation development. When QbD is applied to LCNPs formulation, it will proffer many unique advantages, such as better product and process understanding, the flexibility of process within the design space, implementation of more effective and efficient control strategies, easy transfer from bench to bedside, and more robust product. In this work, the application of QbD in the formulation of LCNPs has been explored. The elements of QbD, viz. quality target product profile, critical quality attributes, critical material attributes, critical process parameters, quality risk management, design of experiments, and control strategy for the development of LCNPs have been explained in-depth with case studies. The present work will help the reader to understand the nitty-gritties in the application of QbD in the formulation of LCNPs, and provide a base for QbD-driven formulation of LCNPs with a regulatory perspective.
Collapse
Affiliation(s)
- Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Neha Dabholkar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Ranendra Narayan Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India.
| |
Collapse
|
16
|
QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111548. [DOI: 10.1016/j.msec.2020.111548] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/13/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
|
17
|
Javed MN, Pottoo FH, Shamim A, Hasnain MS, Alam MS. Design of Experiments for the Development of Nanoparticles, Nanomaterials, and Nanocomposites. DESIGN OF EXPERIMENTS FOR PHARMACEUTICAL PRODUCT DEVELOPMENT 2021:151-169. [DOI: 10.1007/978-981-33-4351-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
18
|
Kaleem M, Alhosin M, Khan K, Ahmad W, Hosawi S, Nur SM, Choudhry H, Zamzami MA, Al-Abbasi FA, Javed MDN. Epigenetic Basis of Polyphenols in Cancer Prevention and Therapy. POLYPHENOLS-BASED NANOTHERAPEUTICS FOR CANCER MANAGEMENT 2021:189-238. [DOI: 10.1007/978-981-16-4935-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
19
|
Morri M, Casabonne C, Leonardi D, Vignaduzzo S. Orphan Formulations for Pediatric Use: Development and Stability Control of Two Sildenafil Citrate Solutions for the Treatment of Pulmonary Hypertension. AAPS PharmSciTech 2020; 21:221. [PMID: 32748291 DOI: 10.1208/s12249-020-01768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022] Open
Abstract
Sildenafil citrate causes vasodilatation, relaxation of the smooth muscle, and reduction of pulmonary arterial pressure. The latter property makes sildenafil citrate efficient for the treatment of cardiovascular diseases, including pulmonary arterial hypertension. Pediatric patients with pulmonary arterial hypertension are more susceptible to errors in drug administration than adults because of a lack of suitable drug dosages. Thus, the purpose of this study was to develop stable (chemically and microbiologically) sildenafil citrate drop liquid formulation, suitable for pediatric patients (including diabetics), ensuring safety during preparation and storing and improving palatability by using milk as a carrier for administration. The significant factors that affect the sildenafil solubility were evaluated by applying a Plackett-Burman design using two levels with six variables. The experiment showed that the type of buffer and glycerin content influenced the sildenafil solubility. The developed formulations proved to be stable for 6 months at all three assayed conditions (40± 2°C, 75 ± 5% RH; 25± 2°C, 60 ± 5% RH; and 4 ± 2°C). The microbiological tests fit with the requirement of the pharmacopeia at day 0 and 90 and even more at day 180. Finally, the palatability assay showed that 0.82 mL of the formulation containing buffer phosphate, 20% glycerin, and 4 mg mL-1 of sildenafil citrate diluted in 4.8 mL milk (which fits the medium pediatric dose) presented similar palatability to milk alone, and no precipitate or turbidity was observed. Graphical abstract.
