1
|
Galata DL, Péterfi O, Ficzere M, Szabó-Szőcs B, Szabó E, Nagy ZK. The current state-of-the art in pharmaceutical continuous film coating - A review. Int J Pharm 2025; 669:125052. [PMID: 39662853 DOI: 10.1016/j.ijpharm.2024.125052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
In this decade, one of the major trends in the pharmaceutical industry is the adoption of continuous manufacturing. This requires the development of continuous equivalents of essential pharmaceutical processes such as film coating. The process of film coating is the last step of the processing of solid dosage forms and is critical because it determines the visual appearance of the end product, along with ensuring its stability and possibly even defining the rate of drug release. Several manufacturers advertise continuous solutions for film coating, these include semi-continuous and fully continuous appliances. State-of-the-art continuous coaters can match the throughput of continuous manufacturing lines, because largest appliances have a capacity of 1200-1500 kg/h. The paper also describes the main challenges related to continuous film coating including waste production at the beginning and end of the process and the problem caused by elastic recovery of the tablets when film coating is performed immediately after tablet compression. Lastly, we give an overview of the in-line sensors that can be used to monitor the quality of the film coated tablets, enabling real-time quality control of the process. Near-infrared and Raman spectroscopy can measure the mass gain of the tablets, while terahertz pulsed imaging and optical coherence tomography enable coating thickness measurement of individual tablets and even the characterization of intra-tablet coating thickness variability. UV imaging and machine vision can also measure coating thickness, and they are also excellent for detecting tablets with defective coating.
Collapse
Affiliation(s)
- Dorián László Galata
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Orsolya Péterfi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Máté Ficzere
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Bence Szabó-Szőcs
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Edina Szabó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
2
|
Szabó-Szőcs B, Ficzere M, Péterfi O, Galata DL. Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion. Int J Pharm 2025; 668:124957. [PMID: 39557178 DOI: 10.1016/j.ijpharm.2024.124957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Bence Szabó-Szőcs
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Máté Ficzere
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Orsolya Péterfi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| |
Collapse
|
3
|
Taseva AR, Persoons T, Healy AM, D'Arcy DM. Application of shadowgraph imaging (SGI) particle characterisation data to interpret the impact of varying test conditions on powder dissolution and to develop an automated agglomeration identification method (AIM) in the USP flow-through apparatus. Int J Pharm 2024; 666:124778. [PMID: 39349225 DOI: 10.1016/j.ijpharm.2024.124778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The aims of this work were 1) to explore the application of shadowgraph imaging (SGI) as a real time monitoring tool to characterize ibuprofen particle behaviour during dissolution testing under various conditions in the USP 4 flow-through apparatus and 2) to investigate the potential to develop an SGI-based automated agglomeration identification method (AIM) for real time agglomerate detection during dissolution testing. The effect of surfactant addition, changes in the drug mass and flow rate, the use of sieved and un-sieved powder fractions, and the use of different drug crystal habits were investigated. Videos at every sampling time point during dissolution were taken and analysed by SGI. The AIM was developed to characterize agglomerates based on two criteria - size and solidity. All detections were confirmed by manual video observation and a reference agglomerate data set. The method was validated under new dissolution conditions with un-sieved particles. Characterisation of particle dispersion behaviour by SGI enabled interpretation of the impact of dissolution test conditions. Higher numbers of early detections reflected greater dissolution rates with increased surfactant concentration, using sieved fraction or plate-shaped crystals, but was impacted by drug mass tested. An AIM was successfully developed and applied to detect agglomerates during dissolution, suggesting potential, with appropriate method development, for application in quality control.
Collapse
Affiliation(s)
- Alexandra R Taseva
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Tim Persoons
- Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Deirdre M D'Arcy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| |
Collapse
|
4
|
Zewail MB, Doghish AS, El-Husseiny HM, Mady EA, Mohammed OA, Elbadry AMM, Elbokhomy AS, Bhnsawy A, El-Dakroury WA. Lipid-based nanocarriers: an attractive approach for rheumatoid arthritis management. Biomater Sci 2024; 12:6163-6195. [PMID: 39484700 DOI: 10.1039/d4bm01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as transformative tools in modern drug delivery, offering unparalleled potential in enhancing the efficacy and safety of various therapeutics. In the context of rheumatoid arthritis (RA), a disabling autoimmune disorder characterized by chronic inflammation, joint damage, and limited patient mobility, LNPs hold significant promise for revolutionizing treatment strategies. LNPs offer several advantages over traditional drug delivery systems, including improved pharmacokinetics, enhanced tissue penetration, and reduced systemic toxicity. This article concisely summarizes the pathogenesis of RA, its associated risk factors, and therapeutic techniques and their challenges. Additionally, it highlights the noteworthy advancements made in managing RA through LNPs, including liposomes, niosomes, bilosomes, cubosomes, spanlastics, ethosomes, solid lipid nanoparticles, lipid micelles, lipid nanocapsules, nanostructured lipid carriers, etc. It also delves into the specific functional attributes of these nanocarrier systems, focusing on their role in treating and monitoring RA.
Collapse
Affiliation(s)
- Moataz B Zewail
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 17 Cairo, 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, 10 Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amir S Elbokhomy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdelmenem Bhnsawy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
5
|
Neugebauer P, Zettl M, Moser D, Poms J, Kuchler L, Sacher S. Process analytical technology in Downstream-Processing of Drug Substances- A review. Int J Pharm 2024; 661:124412. [PMID: 38960339 DOI: 10.1016/j.ijpharm.2024.124412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Process Analytical Technology (PAT) has revolutionized pharmaceutical manufacturing by providing real-time monitoring and control capabilities throughout the production process. This review paper comprehensively examines the application of PAT methodologies specifically in the production of solid active pharmaceutical ingredients (APIs). Beginning with an overview of PAT principles and objectives, the paper explores the integration of advanced analytical techniques such as spectroscopy, imaging modalities and others into solid API substance production processes. Novel developments in in-line monitoring at academic level are also discussed. Emphasis is placed on the role of PAT in ensuring product quality, consistency, and compliance with regulatory requirements. Examples from existing literature illustrate the practical implementation of PAT in solid API substance production, including work-up, crystallization, filtration, and drying processes. The review addresses the quality and reliability of the measurement technologies, aspects of process implementation and handling, the integration of data treatment algorithms and current challenges. Overall, this review provides valuable insights into the transformative impact of PAT on enhancing pharmaceutical manufacturing processes for solid API substances.
Collapse
Affiliation(s)
- Peter Neugebauer
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria
| | - Manuel Zettl
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Daniel Moser
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Johannes Poms
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Lisa Kuchler
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Stephan Sacher
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria.
| |
Collapse
|
6
|
Massei A, Falco N, Fissore D. Use of Raman spectroscopy and PCA for quality evaluation and out-of-specification identification in biopharmaceutical products. Eur J Pharm Biopharm 2024; 200:114342. [PMID: 38795787 DOI: 10.1016/j.ejpb.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Over the past three decades, there was a remarkable growth in the approval of antibody-based biopharmaceutical products. These molecules are notably susceptible to the stresses occurring during drug manufacturing, often leading to structural alterations. A key concern is thus the ability to detect and comprehend these alterations caused by processes, such as aggregation, fragmentation, oxidation levels, as well as the change in protein concentration throughout the process steps, potentially resulting in out-of-spec products. In the present study, Raman spectroscopy, coupled with Principal Component Analysis (PCA), has proven to be an excellent tool for characterizing protein-based products. Notably, it offers the advantages of being minimally invasive, rapid and relatively insensitive to water. Therefore, it was successfully employed to discriminate between various stresses impacting a monoclonal antibody (mAb). The molecule used in this study is a fully human IgG1 fusion protein. Thermal stress was induced by incubating the samples at 50 °C for one month, while oxidative stress was induced by introducing hydrogen peroxide. Additionally, dilutions were performed to explore a broader range of protein concentrations. Specific key bands were identified in the Raman spectra, which facilitated the PCA classification and allowed for their association with distinct changes in the secondary and tertiary structures of the protein. Notably, it was observed that signals corresponding to amino acids exhibited a decrease in intensity with increasing levels of thermal stress, while other alterations were noted in the amide bands. It was shown that changes in the range 2800-3000 cm-1 pertains to the dilution process, while specific peaks of C-H stretching were essential for the discrimination between the oxidative-stressed samples and the thermal and diluted counterparts. Furthermore, the model calibrated on the mAb demonstrated remarkable performance when used to evaluate a different product, e.g. a hormone.