Collapse
Affiliation(s)
- Mauro Morri
- Planta piloto de Producción de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Cecilia Casabonne
- Área de Bacteriología. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Darío Leonardi
- Área Técnica Farmacéutica, Departamento Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina. .,IQUIR-CONICET, Suipacha 570, S2002LRK, Rosario, Argentina.
| | - Silvana Vignaduzzo
- IQUIR-CONICET, Suipacha 570, S2002LRK, Rosario, Argentina. .,Área Análisis de Medicamentos, Departamento Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
20
|
Pottoo FH, Javed MN, Rahman JU, Abu-Izneid T, Khan FA. Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme. Semin Cancer Biol 2020; 69:391-398. [PMID: 32302695 DOI: 10.1016/j.semcancer.2020.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive (WHO grade IV) form of diffuse glioma endowed with tremendous invasive capacity. The availability of narrow therapeutic choices for GBM management adds to the irony, even the post-treatment median survival time is roughly around 14-16 months. Gene mutations seem to be cardinal to GBM formation, owing to involvement of amplified and mutated receptor tyrosine kinase (RTK)-encoding genes, leading to dysregulation of growth factor signaling pathways. Of-late, the role of different microRNAs (miRNAs) in progression and proliferation of GBM was realized, which lead to their burgeon potential applications for diagnostic and therapeutic purposes. miRNA signatures are intricately linked with onset and progression of GBM. Although, progression of GBM causes significant changes in the BBB to form BBTB, but still efficient passage of cancer therapeutics, including antibodies and miRNAs are prevented, leading to low bioavailability. Recent developments in the nanomedicine field provide novel approaches to manage GBM via efficient and brain targeted delivery of miRNAs either alone or as part of cytotoxic pharmaceutical composition, thereby modulating cell signaling in well predicted manner to promise positive therapeutic outcomes.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India; School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India.
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
21
|
Pottoo FH, Sharma S, Javed MN, Barkat MA, Harshita, Alam MS, Naim MJ, Alam O, Ansari MA, Barreto GE, Ashraf GM. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab Rev 2020; 52:185-204. [PMID: 32116044 DOI: 10.1080/03602532.2020.1726942] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, India
| | - Md. Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India
- School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, India
| | - Md. Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, India
| | - Harshita
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, India
| | - Md. Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, India
| | - Mohd. Javed Naim
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Moolakkadath T, Aqil M, Ahad A, Imam SS, Praveen A, Sultana Y, Mujeeb M. Preparation and optimization of fisetin loaded glycerol based soft nanovesicles by Box-Behnken design. Int J Pharm 2020; 578:119125. [PMID: 32036010 DOI: 10.1016/j.ijpharm.2020.119125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
The present study focused on the development and optimization of glycerosomes for dermal delivery of fisetin. The fisetin loaded glycerosomes formulation was optimized by Box-Behnken design. The independent variables were the lipoid S 100, glycerol, and sonication time, whereas the dependent variables were the vesicles size, entrapment efficiency, and flux. The mechanism of skin penetration of fisetin loaded glycerosomes formulation was determined by the DSC and FTIR studies. Confocal scanning microscopy was used to detect the penetration ability of glycerosomes. The optimized fisetin loaded glycerosomes formulation was converted into a Carbopol® gel matrix, and the latter was analyzed for various parameters. The optimized formulation of glycerosomes presented vesicles size, entrapment efficiency and flux of 138.8 ± 4.09 nm, 86.41 ± 2.95% and 5.04 ± 0.17 µg/cm2/h, respectively. The transmission electron microscopy of optimized fisetin loaded formulation revealed the spherical and sealed structure of glycerosomes vesicles. The confocal study confirmed that the Rhodamine B incorporated glycerosomes penetrated up to deeper layers of skin. The DSC and FTIR studies revealed that the hydration of skin layers and skin lipid fluidization could be the penetration mechanism of fisetin glycerosomes formulation. The optimized fisetin loaded glycerosomes gel formulation presented a flux of 4.24 ± 0.14 μg/cm2/h, and exhibited zero-order release kinetics. The texture analysis of fisetin glycerosomes gel displayed a sufficient hardness, consistency, cohesiveness, and index of viscosity. It was concluded that the prepared fisetin loaded glycerosomes gel was suitable for the dermal application.
Collapse
Affiliation(s)
- Thasleem Moolakkadath
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road New, Delhi 110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road New, Delhi 110062, India.
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Arshiya Praveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road New, Delhi 110062, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road New, Delhi 110062, India
| | - Mohd Mujeeb
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road New, Delhi 110062, India
| |
Collapse
|
23
|
Torregrosa A, Ochoa-Andrade AT, Parente ME, Vidarte A, Guarinoni G, Savio E. Development of an emulgel for the treatment of rosacea using quality by design approach. Drug Dev Ind Pharm 2020; 46:296-308. [PMID: 31944126 DOI: 10.1080/03639045.2020.1717515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: The aim of this study was to develop an emulgel for the treatment of rosacea, applying quality by design (QbD).Methods: An emulgel designed to release the active pharmaceutical ingredients (APIs), metronidazole and niacinamide, via an emollient formulation that favors residence time and attenuates facial redness would be an excellent vehicle to develop to treat rosacea. It was decided to design first a vehicle presenting the attributes established in the quality target product profile, and then, after selecting the best formulation, to load the APIs in it to optimize the final emulgel. A design of experiments was introduced to study the effect of formulation variables on quality attributes (adhesion, phase separation by mechanical stress and viscosity) of the emulgels. Response surface methodology and desirability functions were applied for data analysis. After optimization, the final emulgel was further characterized by assay and in vitro release of APIs, attenuation of facial redness, and compared to commercially available metronidazole products regarding API release.Results: The final emulgel gradually released both APIs, reaching approximately 88% within the first 4 h, and their profiles were well described by the Higuchi model. Only a light attenuation effect to conceal facial redness was achieved.Conclusions: A metronidazole and niacinamide emulgel, also providing cosmetic assistance, was developed using QbD. The emulgel releases metronidazole faster than the creams, but more gradually than the commercially available gel, providing a realistic time frame of drug delivery in accordance with the expected time of residence of the adhesive emulgel over the affected facial area.
Collapse
Affiliation(s)
- Annibal Torregrosa
- Pharmaceutical Technology Laboratory, Department of Pharmaceutical Sciences, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Ana Teresa Ochoa-Andrade
- Pharmaceutical Technology Laboratory, Department of Pharmaceutical Sciences, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - María Emma Parente
- Cosmetic Chemistry Laboratory, Department of Pharmaceutical Sciences, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Ana Vidarte
- Drugs Analytical Chemistry Laboratory, Department of Pharmaceutical Sciences, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Giovanna Guarinoni
- Drugs Analytical Chemistry Laboratory, Department of Pharmaceutical Sciences, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Savio
- Uruguayan Center of Molecular Imaging (CUDIM), Montevideo, Uruguay
| |
Collapse
|
24
|
Kumar A, Walia H, Pottoo FH, Javed MN. Insights of Nanophytomedicines as a Combinatorial Therapy in Disease Diagnosis and Treatment. NANOPHYTOMEDICINE 2020:113-132. [DOI: 10.1007/978-981-15-4909-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
25
|
Javed MN, Dahiya ES, Ibrahim AM, Alam MS, Khan FA, Pottoo FH. Recent Advancement in Clinical Application of Nanotechnological Approached Targeted Delivery of Herbal Drugs. NANOPHYTOMEDICINE 2020:151-172. [DOI: 10.1007/978-981-15-4909-0_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
|
26
|