Collapse
Affiliation(s)
- Ambra Massei
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Global Drug Product Development, Merck Serono SpA, Via Luigi Einaudi 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Nunzia Falco
- Global Drug Product Development, Merck Serono SpA, Via Luigi Einaudi 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Davide Fissore
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
7
|
Monaco C, Kronenberger R, Talevi G, Pannone L, Cappello IA, Candelari M, Ramak R, Della Rocca DG, Bori E, Terryn H, Baert K, Laha P, Krasniqi A, Gharaviri A, Bala G, Chierchia GB, La Meir M, Innocenti B, de Asmundis C. Advancing Surgical Arrhythmia Ablation: Novel Insights on 3D Printing Applications and Two Biocompatible Materials. Biomedicines 2024; 12:869. [PMID: 38672223 PMCID: PMC11048352 DOI: 10.3390/biomedicines12040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
To date, studies assessing the safety profile of 3D printing materials for application in cardiac ablation are sparse. Our aim is to evaluate the safety and feasibility of two biocompatible 3D printing materials, investigating their potential use for intra-procedural guides to navigate surgical cardiac arrhythmia ablation. Herein, we 3D printed various prototypes in varying thicknesses (0.8 mm-3 mm) using a resin (MED625FLX) and a thermoplastic polyurethane elastomer (TPU95A). Geometrical testing was performed to assess the material properties pre- and post-sterilization. Furthermore, we investigated the thermal propagation behavior beneath the 3D printing materials during cryo-energy and radiofrequency ablation using an in vitro wet-lab setup. Moreover, electron microscopy and Raman spectroscopy were performed on biological tissue that had been exposed to the 3D printing materials to assess microparticle release. Post-sterilization assessments revealed that MED625FLX at thicknesses of 1 mm, 2.5 mm, and 3 mm, along with TPU95A at 1 mm and 2.5 mm, maintained geometrical integrity. Thermal analysis revealed that material type, energy source, and their factorial combination with distance from the energy source significantly influenced the temperatures beneath the 3D-printed material. Electron microscopy revealed traces of nitrogen and sulfur underneath the MED625FLX prints (1 mm, 2.5 mm) after cryo-ablation exposure. The other samples were uncontaminated. While Raman spectroscopy did not detect material release, further research is warranted to better understand these findings for application in clinical settings.
Collapse
Affiliation(s)
- Cinzia Monaco
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (C.M.)
| | - Rani Kronenberger
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (R.K.)
| | - Giacomo Talevi
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (C.M.)
| | - Luigi Pannone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (C.M.)
| | - Ida Anna Cappello
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (C.M.)
| | - Mara Candelari
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (C.M.)
| | - Robbert Ramak
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (C.M.)
| | - Domenico Giovanni Della Rocca
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (C.M.)
| | - Edoardo Bori
- BEAMS Department, Bio Electro and Mechanical Systems, École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium (B.I.)
| | - Herman Terryn
- Research Group Electrochemical and Surface Engineering (SURF), Department Materials and Chemistry, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium
| | - Kitty Baert
- Research Group Electrochemical and Surface Engineering (SURF), Department Materials and Chemistry, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium
| | - Priya Laha
- Research Group Electrochemical and Surface Engineering (SURF), Department Materials and Chemistry, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium
| | - Ahmet Krasniqi
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium
| | - Ali Gharaviri
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (C.M.)
| | - Gezim Bala
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (C.M.)
| | - Gian Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (C.M.)
| | - Mark La Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (R.K.)
| | - Bernardo Innocenti
- BEAMS Department, Bio Electro and Mechanical Systems, École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium (B.I.)
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, European Reference Networks Guard-Heart, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium; (C.M.)
| |
Collapse
|
8
|
Prihatiningsih MC, Pratama C, Kundari NA, Megasari K, Ariyanti D, Saputra A, Kusuma HD, Astuti P. Rifampicin adsorption and release study using Santa Barbara amorphous-16 modified Al (SBA-16-Al) for a drug delivery system. RSC Adv 2024; 14:7371-7382. [PMID: 38433940 PMCID: PMC10906368 DOI: 10.1039/d3ra08360h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
In this study, the surface modification of Santa Barbara Amorphous-16 (SBA-16) with aluminum (SBA-16-Al) was carried out as a rifampicin matrix for the treatment of tuberculosis. Surface modification of SBA-16 was achieved using the direct-synthesis grafting method. Then, the adsorption and release properties of rifampicin from the SBA-16-Al matrix have been studied in batches. In addition, the SBA-16-Al has been characterized using Fourier-Transform Infrared Spectroscopy (FTIR), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), and Surface Area Analysis (SAA) Brunaur, Emmett and Teller (SAA-BET). The results show that the mesoporous material, the SBA-16-Al has a specific surface area of 843.5 m2 g-1 and 624.3 m2 g-1 for SBA-16, nanometer-sized pore diameters, and an amorphous crystal lattice. The FTIR spectra showed the Al-O bond at 802 cm-1 which indicates the Al group has been successfully added into SBA-16. The adsorption isotherm of rifampicin in SBA-16-Al follows the Freundlich model which illustrates the adsorption is heterogeneous and forms a multilayer. The adsorption of rifampicin is chemisorption which occurs non-spontaneously and is quite stable. The release kinetics of rifampicin in the drug delivery system followed the Higuchi model with k1 0.5472 mg 0.5/hour pH 1.5 and k2 mg 0.5/hour pH 6.5.
Collapse
Affiliation(s)
| | - Chaidir Pratama
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization of Nuclear Energy, National Research and Innovation Agency (BRIN) Indonesia
| | - Noor Anis Kundari
- Polytechnic Institute of Nuclear Technology, National Research and Innovation Agency (BRIN) Yogyakarta Indonesia
| | - Kartini Megasari
- Polytechnic Institute of Nuclear Technology, National Research and Innovation Agency (BRIN) Yogyakarta Indonesia
| | - Dhita Ariyanti
- Polytechnic Institute of Nuclear Technology, National Research and Innovation Agency (BRIN) Yogyakarta Indonesia
| | - Andri Saputra
- Department of Rubber and Plastic Processing Technology, Politeknik ATK Yogyakarta Indonesia
| | - Hersandy Dayu Kusuma
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Jl. Raya Bandung - Sumedang KM. 21 Jatinangor Sumedang 45363 Indonesia
| | - Puji Astuti
- Polytechnic Institute of Nuclear Technology, National Research and Innovation Agency (BRIN) Yogyakarta Indonesia
| |
Collapse
|
9
|
Ran Y, Yin S, Xie P, Liu Y, Wang Y, Yin Z. ICAM-1 targeted and ROS-responsive nanoparticles for the treatment of acute lung injury. NANOSCALE 2024; 16:1983-1998. [PMID: 38189459 DOI: 10.1039/d3nr04401g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Acute lung injury (ALI) is an inflammatory disease caused by multiple factors such as infection, trauma, and chemicals. Without effective intervention during the early stages, it usually quickly progresses to acute respiratory distress syndrome (ARDS). Since ordinary pharmaceutical preparations cannot precisely target the lungs, their clinical application is limited. In response, we constructed a γ3 peptide-decorated and ROS-responsive nanoparticle system encapsulating therapeutic dexamethasone (Dex/PSB-γ3 NPs). In vitro, Dex/PSB-γ3 NPs had rapid H2O2 responsiveness, low cytotoxicity, and strong intracellular ROS removal capacity. In a mouse model of ALI, Dex/PSB-γ3 NPs accumulated at the injured lung rapidly, alleviating pulmonary edema and cytokine levels significantly. The modification of NPs by γ3 peptide achieved highly specific positioning of NPs in the inflammatory area. The ROS-responsive release mechanism ensured the rapid release of therapeutic dexamethasone at the inflammatory site. This combined approach improves treatment accuracy, and drug bioavailability, and effectively inhibits inflammation progression. Our study could effectively reduce the risk of ALI progressing to ARDS and hold potential for the early treatment of ALI.
Collapse
Affiliation(s)
- Yu Ran
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shanmei Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Pei Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712038, China
| | - Yaxue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Ficzere M, Péterfi O, Farkas A, Nagy ZK, Galata DL. Image-based simultaneous particle size distribution and concentration measurement of powder blend components with deep learning and machine vision. Eur J Pharm Sci 2023; 191:106611. [PMID: 37844806 DOI: 10.1016/j.ejps.2023.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/21/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023]
Abstract
This work presents a system, where deep learning was used on images captured with a digital camera to simultaneously determine the API concentration and the particle size distribution (PSD) of two components of a powder blend. The blend consisted of acetylsalicylic acid (ASA) and calcium hydrogen phosphate (CHP), and the predicted API concentration was found corresponding with the HPLC measurements. The PSDs determined with the method corresponded with those measured with laser diffraction particle size analysis. This novel method provides fast and simple measurements and could be suitable for detecting segregation in the powder. By examining the powders discharged from a batch blender, the API concentrations at the top and bottom of the container could be measured, yielding information about the adequacy of the blending and improving the quality control of the manufacturing process.