Mishra S, Sharma S, Javed MN, Pottoo FH, Barkat MA, Harshita, Alam MS, Amir M, Sarafroz M. Bioinspired Nanocomposites: Applications in Disease Diagnosis and Treatment. Pharm Nanotechnol 2019; 7:206-219. [PMID: 31030662 DOI: 10.2174/2211738507666190425121509] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/03/2018] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Recent advancement in the field of synthesis and application of nanomaterials provided holistic approach for both diagnosis as well as treatment of diseases. Briefly, three-dimensional scaffold and geometry of bioinspired nanocarriers modulate bulk properties of loaded drug at molecular/ atomic structures in a way to conjointly modulate pathological as well as altered metabolic states of diseases, in very predictable and desired manners at a specific site of the target. While, from the pharmacotechnical point of views, the bioinspired nanotechnology processes carriers either favor to enhance the solubility of poorly aqueous soluble drugs or enable well-controlled sustained release profiles, to reduce the frequency of drug regimen. Consequently, from biopharmaceutical point of view, these composite materials, not only minimize first pass metabolism but also significantly enhance in-vivo biodistribution, permeability, bio-adhesion and diffusivity. In lieu of the above arguments, the nano-processed materials exhibit an important role for diagnosis and treatments. In the diagnostic center, recent emergences and advancement in the tools and techniques to diagnose the unrevealed diseases with the help of instruments such as, computed tomography, magnetic resonance imaging etc; heavily depend upon nanotechnology-based materials. In this paper, a brief introduction and recent application of different types of nanomaterials in the field of tissue engineering, cancer treatment, ocular therapy, orthopedics, and wound healing as well as drug delivery system are thoroughly discussed.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Pharmacy, Raj Kumar Goel Institute of Technology, Abdul Kalam Technical University, Lucknow, India
| | - Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research SPER (Formerly, Faculty of Pharmacy), Jamia Hamdard, New- Delhi, India.,School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Harshita
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Md Amir
- Department of Natural Product & Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Md Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
27
|
Nanotechnological based miRNA intervention in the therapeutic management of neuroblastoma. Semin Cancer Biol 2019; 69:100-108. [PMID: 31562954 DOI: 10.1016/j.semcancer.2019.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/29/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023]
Abstract
Neuroblastoma (NB) is a widely diagnosed cancer in children, characterized by amplification of the gene encoding the MYCN transcription factor, which is highly predictive of poor clinical outcome and metastatic disease. microRNAs (a class of small non-coding RNAs) are regulated by MYCN transcription factor in neuroblastoma cells. The current research is focussed on identifying differential role of miRNAs and their interactions with signalling proteins, which are intricately linked with cellular processes like apoptosis, proliferation or metastasis. However, the therapeutic success of miRNAs is limited by pharmaco-technical issues which are well counteracted by nanotechnological advancements. The nanoformulated miRNAs unload anti-cancer drugs in a controlled and prespecified manner at target sites, to influence the activity of target protein in amelioration of NB. Recent advances and developments in the field of miRNAs-based systems for clinical management of NBs and the role of nanotechnology to overcome challenges with drug delivery of miRNAs have been reviewed in this paper.
Collapse
|
28
|
Alam MS, Javed MN, Pottoo FH, Waziri A, Almalki FA, Hasnain MS, Garg A, Saifullah MK. QbD approached comparison of reaction mechanism in microwave synthesized gold nanoparticles and their superior catalytic role against hazardous nirto‐dye. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Md Sabir Alam
- School of Medical and Allied SciencesK R Mangalam University Gurugram Haryana India
| | - Md Noushad Javed
- Quality Assurance Lab, Department of PharmaceuticsSchool of Pharmaceutical Education and Research (Faculty Of Pharmacy), Jamia Hamdard New Delhi India
- School of Pharmaceutical ScienceApeejay Stya University Gurugram Haryana India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical PharmacyImam Abdul Rahman bin Faisal University Dammam Saudi Arabia
| | - Aafrin Waziri
- University School of BiotechnologyGuru Gobind Singh Indraprastha University New Delhi India
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of PharmacyUmm Al‐Qura University Makkah Saudi Arabia
| | - Md Saquib Hasnain
- Department of PharmacyShri Venkateshwara University Gajraula Uttar Pradesh India
| | - Arun Garg
- School of Medical and Allied SciencesK R Mangalam University Gurugram Haryana India
| | - Md Khalid Saifullah
- Department of Pharmaceutical Chemistry, Faculty of PharmacyUmm Al‐Qura University Makkah Saudi Arabia
| |
Collapse
|
29
|
Jazuli I, Annu, Nabi B, Moolakkadath T, Alam T, Baboota S, Ali J. Optimization of Nanostructured Lipid Carriers of Lurasidone Hydrochloride Using Box-Behnken Design for Brain Targeting: In Vitro and In Vivo Studies. J Pharm Sci 2019; 108:3082-3090. [PMID: 31077685 DOI: 10.1016/j.xphs.2019.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/16/2019] [Accepted: 05/02/2019] [Indexed: 01/24/2023]
Abstract
Intranasal nanostructured lipid carrier (NLC) of lurasidone hydrochloride (LRD) for brain delivery was prepared by the solvent evaporation method. The effects of independent variables, X1-lipid concentration, X-2 surfactant, and X-3 sonication times on dependent variables, Y1-particle size, Y-2 polydispersity index, and Y-3% entrapment efficiency were determined using Box-Behnken design. Optimized LRD-NLC was selected from the Box-Behnken design and evaluated for their morphological, physiological, nasal diffusion, and in vivo distribution in the brain after intranasal administration. Particle size, polydispersity index, and entrapment efficiency of optimized LRD-NLC were found to be 207.4 ± 1.5 nm, 0.392 ± 0.15, and 92.12 ± 1.0%, respectively. Transmission electron microscopy and scanning electron microscopy was used to determine the particle size and surface morphology of LRD-NLC. The prepared LRD-NLC follows biphasic in vitro drug release. Prepared NLC showed a 2-fold increase in LRD concentration in the brain when compared with the drug solution following intranasal administration. Results showed that intranasal route can be a good and efficient approach for delivering the drug directly to the brain and enhancing the drug efficacy in the brain for the management of schizophrenia and a good alternative to oral drug delivery.
Collapse
Affiliation(s)
- Imrana Jazuli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Annu
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Thasleem Moolakkadath
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Tausif Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India.
| |
Collapse
|
30
|
Sharma S, Javed MN, Pottoo FH, Rabbani SA, Barkat MA, Sarafroz M, Amir M. Bioresponse Inspired Nanomaterials for Targeted Drug and Gene Delivery. Pharm Nanotechnol 2019; 7:220-233. [PMID: 31486751 DOI: 10.2174/2211738507666190429103814] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/03/2018] [Accepted: 04/10/2019] [Indexed: 06/10/2023]
Abstract
The traditional drug delivery techniques are unresponsive to the altering metabolic states of the body and fail to achieve target specific drug delivery, which results in toxic plasma concentrations. In order to harmonize the drug release profiles, diverse biological and pathological pathways and factors involved have been studied and consequently, nanomaterials and nanostructures are engineered in a manner so that they respond and interact with the target cells and tissues in a controlled manner to induce promising pharmacological responses with least undesirable effects. The bioinspired nanoparticles such as carbon nanotubes, metallic nanoparticles, and quantum dots sense the localized host environment for diagnosis and treatment of pathological states. These biocompatible polymeric- based nanostructures bind drugs to the specific receptors, which renders them as ideal vehicles for the delivery of drugs and gene. The ultimate goal of bioinspired nanocomposites is to achieve personalized diagnostic and therapeutic outcomes. This review briefly discussed current trends; role, recent advancements as well as different approaches, which are being used for designing and fabrication of some bioinspired nanocarriers.