Collapse
Affiliation(s)
- Máté Ficzere
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp 3., Budapest H 1111, Hungary
| | - Orsolya Péterfi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp 3., Budapest H 1111, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp 3., Budapest H 1111, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp 3., Budapest H 1111, Hungary.
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp 3., Budapest H 1111, Hungary
| |
Collapse
|
11
|
Gao S, Chen J, Peng W, Yang Y, Yang Y, Hua L, Guo Y, Wang Y, Zhang X. The preparation and relative bioavailability of an artemisin in self-emulsifying drug delivery system. Drug Deliv 2023; 30:2168794. [PMID: 36708154 PMCID: PMC9888468 DOI: 10.1080/10717544.2023.2168794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The aim of this study is to demonstrate a method for improving the solubility and relative bioavailability of artemisinin using a self-emulsifying drug delivery system (SEDDS). The self-emulsifying drug load, solubility, and emulsifying time were used as the evaluation indices, based on a solubility test and a ternary phase diagram. Optimal Mixture Design in Design-Expert software was used to optimize the prescription of the artemisinin SEDDS. By determining the water distribution coefficient in vitro, combined with the drug concentration-time curve in vivo, a comparison was made of the relative oral bioavailability of the artemisinin SEDDS and the crude drug. The optimal prescription ratio of oleic acid polyethylene glycol glyceride, polyoxyethylene hydrogenated castor oil, and diethylene glycol monoethyl ether in the artemisinin SEDDS was 0.5:0.2:0.3 (wt/wt/wt), with a drug loading capacity of 41.556 mg/g, a solubility of 1.997 mg/mL, and a self-emulsification time of 214 s. The optimal prescription was transparent, slightly yellow, and oil-like. The average loading capacity of artemisinin was 41.912 mg/g, the emulsification time was 231 s, the average particle size was 128.0 nm, the average Zeta potential was -4.29 mV, and the solubility of artemisinin SEDDS in water was 1.997 mg mL-1. It is 33.85 times of the solubility of artemisinin in water, which achieves the purpose of increasing the solubility of artemisinin. The comparison of the oil/water distribution coefficient of the artemisinin SEDDS with that of the crude drug in vitro showed that SEDDS could improve the permeability of artemisinin and promote the absorption in vivo, and the relative bioavailability of the SEDDS agent was at least 1.47 times higher than that of the crude drug. The artemisinin SEDDS could significantly improve the solubility and relative bioavailability of artemisinin.
Collapse
Affiliation(s)
- Sijia Gao
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Jingcai Chen
- School of Pharmacy, Chengdu University of TCM, Chegndu, China
| | - Wanqian Peng
- School of Pharmacy, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Yang Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Lei Hua
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China,CONTACT Yunhong Wang
| | - Xiaomei Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China,Xiaomei Zhang Chongqing Academy of Chinese Materia Medica, No.34 of Nanshan Road, Nanan District, Chongqing400065, China
| |
Collapse
|
12
|
Ohashi R, Koide T, Fukami T. Effects of wet granulation process variables on the quantitative assay model of transmission Raman spectroscopy for pharmaceutical tablets. Eur J Pharm Biopharm 2023; 191:276-289. [PMID: 37714414 DOI: 10.1016/j.ejpb.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Transmission Raman spectroscopy (TRS) is a process analytical technology tool for nondestructive analysis of drug content in tablets. Although wet granulation is the most used tablet manufacturing method, most TRS studies have focused on tablets manufactured via direct compression. The effects of upstream process parameter variations, such as granulation, on the prediction performance of TRS quantitative models are unknown. We evaluated the effects of process parameter variations during granulation on the prediction performance of the TRS quantitative model. Tablets with a drug concentration of 1%w/w were used. We developed PLS calibration models for the drug concentration range of 70-130% label claims. Subsequently, we predicted the drug content of the tablets with different granulation parameters. The results of our study demonstrate that the variation in the predicted recovery due to the variation in granulation parameters was practically acceptable. The calibration model showed a good prediction performance for tablets manufactured at different granulation scales and thicknesses. Therefore, we conclude that TRS quantitative models are robust to variations in upstream processes, such as granulation and downstream variations in tableting parameters. These results suggest that TRS is a versatile non-destructive quantitative analysis method that can be applied in tablet manufacturing.
Collapse
Affiliation(s)
- Ryo Ohashi
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan; Formulation R&D Laboratory, R&D Division, SHIONOGI & CO., LTD., Hyogo 660-0813, Japan.
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan
| |
Collapse
|
13
|
Galata DL, Gergely S, Nagy R, Slezsák J, Ronkay F, Nagy ZK, Farkas A. Comparing the Performance of Raman and Near-Infrared Imaging in the Prediction of the In Vitro Dissolution Profile of Extended-Release Tablets Based on Artificial Neural Networks. Pharmaceuticals (Basel) 2023; 16:1243. [PMID: 37765051 PMCID: PMC10534500 DOI: 10.3390/ph16091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, the performance of two fast chemical imaging techniques, Raman and near-infrared (NIR) imaging is compared by utilizing these methods to predict the rate of drug release from sustained-release tablets. Sustained release is provided by adding hydroxypropyl methylcellulose (HPMC), as its concentration and particle size determine the dissolution rate of the drug. The chemical images were processed using classical least squares; afterwards, a convolutional neural network was applied to extract information regarding the particle size of HPMC. The chemical images were reduced to an average HPMC concentration and a predicted particle size value; these were used as inputs in an artificial neural network with a single hidden layer to predict the dissolution profile of the tablets. Both NIR and Raman imaging yielded accurate predictions. As the instrumentation of NIR imaging allows faster measurements than Raman imaging, this technique is a better candidate for implementing a real-time technique. The introduction of chemical imaging in the routine quality control of pharmaceutical products would profoundly change quality assurance in the pharmaceutical industry.
Collapse
Affiliation(s)
- Dorián László Galata
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Szilveszter Gergely
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Rebeka Nagy
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - János Slezsák
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Ferenc Ronkay
- Department of Innovative Vehicles and Materials, GAMF Faculty of Engineering and Computer Science, John von Neumann University, H-6000 Kecskemét, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| |
Collapse
|
14
|
Rocha B, de Morais LA, Viana MC, Carneiro G. Promising strategies for improving oral bioavailability of poor water-soluble drugs. Expert Opin Drug Discov 2023; 18:615-627. [PMID: 37157841 DOI: 10.1080/17460441.2023.2211801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Oral administration of poorly water-soluble drugs (PWSDs) is generally related to low bioavailability, leading to high drug doses, multiple side effects, and low patient compliance. Thus, different strategies have been developed to increase drug solubility and dissolution in the gastrointestinal tract, opening new venues for these drugs. AREAS COVERED This review outlines the current challenges in PWSD formulation development and the strategies to overcome the oral barriers and increase their solubility and bioavailability. Conventional strategies include altering crystalline and molecular structures and modifying oral solid dosage forms. In contrast, novel strategies comprise micro- and nanostructured systems. Recent representative studies involving how these strategies have improved the oral bioavailability of PWSDs were also reviewed and reported. EXPERT OPINION New approaches to enhance PWSD bioavailability have sought to improve water solubility and dissolution rates, drug protection by overcoming biological barriers, and increased absorption. Still, only a handful of studies have focused on quantifying the increase in bioavailability. Improving the oral bioavailability of PWSDs remains an exciting unexplored field of research and has become an important issue for successfully developing pharmaceutical products.
Collapse
Affiliation(s)
- Bruna Rocha
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Letícia Aparecida de Morais
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Mateus Costa Viana
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| |
Collapse
|
15
|
Jørgensen AK, Ong JJ, Parhizkar M, Goyanes A, Basit AW. Advancing non-destructive analysis of 3D printed medicines. Trends Pharmacol Sci 2023; 44:379-393. [PMID: 37100732 DOI: 10.1016/j.tips.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023]
Abstract
Pharmaceutical 3D printing (3DP) has attracted significant interest over the past decade for its ability to produce personalised medicines on demand. However, current quality control (QC) requirements for traditional large-scale pharmaceutical manufacturing are irreconcilable with the production offered by 3DP. The US Food and Drug Administration (FDA) and the UK Medicines and Healthcare Products Regulatory Agency (MHRA) have recently published documents supporting the implementation of 3DP for point-of-care (PoC) manufacturing along with regulatory hurdles. The importance of process analytical technology (PAT) and non-destructive analytical tools in translating pharmaceutical 3DP has experienced a surge in recognition. This review seeks to highlight the most recent research on non-destructive pharmaceutical 3DP analysis, while also proposing plausible QC systems that complement the pharmaceutical 3DP workflow. In closing, outstanding challenges in integrating these analytical tools into pharmaceutical 3DP workflows are discussed.
Collapse
Affiliation(s)
- Anna Kirstine Jørgensen
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Maryam Parhizkar
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; FabRx Artificial Intelligence, Carretera de Escairón 14, 27543 Currelos (O Saviñao) Lugo, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; FabRx Artificial Intelligence, Carretera de Escairón 14, 27543 Currelos (O Saviñao) Lugo, Spain.
| |
Collapse
|
16
|
Interpretable artificial neural networks for retrospective QbD of pharmaceutical tablet manufacturing based on a pilot-scale developmental dataset. Int J Pharm 2023; 633:122620. [PMID: 36669581 DOI: 10.1016/j.ijpharm.2023.122620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
As the pharmaceutical industry increasingly adopts the Pharma 4.0. concept, there is a growing need to effectively predict the product quality based on manufacturing or in-process data. Although artificial neural networks (ANNs) have emerged as powerful tools in data-rich environments, their implementation in pharmaceutical manufacturing is hindered by their black-box nature. In this work, ANNs were developed and interpreted to demonstrate their applicability to increase process understanding by retrospective analysis of developmental or manufacturing data. The in vitro dissolution and hardness of extended-release, directly compressed tablets were predicted from manufacturing and spectroscopic data of pilot-scale development. The ANNs using material attributes and operational parameters provided better results than using NIR or Raman spectra as predictors. ANNs were interpreted by sensitivity analysis, helping to identify the root cause of the batch-to-batch variability, e.g., the variability in particle size, grade, or substitution of the hydroxypropyl methylcellulose excipient. An ANN-based control strategy was also successfully utilized to mitigate the batch-to-batch variability by flexibly operating the tableting process. The presented methodology can be adapted to arbitrary data-rich manufacturing steps from active substance synthesis to formulation to predict the quality from manufacturing or development data and gain process understanding and consistent product quality.
Collapse
|
17
|
Liquid antisolvent crystallization of pharmaceutical compounds: current status and future perspectives. Drug Deliv Transl Res 2023; 13:400-418. [PMID: 35953765 DOI: 10.1007/s13346-022-01219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 12/30/2022]
Abstract
The present work reviews the liquid antisolvent crystallization (LASC) to prepare the nanoparticle of pharmaceutical compounds to enhance their solubility, dissolution rate, and bioavailability. The application of ultrasound and additives is discussed to prepare the particles with narrow size distribution. The use of ionic liquid as an alternative to conventional organic solvent is presented. Herbal compounds, also known for low aqueous solubility and limited clinical application, have been crystalized by LASC and discussed here. The particle characteristics such as particle size and particle size distribution are interpreted in terms of supersaturation, nucleation, and growth phenomena. To overcome the disadvantage of batch crystallization, the scientific literature on continuous flow reactors is also reviewed. LASC in a microfluidic device is emerging as a promising technique. The different design of the microfluidic device and their application in LASC are discussed. The combination of the LASC technique with traditional techniques such as high-pressure homogenization and spray drying is presented. A comparison of product characteristics prepared by LASC and the supercritical CO2 antisolvent method is discussed to show that LASC is an attractive and inexpensive alternative for nanoparticle preparation. One of the major strengths of this paper is a discussion on less-explored applications of LASC in pharmaceutical research to attract the attention of future researchers.
Collapse
|
18
|
Elkomy MH, Eid HM, Elmowafy M, Shalaby K, Zafar A, Abdelgawad MA, Rateb ME, Ali MRA, Alsalahat I, Abou-Taleb HA. Bilosomes as a promising nanoplatform for oral delivery of an alkaloid nutraceutical: improved pharmacokinetic profile and snowballed hypoglycemic effect in diabetic rats. Drug Deliv 2022; 29:2694-2704. [PMID: 35975320 PMCID: PMC9387316 DOI: 10.1080/10717544.2022.2110997] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic disease. At the moment, there is no effective treatment available to combat it. In this study, we aimed to develop berberine-loaded bilosomes (BER-BLS) to boost the oral bioavailability and therapeutic efficacy of berberine, a natural antidiabetic medication. The BER-BLS was fabricated using a thin-film hydration strategy and optimized using a central composite design (face-centered). The average vesicle size, entrapment efficiency, and surface charge of the optimized BER-BLS preparation were 196.5 nm, 89.7%, (−) 36.4 mV, respectively. In addition, it exhibited higher stability and better-sustained release of berberine than the berberine solution (BER-SOL). BER-BLS and BER-SOL were administered to streptozocin-induced diabetic rats. The optimized BER-BLS formulation had a significant hypoglycemic impact, with a maximum blood glucose decrease of 41%, whereas BER-SOL only reduced blood glucose by 19%. Furthermore, the pharmacological effect of oral BER-BLS and BER-SOL corresponded to 99.3% and 31.7%, respectively, when compared to subcutaneous insulin (1 IU). A pharmacokinetic analysis found a 6.4-fold rise in the relative bioavailability of berberine in BER-BLS when compared to BER-SOL at a dosage of 100 mg/kg body weight. Histopathological investigation revealed that BER-BLS is suitable for oral administration. Our data demonstrate that BLS is a potential nanocarrier for berberine administration, enhancing its oral bioavailability and antidiabetic activity.
Collapse
Affiliation(s)
- Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hussein M Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| | - Mohammed R A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University (MUE), Sohag, Egypt
| |
Collapse
|
19
|
Khadka P, Dummer J, Hill PC, Katare R, Das SC. A review of formulations and preclinical studies of inhaled rifampicin for its clinical translation. Drug Deliv Transl Res 2022; 13:1246-1271. [PMID: 36131190 PMCID: PMC9491662 DOI: 10.1007/s13346-022-01238-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
Inhaled drug delivery is a promising approach to achieving high lung drug concentrations to facilitate efficient treatment of tuberculosis (TB) and to reduce the overall duration of treatment. Rifampicin is a good candidate for delivery via the pulmonary route. There have been no clinical studies yet at relevant inhaled doses despite the numerous studies investigating its formulation and preclinical properties for pulmonary delivery. This review discusses the clinical implications of pulmonary drug delivery in TB treatment, the drug delivery systems reported for pulmonary delivery of rifampicin, animal models, and the animal studies on inhaled rifampicin formulations, and the research gaps hindering the transition from preclinical development to clinical investigation. A review of reports in the literature suggested there have been minimal attempts to test inhaled formulations of rifampicin in laboratory animals at relevant high doses and there is a lack of appropriate studies in animal models. Published studies have reported testing only low doses (≤ 20 mg/kg) of rifampicin, and none of the studies has investigated the safety of inhaled rifampicin after repeated administration. Preclinical evaluations of inhaled anti-TB drugs, such as rifampicin, should include high-dose formulations in preclinical models, determined based on allometric conversions, for relevant high-dose anti-TB therapy in humans.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Jack Dummer
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Philip C Hill
- Centre for International Health, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
20
|
Pawar MA, Shevalkar GB, Vavia PR. Design and Development of Gastro-retentive Drug Delivery System for Trazodone Hydrochloride: a Promising Alternative to Innovator's Controlled-Release Tablet. AAPS PharmSciTech 2022; 23:251. [PMID: 36071254 DOI: 10.1208/s12249-022-02404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Trazodone hydrochloride (TZN) is a serotonin reuptake inhibitor that treats a major depressive disorder. It exhibits a short plasma half-life of 4.1 h and shows pH-dependent solubility. Above its pKa (6.74), solubility of TZN is very low, affecting its dissolution in the lower part of GIT. Hence, the present work aimed to develop gastro-retentive floating tablet of TZN. Central composite design was employed to optimize the formulation. Formulation variables like the concentration of HPMC-K100M, Polyox WSR 303 Leo, and sodium bicarbonate were evaluated for the responses like floating lag time and drug release. X-ray imaging study was performed on rabbits to determine the in vivo gastric retention of the optimized formulation. The accelerated stability study was conducted on optimized tablets as per ICH guidelines. Floating lag time and f2 value of the optimized formulation were found to be 2.51±0.02 min and 62.79, respectively. X-ray imaging studies in rabbits determined the in vivo gastro retention time. After 12 h of administration, tablet remained in the gastric region, indicating better retentive power. Accelerated stability studies showed sufficient formulation stability even after 3 months of storage. All these studies depict that the floating gastro-retentive system could be used as an alternative to the innovator formulation.