Collapse
Affiliation(s)
- Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K. R. Mangalam University, Gurgaon, Haryana, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New-Delhi, India
- School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam, 31441, Saudi Arabia
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Al Qusaidat, United Arab Emirates
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K. R. Mangalam University, Gurgaon, Haryana, India
| | - Md Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohd Amir
- Department of Natural Product and Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
31
|
Adaptation of Quality by Design-Based Development of Isradipine Nanostructured–Lipid Carrier and Its Evaluation for In Vitro Gut Permeation and In Vivo Solubilization Fate. J Pharm Sci 2018; 107:2914-2926. [DOI: 10.1016/j.xphs.2018.07.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
|
32
|
Li J, Yang M, Xu W. Development of novel rosuvastatin nanostructured lipid carriers for oral delivery in an animal model. Drug Des Devel Ther 2018; 12:2241-2248. [PMID: 30050285 PMCID: PMC6055887 DOI: 10.2147/dddt.s169522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective The aim of this study was to prepare rosuvastatin nanostructured lipid carriers (RST-NLCs) in order to increase the bioavailability of RST. Materials and methods RST-NLCs were prepared by hot melt high-pressure homogenization method. The physicochemical parameters of RST-NLCs were characterized in terms of particle size, zeta potential, morphology, entrapment efficiency, and in vitro release behavior. Results The mean particle size was found to be 98.4±0.3 nm. The entrapment efficiency was 84.3%±1.3%. The RST was slowly released from NLCs over a period of 48 h in the PBS. A similar phenomenon was also observed in a pharmacokinetic study in rats, in which the area under the curve of NLCs was 1.65-fold higher than that of tablet powder. Conclusion The results of pharmacodynamics showed that the effective lipid-lowering activity of NLCs could be explained by the fact that NLCs resulted in sustained release of RST, which could have increased absorption and provided a higher bioavailability.
Collapse
Affiliation(s)
- Jun Li
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China, .,Department of Intensive Care Unit, Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200030, China
| | - Min Yang
- Department of Intensive Care Unit, Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200030, China
| | - Wenrong Xu
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China,
| |
Collapse
|
33
|
Moolakkadath T, Aqil M, Ahad A, Imam SS, Iqbal B, Sultana Y, Mujeeb M, Iqbal Z. Development of transethosomes formulation for dermal fisetin delivery: Box-Behnken design, optimization, in vitro skin penetration, vesicles-skin interaction and dermatokinetic studies. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:755-765. [PMID: 29730964 DOI: 10.1080/21691401.2018.1469025] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present study was conducted for the optimization of transethosomes formulation for dermal fisetin delivery. The optimization of the formulation was carried out using "Box-Behnken design". The independent variables were Lipoid S 100, ethanol and sodium cholate. The prepared formulations were characterized for vesicle size, entrapment efficiency and in vitro skin penetration study. The vesicles-skin interaction, confocal laser scanning microscopy and dermatokinetic studies were performed with optimized formulation. Results of the present study demonstrated that the optimized formulation presented vesicle size of 74.21 ± 2.65 nm, zeta potential of -11.0 mV, entrapment efficiency of 68.31 ± 1.48% and flux of 4.13 ± 0.17 µg/cm2/h. The TEM image of optimized formulation exhibited sealed and spherical shape vesicles. Results of thermoanalytical techniques demonstrated that the prepared transethosomes vesicles formulation had fluidized the rigid membrane of rat's skin for smoother penetration of fisetin transethosomes. The confocal study results presented well distribution and penetration of Rhodamine B loaded transethosomes vesicles formulation up to deeper layers of the rat's skin as compared to the Rhodamine B-hydro alcoholic solution. Present study data revealed that the developed transethosomes vesicles formulation was found to be a potentially useful drug carrier for fisetin dermal delivery.
Collapse
Affiliation(s)
- Thasleem Moolakkadath
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Mohd Aqil
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Abdul Ahad
- b Department of Pharmaceutics, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Syed Sarim Imam
- c School of Pharmacy , Glocal University , Saharanpur , India
| | - Babar Iqbal
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Yasmin Sultana
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Mohd Mujeeb
- d Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| | - Zeenat Iqbal
- a Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard (Deemed University) , New Delhi , India
| |
Collapse
|