Collapse
Affiliation(s)
- Manoj A Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, Matunga (E), Mumbai, 400019, India
| | - Ganesh B Shevalkar
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, Matunga (E), Mumbai, 400019, India.
| |
Collapse
|
21
|
Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment. Int J Nanomedicine 2022; 17:3933-3966. [PMID: 36105620 PMCID: PMC9465052 DOI: 10.2147/ijn.s375229] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
As per the WHO, colorectal cancer (CRC) caused around 935,173 deaths worldwide in 2020 in both sexes and at all ages. The available anticancer therapies including chemotherapy, radiotherapy and anticancer drugs are all associated with limited therapeutic efficacy, adverse effects and low chances. This has urged to emerge several novel therapeutic agents as potential therapies for CRC including synthetic and natural materials. Orally administrable and targeted drug delivery systems are attractive strategies for CRC therapy as they minimize the side effects, enhance the efficacy of anticancer drugs. Nevertheless, oral drug delivery till today faces several challenges like poor drug solubility, stability, and permeability. Various oral nano-based approaches and targeted drug delivery systems have been developed recently, as a result of the ability of nanoparticles to control the release of the encapsulant, drug targeting and reduce the number of dosages administered. The unique physicochemical properties of chitosan polymer assist to overcome oral drug delivery barriers and target the colon tumour cells. Chitosan-based nanocarriers offered additional improvements by enhancing the stability, targeting and bioavailability of several anti-colorectal cancer agents. Modified chitosan derivatives also facilitated CRC targeting through strengthening the protection of encapsulant against acidic and enzyme degradation of gastrointestinal track (GIT). This review aims to provide an overview of CRC pathology, therapy and the barriers against oral drug delivery. It also emphasizes the role of nanotechnology in oral drug targeted delivery system and the growing interest towards chitosan and its derivatives. The present review summarizes the relevant works to date that have studied the potential applications of chitosan-based nanocarrier towards CRC treatment.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Salma Seyam
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Batoul Alallam
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, 13200, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| |
Collapse
|
22
|
Erkoç T, Sevgili LM, Çavuş S. Hydroxypropyl cellulose/Polyvinylpyrrolidone Matrix Tablets Containing Ibuprofen: Infiltration, Erosion and Drug Release Characteristics. ChemistrySelect 2022. [DOI: 10.1002/slct.202202180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tuğba Erkoç
- Istanbul University-Cerrahpaşa Faculty of Engineering Department of Chemical Engineering 34320 Istanbul Turkey
| | - Lutfullah M. Sevgili
- Istanbul University-Cerrahpaşa Faculty of Engineering Department of Chemical Engineering 34320 Istanbul Turkey
| | - Selva Çavuş
- Istanbul University-Cerrahpaşa Faculty of Engineering Department of Chemical Engineering 34320 Istanbul Turkey
| |
Collapse
|
23
|
Casian T, Nagy B, Kovács B, Galata DL, Hirsch E, Farkas A. Challenges and Opportunities of Implementing Data Fusion in Process Analytical Technology-A Review. Molecules 2022; 27:4846. [PMID: 35956791 PMCID: PMC9369811 DOI: 10.3390/molecules27154846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
The release of the FDA's guidance on Process Analytical Technology has motivated and supported the pharmaceutical industry to deliver consistent quality medicine by acquiring a deeper understanding of the product performance and process interplay. The technical opportunities to reach this high-level control have considerably evolved since 2004 due to the development of advanced analytical sensors and chemometric tools. However, their transfer to the highly regulated pharmaceutical sector has been limited. To this respect, data fusion strategies have been extensively applied in different sectors, such as food or chemical, to provide a more robust performance of the analytical platforms. This survey evaluates the challenges and opportunities of implementing data fusion within the PAT concept by identifying transfer opportunities from other sectors. Special attention is given to the data types available from pharmaceutical manufacturing and their compatibility with data fusion strategies. Furthermore, the integration into Pharma 4.0 is discussed.
Collapse
Affiliation(s)
- Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Béla Kovács
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| |
Collapse
|
24
|
Sherif AY, Harisa GI, Alanazi FK, Nasr FA, Alqahtani AS. Engineered Nanoscale Lipid-Based Formulation as Potential Enhancer of Gefitinib Lymphatic Delivery: Cytotoxicity and Apoptotic Studies Against the A549 Cell Line. AAPS PharmSciTech 2022; 23:183. [PMID: 35773422 PMCID: PMC9247939 DOI: 10.1208/s12249-022-02332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The present study aimed to engineer a nanoscale lipid-based lymphatic drug delivery system with D-α-Tocopherol polyethylene glycol 1000 succinate to combat the lymphatic metastasis of lung cancer. The nanoscale lipid-based systems including GEF-SLN, GEF-NLC, and GEF-LE were prepared and pharmaceutically characterized. In addition, the most stable formulation (GEF-NLC) was subjected to an in vitro release study. Afterward, the optimized GEF-NLC was engineered with TPGS (GEF-TPGS-NLC) and subjected to in vitro cytotoxicity, and apoptotic studies using the A549 cells line as a surrogate model for lung cancer. The present results revealed that particle size and polydispersity index of freshly prepared formulations were ranging from 198 to 280 nm and 0.106 to 0.240, respectively, with negative zeta potential ranging from − 14 to − 27.6.mV. An in vitro release study showed that sustained drug release was attained from GEF-NLC containing a high concentration of lipid. In addition, GEF-NLC and GEF-TPGS-NLC showed remarkable entrapment efficiency above 89% and exhibited sustained release profiles. Cytotoxicity showed that IC50 of pure GEF was 11.15 μg/ml which decreased to 7.05 μg/ml for GEF-TPGS-NLC. The apoptotic study revealed that GEF-TPGS-NLC significantly decreased the number of living cells from 67 to 58% when compared with pure GEF. The present results revealed that the nanoscale and lipid composition of the fabricated SLN, NLC, and LE could mediate the lymphatic uptake of GEF to combat the lymphatic tumor metastasis. Particularly, GEF-TPGS-NLC is a promising LDDS to increase the therapeutic outcomes of GEF during the treatment of metastatic lung cancer.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. .,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Bostanudin MF, Arafat M, Tan SF, Sarker MZI. Investigations of pectin nanostructures for enhanced percutaneous delivery of fusidic acid. J Appl Polym Sci 2022. [DOI: 10.1002/app.52760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohammad F. Bostanudin
- College of Pharmacy Al Ain University Abu Dhabi United Arab Emirates
- AAU Health and Biomedical Research Center Al Ain University Abu Dhabi United Arab Emirates
| | - Mosab Arafat
- College of Pharmacy Al Ain University Abu Dhabi United Arab Emirates
- AAU Health and Biomedical Research Center Al Ain University Abu Dhabi United Arab Emirates
| | - Suk Fei Tan
- School of Pharmacy Management and Science University Shah Alam Malaysia
| | - Md Zaidul I. Sarker
- Cooperative Research, Extension & Education Northern Marianas College Saipan Northern Mariana Islands USA
| |
Collapse
|
26
|
de Oliveira MC, Bruschi ML. Self-Emulsifying Systems for Delivery of Bioactive Compounds from Natural Origin. AAPS PharmSciTech 2022; 23:134. [PMID: 35534702 DOI: 10.1208/s12249-022-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
Nature has been used as therapeutic resources in the treatment of diseases for many years. However, some natural compounds have poor water solubility. Therefore, physicochemical strategies and technologies are necessary for development of systems for carrying these substances. The self-emulsifying drug delivery systems (SEDDS) have been used as carriers of hydrophobic compounds in order to increase the solubility and absorption, improving their bioavailability. SEDDS are constituted with a mixture of oils and surfactants which, when come into contact with an aqueous medium under mild agitation, can form emulsions. In the last years, a wide variety of self-emulsifying formulations containing bioactive compounds from natural origin has been developed. This review provides a comprehensive overview of the main excipients and natural bioactive compounds composing SEDDS. In addition, applications, new technologies and innovation are reviewed as well. Examples of self-emulsifying formulations administered in different sites are also considered for a better understanding of the use of this strategy to modify the delivery of compounds from natural origin.
Collapse
|
27
|
Hatem S, Elkheshen SA, Kamel AO, Nasr M, Moftah NH, Ragai MH, Elezaby RS, El Hoffy NM. Functionalized chitosan nanoparticles for cutaneous delivery of a skin whitening agent: an approach to clinically augment the therapeutic efficacy for melasma treatment. Drug Deliv 2022; 29:1212-1231. [PMID: 35403519 PMCID: PMC9004510 DOI: 10.1080/10717544.2022.2058652] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The increase in the production of melanin level inside the skin prompts a patient-inconvenient skin color disorder namely; melasma. This arouses the need to develop efficacious treatment modalities, among which are topical nano-delivery systems. This study aimed to formulate functionalized chitosan nanoparticles (CSNPs) in gel form for enhanced topical delivery of alpha-arbutin as a skin whitening agent to treat melasma. Ionic gelation method was employed to prepare α-arbutin-CSNPs utilizing a 24 full factorial design followed by In vitro, Ex vivo and clinical evaluation of the nano-dispersions and their gel forms. Results revealed that the obtained CSNPs were in the nanometer range with positive zeta potential, high entrapment efficiency, good stability characteristics and exhibited sustained release of α-arbutin over 24 h. Ex vivo deposition of CSNPs proved their superiority in accumulating the drug in deep skin layers with no transdermal delivery. DSC and FTIR studies revealed the successful amorphization of α-arbutin into the nanoparticulate system with no interaction between the drug and the carrier system. The comparative split-face clinical study revealed that α-arbutin loaded CSNPs hydrogels showed better therapeutic efficacy compared to the free drug hydrogel in melasma patients, as displayed by the decrease in: modified melasma area and severity index (mMASI) scores, epidermal melanin particle size surface area (MPSA) and the number of epidermal monoclonal mouse anti–melanoma antigen recognized by T cells-1 (MART-1) positive cells which proved that the aforementioned system is a promising modality for melasma treatment.
Collapse
Affiliation(s)
- Shymaa Hatem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| | - Seham A. Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amany O. Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha H. Moftah
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Maha H Ragai
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Reham S. Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nada M. El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
28
|
Micronization of a poorly water-soluble drug, fenofibrate, via supercritical-fluid-assisted spray-drying. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00565-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Rathee J, Kanwar R, Kumari L, Pawar SV, Sharma S, Ali ME, Salunke DB, Mehta SK. Development of nanostructured lipid carriers as a promising tool for methotrexate delivery: physicochemical and in vitro evaluation. J Biomol Struct Dyn 2022; 41:2747-2758. [PMID: 35238266 DOI: 10.1080/07391102.2022.2037465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of the present study is to fabricate the stable nanostructured lipid carriers (NLCs) using biocompatible excipients for the encapsulation of Methotrexate (MTX), a chemotherapeutic agent for breast cancer treatment. MTX has restricted clinical applications owing to its low solubility, non-specific targeting and adverse side effects. Glyceryl Monostearate (GMS) and Miglyol 812 (MI1) were chosen as solid and liquid lipids, respectively, for the fabrication of NLCs, and the influence of variation of solid and liquid composition was investigated. The prepared NLCs exhibited long-term stability and spherical shape morphology as characterized by electron microscopy. The internal structure of fabricated NLCs was arranged into cubic crystalline as confirmed by small-angle X-ray scattering (SAXS) analysis. MTX's encapsulation efficiency of ∼85 ± 0.9%. and sustained in vitro release of MTX ∼ 52% ± 3.0 in 24 h was achieved. Classical molecular dynamics (MD) simulations were performed to study the structural stability of the MTX encapsulated NLCs. Hemolysis carried out on the NLCs showcased the biosafety of the formulation under the tolerance limit (<10%). Further, the MTT assay demonstrates that MTX-loaded NLCs exhibited toxicity against HeLa and MCF-7 cell lines as compared to blank NLCs. The finding demonstrates NLCs as promising vehicles for MTX delivery to address cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyoti Rathee
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Rohini Kanwar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.,Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Shikha Sharma
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Surinder Kumar Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
30
|
Sun M, Ban W, Ling H, Yu X, He Z, Jiang Q, Sun J. Emerging nanomedicine and prodrug delivery strategies for the treatment of inflammatory bowel disease. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Quantification of the actual composition of polymeric nanocapsules: a quality control analysis. Drug Deliv Transl Res 2022; 12:2865-2874. [PMID: 35303273 PMCID: PMC9512864 DOI: 10.1007/s13346-022-01150-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
Abstract
Nanocapsules (NCs) are drug delivery nanosystems that contain an oily core, stabilized by a surfactant, and surrounded by a polymeric shell. The assembling of the components is based on physical and physicochemical forces, and, hence, usually, only a fraction of each component is finally part of the NCs' structure, while the remaining amount might be solubilized or forming micelles in the NCs' suspending medium. Usually, reports on the characterization of nanostructures simply indicate the association efficiency of the loaded drugs instead of their complete final composition. In this work, we have developed a liquid chromatography (LC) mass spectrometry (MS) methodology that allows the quantification of all the components of a series of NCs prepared by different techniques, namely DL-α-tocopherol; D-α-tocopherol polyethylene glycol 1000 succinate; benzethonium; lecithin; hexadecyltrimethylammonium; 1,2-dioleoyl-3-trimethylammoniumpropane; caprylic/capric triglycerides; macrogol 15-hydroxystearate; polysorbate 80; polysialic acid; hyaluronic acid; and polyethylene glycol polyglutamic acid. The LC-MS method was validated in terms of linearity (0.9383 < r2 < 0.9997), quantification limits, and recoveries of the isolated NCs' and waste fractions. The final composition of the isolated NCs was found to strongly depend on their composition and preparation technique. In our view, the rigorous quantification of the exact composition of nanosystems is essential for the progress of nanotechnology. This quantitative analysis will allow researchers to draw more accurate conclusions about the influence of the nanosystems' composition on their biological performance.
Collapse
|
32
|
Jindal A, Singh R, Tomar S, Dureja J, Karan M, Chadha R. Engineering a Remedy to Modulate and Optimize Biopharmaceutical Properties of Rebamipide by Synthesizing New Cocrystal: In Silico and Experimental Studies. Pharm Res 2021; 38:2129-2145. [PMID: 34904202 DOI: 10.1007/s11095-021-03132-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Rebamipide (REB) a potent anti-ulcer agent, has not been exploited to its full potential, owing to it extremely poor solubility, leading to highly diminutive bioavailability (<10%). The purpose is to carry out its solid-state modification. METHOD Cocrystallisation was done with three GRAS coformers namely citric acid (CA), 3,4-dihydroxybenzoic acid (DHBA) and oxalic acid (OXA) employing the liquid-assisted grinding method. Cocrystal formation was based upon amide-carboxyl and amide-hydroxyl supramolecular synthons. Characterization of novel cocrystals i.e. RCA, RDHBA and ROXA was carried out by DSC, PXRD and additionally by FT-IR spectroscopy. Chemical structures have been determined utilizing the PXRD pattern by Material Studio®. Furthermore, cocrystals were subjected to solubility and intrinsic dissolution rate (IDR) evaluation. Also, pharmacodynamic and pharmacokinetic studies were performed and compared with pure rebamipide. RESULT The appearances of a single sharp melting endotherm in DSC, along with novel characteristic peaks in PXRD infer the existence of a new crystalline form. Shifting in characteristic vibrations in FT-IR spectroscopy supports the establishment of distinct hydrogen-bonded networks. Structural determination revealed that RCA crystallizes in 'Bb2b' space groups whereas RDHBA in 'P1' and ROXA crystallize out in the 'P-1' space group. All the cocrystals exhibited superior apparent solubility and almost 7-13 folds increase in IDR. Furthermore, 1.6-2.5 folds enhancement in relative bioavailability and remarkable amplification in anti-ulcer, anti-inflammatory and the antioxidant potential of these cocrystals were observed. CONCLUSION The study ascertains the advantages of cocrystallization, with RCA showing greatest potential and suggests a viable alternative approach for improved formulation of rebamipide.
Collapse
Affiliation(s)
- Akshita Jindal
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies (CAS), Sector-14, Panjab University, Chandigarh, 160014, India
| | - Rishav Singh
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies (CAS), Sector-14, Panjab University, Chandigarh, 160014, India
| | - Sakshi Tomar
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies (CAS), Sector-14, Panjab University, Chandigarh, 160014, India
| | - Janhvi Dureja
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies (CAS), Sector-14, Panjab University, Chandigarh, 160014, India
| | - Maninder Karan
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies (CAS), Sector-14, Panjab University, Chandigarh, 160014, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies (CAS), Sector-14, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
33
|
Ohashi R, Fujii A, Fukui K, Koide T, Fukami T. Non-destructive quantitative analysis of pharmaceutical ointment by transmission Raman spectroscopy. Eur J Pharm Sci 2021; 169:106095. [PMID: 34906685 DOI: 10.1016/j.ejps.2021.106095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022]
Abstract
Transmission Raman spectroscopy was used to develop a non-destructive quantitative analytical model for the assay of a crystal dispersion-type ointment containing acyclovir as a model drug with a concentration of 3% w/w. The obtained Raman spectra were pre-processed by applying multiplicative scatter correction, standard normal variate, and first or second derivative by the Savitzky-Golay method to optimize the partial least squares (PLS) regression model. The optimized PLS model showed good prediction performance for 85%, 100%, and 115% label claims, with average recovery values of 100.7%, 99.3%, and 99.8%, respectively. Although the material properties and manufacturing method of acyclovir and white petrolatum were expected to be different from those of the calibration set, the mean recovery value of the commercial product was 104.2%. These results indicate that transmission Raman spectroscopy is a useful process analytical technology tool for product development and quality control of a crystal dispersion-type ointment with low drug concentration.
Collapse
Affiliation(s)
- Ryo Ohashi
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan; Formulation R&D Laboratory, CMC R&D Division, SHIONOGI & CO., LTD., Hyogo 660-0813, Japan.
| | - Aria Fujii
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan.
| | - Kanako Fukui
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan.
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan.
| |
Collapse
|
34
|
Shah HS, Gotecha A, Jetha D, Rajput A, Bariya A, Panchal S, Butani S. Gamma oryzanol niosomal gel for skin cancer: formulation and optimization using quality by design (QbD) approach. AAPS OPEN 2021. [DOI: 10.1186/s41120-021-00041-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AbstractSkin cancer is fifth most diagnosed disease in human population due to ultraviolet radiation (UV) exposure. Gamma oryzanol (OZ) is a natural antioxidant, and it also has skin anti-aging properties. OZ is naturally found in rice bran oil. The main aim of the present work was to optimize OZ niosomal formulation using quality by design approach including one variable at a time and full factorial design. Niosomes were prepared by solvent injection method and characterized for size, polydispersity index, drug entrapment, and transmission electron microscopy. The optimized batch obtained at X1 [drug to span 60 molar ratio (1:5)], X2 [volume of hydration (75 mL)], and X3 [stirring speed (2500 rpm)] to Y1 [average vesicle size (196.6 nm)] and Y2 [entrapment efficiency (78.31%)] as dependent variables. The optimized OZ noisomes were formulated by niosomal gel to provide improved physicochemical stability upon topical application against UV. The niosomal gel was characterized using pH meter, viscometer, Draize test for skin irritancy, ex vivo permeation studies, and stability studies. Ex vivo permeation studies of OZ niosomal gel not only showed fourfold higher permeation but also exhibited better drug retention in dermal layers of skin as compared to OZ gel. Quality Target Product Profile of OZ niosomal formulation was generated. Risk analysis of optimized OZ gel suggested most critical quality attributes (CQAs) and critical process parameters (CPPs) to be characterized as low risk. Thus, γ-oryzanol niosomal gel for topical use can serve as a promising prophylactic treatment in skin cancer, and the developed prototype formulation can be further extended to future newly discovered drugs with similar characteristics.
Graphical abstract
Collapse
|
35
|
Kunene SC, Lin KS, Weng MT, Carrera Espinoza MJ, Wu CM. In vitro study of doxorubicin-loaded thermo- and pH-tunable carriers for targeted drug delivery to liver cancer cells. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Wang D, Li Y, Cope HA, Li X, He P, Liu C, Li G, Rahman SM, Tooker NB, Bott CB, Onnis-Hayden A, Singh J, Elfick A, Marques R, Jessen HJ, Oehmen A, Gu AZ. Intracellular polyphosphate length characterization in polyphosphate accumulating microorganisms (PAOs): Implications in PAO phenotypic diversity and enhanced biological phosphorus removal performance. WATER RESEARCH 2021; 206:117726. [PMID: 34656820 DOI: 10.1016/j.watres.2021.117726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 05/23/2023]
Abstract
Polyphosphate (polyP) accumulating organisms (PAOs) are the key agent to perform enhanced biological phosphorus removal (EBPR) activity, and intracellular polyP plays a key role in this process. Potential associations between EBPR performance and the polyP structure have been suggested, but are yet to be extensively investigated, mainly due to the lack of established methods for polyP characterization in the EBPR system. In this study, we explored and demonstrated that single-cell Raman spectroscopy (SCRS) can be employed for characterizing intracellular polyPs of PAOs in complex environmental samples such as EBPR systems. The results, for the first time, revealed distinct distribution patterns of polyP length (as Raman peak position) in PAOs in lab-scale EBPR reactors that were dominated with different PAO types, as well as among different full-scale EBPR systems with varying configurations. Furthermore, SCRS revealed distinctive polyP composition/features among PAO phenotypic sub-groups, which are likely associated with phylogenetic and/or phenotypic diversity in EBPR communities, highlighting the possible resolving power of SCRS at the microdiversity level. To validate the observed polyP length variations via SCRS, we also performed and compared bulk polyP length characteristics in EBPR biomass using conventional polyacrylamide gel electrophoresis (PAGE) and solution 31P nuclear magnetic resonance (31P-NMR) methods. The results are consistent with the SCRS findings and confirmed the variations in the polyP lengths among different EBPR systems. Compared to conventional methods, SCRS exhibited advantages as compared to conventional methods, including the ability to characterize in situ the intracellular polyPs at subcellular resolution in a label-free and non-destructive way, and the capability to capture subtle and detailed biochemical fingerprints of cells for phenotypic classification. SCRS also has recognized limitations in comparison with 31P-NMR and PAGE, such as the inability to quantitatively detect the average polyP chain length and its distribution. The results provided initial evidence for the potential of SCRS-enabled polyP characterization as an alternative and complementary microbial community phenotyping method to facilitate the phenotype-function (performance) relationship deduction in EBPR systems.
Collapse
Affiliation(s)
- Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Yueyun Li
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; Black and Veatch, 2999 Oak Road #490, Walnut Creek, CA 94597, United States
| | - Helen A Cope
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Xiaoxiao Li
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Peisheng He
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States
| | - Cong Liu
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Guangyu Li
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States
| | - Sheikh M Rahman
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Nicholas B Tooker
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Marston Hall, Amherst, MA 01003, United States
| | - Charles B Bott
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA 23454, United States
| | - Annalisa Onnis-Hayden
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany; Department of Chemistry, University College London, 20 Gordon St, Bloomsbury, London WC1H 0AJ, United Kingdom
| | - Alistair Elfick
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ricardo Marques
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Adrian Oehmen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States.
| |
Collapse
|
37
|
Beke ÁK, Gyürkés M, Nagy ZK, Marosi G, Farkas A. Digital twin of low dosage continuous powder blending - Artificial neural networks and residence time distribution models. Eur J Pharm Biopharm 2021; 169:64-77. [PMID: 34562574 DOI: 10.1016/j.ejpb.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/24/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
In this paper we present a thorough description of the digital twin development for a continuous pharmaceutical powder blending process in accordance with the Process Analytical Technologies (PAT) and Quality by Design (QbD) guidelines. A low-dosage system of caffeine active pharmaceutical ingredient (API) and dextrose excipient was examined via continuous blending experiments. Near infrared (NIR) spectroscopy-based process analytics were applied; quantitative evaluation of spectra was achieved using multivariate data analysis. The blending system was represented with mechanistic residence time distribution (RTD) models and two types of recurrent artificial neural networks (ANN), experimental datasets were used for model training or fitting and validation. Detailed comparison of the two modelling approaches, the optimization of the model-based digital twin, and efficiency of the soft sensor-based process monitoring is presented through several validating simulations. Both RTD models and nonlinear autoregressive neural networks demonstrated excellent predictive power for the low dosage blending process. RTD models can prove to be more advantageous in industrial development as they are less resource-intensive to develop and prediction accuracy on low concentration levels lacks dependency from the precision of chemometric calibration. Reduced material costs and limited development timeframe render the digital twin an efficient tool in technological development.
Collapse
Affiliation(s)
- Áron Kristóf Beke
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, Budapest H-1111, Hungary
| | - Martin Gyürkés
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, Budapest H-1111, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, Budapest H-1111, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, Budapest H-1111, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, Budapest H-1111, Hungary.
| |
Collapse
|
38
|
Elderderi S, Wils L, Leman-Loubière C, Byrne HJ, Chourpa I, Enguehard-Gueiffier C, Munnier E, Elbashir AA, Boudesocque-Delaye L, Bonnier F. In Situ Water Quantification in Natural Deep Eutectic Solvents Using Portable Raman Spectroscopy. Molecules 2021; 26:molecules26185488. [PMID: 34576961 PMCID: PMC8471915 DOI: 10.3390/molecules26185488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Raman spectroscopy is a label-free, non-destructive, non-invasive analytical tool that provides insight into the molecular composition of samples with minimum or no sample preparation. The increased availability of commercial portable Raman devices presents a potentially easy and convenient analytical solution for day-to-day analysis in laboratories and production lines. However, their performance for highly specific and sensitive analysis applications has not been extensively evaluated. This study performs a direct comparison of such a commercially available, portable Raman system, with a research grade Raman microscope system for the analysis of water content of Natural Deep Eutectic Solvents (NADES). NADES are renewable, biodegradable and easily tunable “green” solvents, outcompeting existing organic solvents for applications in extraction from biomass, biocatalysis, and nanoparticle synthesis. Water content in NADES is, however, a critical parameter, affecting their properties, optimal use and extraction efficiency. In the present study, portable Raman spectroscopy coupled with Partial Least Squares Regression (PLSR) is investigated for rapid determination of water content in NADES samples in situ, i.e., directly in glassware. Three NADES systems, namely Betaine Glycerol (BG), Choline Chloride Glycerol (CCG) and Glucose Glycerol (GG), containing a range of water concentrations between 0% (w/w) and 28.5% (w/w), were studied. The results are directly compared with previously published studies of the same systems, using a research grade Raman microscope. PLSR results demonstrate the reliability of the analysis, surrendering R2 values above 0.99. Root Mean Square Errors Prediction (RMSEP) of 0.6805%, 0.9859% and 1.2907% w/w were found for respectively unknown CCG, BG and GG samples using the portable device compared to 0.4715%, 0.3437% and 0.7409% w/w previously obtained by analysis in quartz cuvettes with a Raman confocal microscope. Despite the relatively higher values of RMSEP observed, the comparison of the percentage of relative errors in the predicted concentration highlights that, overall, the portable device delivers accuracy below 5%. Ultimately, it has been demonstrated that portable Raman spectroscopy enables accurate quantification of water in NADES directly through glass vials without the requirement for sample withdrawal. Such compact instruments provide solvent and consumable free analysis for rapid analysis directly in laboratories and for non-expert users. Portable Raman is a promising approach for high throughput monitoring of water content in NADES that can support the development of new analytical protocols in the field of green chemistry in research and development laboratories but also in the industry as a routine quality control tool.
Collapse
Affiliation(s)
- Suha Elderderi
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.); (E.M.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, P.O. Box 20, Wad Madani 21111, Sudan
| | - Laura Wils
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (C.L.-L.); (C.E.-G.); (L.B.-D.)
| | - Charlotte Leman-Loubière
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (C.L.-L.); (C.E.-G.); (L.B.-D.)
| | - Hugh J. Byrne
- FOCAS Research Institute, TU Dublin-City Campus, Dublin 8, Ireland;
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.); (E.M.)
| | - Cécile Enguehard-Gueiffier
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (C.L.-L.); (C.E.-G.); (L.B.-D.)
| | - Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.); (E.M.)
| | - Abdalla A. Elbashir
- Department of Chemistry, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum 11115, Sudan;
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Leslie Boudesocque-Delaye
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (C.L.-L.); (C.E.-G.); (L.B.-D.)
| | - Franck Bonnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.); (E.M.)
- Correspondence:
| |
Collapse
|
39
|
Szabó E, Záhonyi P, Gyürkés M, Nagy B, Galata DL, Madarász L, Hirsch E, Farkas A, Andersen SK, Vígh T, Verreck G, Csontos I, Marosi G, Nagy ZK. Continuous downstream processing of milled electrospun fibers to tablets monitored by near-infrared and Raman spectroscopy. Eur J Pharm Sci 2021; 164:105907. [PMID: 34118411 DOI: 10.1016/j.ejps.2021.105907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Electrospinning is a technology for manufacture of nano- and micro-sized fibers, which can enhance the dissolution properties of poorly water-soluble drugs. Tableting of electrospun fibers have been demonstrated in several studies, however, continuous manufacturing of tablets have not been realized yet. This research presents the first integrated continuous processing of milled drug-loaded electrospun materials to tablet form supplemented by process analytical tools for monitoring the active pharmaceutical ingredient (API) content. Electrospun fibers of an amorphous solid dispersion (ASD) of itraconazole and poly(vinylpyrrolidone-co-vinyl acetate) were produced using high speed electrospinning and afterwards milled. The milled fibers with an average fiber diameter of 1.6 ± 0.9 µm were continuously fed with a vibratory feeder into a twin-screw blender, which was integrated with a tableting machine to prepare tablets with ~ 10 kN compression force. The blend of fibers and excipients leaving the continuous blender was characterized with a bulk density of 0.43 g/cm3 and proved to be suitable for direct tablet compression. The ASD content, and thus the API content was determined in-line before tableting and at-line after tableting using near-infrared and Raman spectroscopy. The prepared tablets fulfilled the USP <905> content uniformity requirement based on the API content of ten randomly selected tablets. This work highlights that combining the advantages of electrospinning (e.g. less solvent, fast and gentle drying, low energy consumption, and amorphous products with high specific surface area) and the continuous technologies opens a new and effective way in the field of manufacturing of the poorly water-soluble APIs.
Collapse
Affiliation(s)
- Edina Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Petra Záhonyi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Martin Gyürkés
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Dorián L Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Lajos Madarász
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Sune K Andersen
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Tamás Vígh
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Geert Verreck
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - István Csontos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111, Budapest, Műegyetem rakpart 3, Hungary.
| |
Collapse
|
40
|
Elderderi S, Wils L, Leman-Loubière C, Henry S, Byrne HJ, Chourpa I, Munnier E, Elbashir AA, Boudesocque-Delaye L, Bonnier F. Comparison of Raman and attenuated total reflectance (ATR) infrared spectroscopy for water quantification in natural deep eutectic solvent. Anal Bioanal Chem 2021; 413:4785-4799. [PMID: 34061244 DOI: 10.1007/s00216-021-03432-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 01/31/2023]
Abstract
Natural deep eutectic solvents (NADES) are ionic solutions, of great interest for extraction from biomass, biocatalysis, and nanoparticle synthesis. They are easily synthesised and eco-friendly, have low volatility and high dissolution power, and are biodegradable. However, water content in NADES is a critical parameter, affecting their optimal use and extraction efficiency. Vibrational spectroscopic techniques are rapid, label-free, non-destructive, non-invasive, and cost-effective analytical tools that can probe the molecular composition of samples. A direct comparison between a previous study using attenuated total reflectance infrared (ATR-IR) spectroscopy for water quantification in NADES and the same investigation performed with Raman spectroscopy is presently reported. Three NADES systems, namely betaine-glycerol (BG), choline chloride-glycerol (CCG), and glucose-glycerol (GG), containing a range of water concentrations between 0% (w/w) and 40% (w/w), have been analysed with Raman spectroscopy coupled to partial least squares regression multivariate analysis. The values of root mean square error of cross-validation (RMSECV) obtained from analysis performed on the pre-processed spectra over the full spectral range (150-3750 cm-1) are respectively 0.2966% (w/w), 0.4703% (w/w), and 0.2351% (w/w) for BG, GG, and CCG. While the direct comparison to previous ATR-IR results shows essentially similar outcomes for BG, the RMSECV is 33.14% lower and 65.84% lower for CG and CCG. Furthermore, mean relative errors obtained with Raman spectroscopy, and calculated from a set of samples used as independent samples, were 1.452% (w/w), 1.175% (w/w), and 1.188% (w/w). Ultimately, Raman spectroscopy delivered performances for quantification of water in NADES with similar accuracy to ATR-IR. The present demonstration clearly highlights the potential of Raman spectroscopy to support the development of new analytical protocols in the field of green chemistry.
Collapse
Affiliation(s)
- Suha Elderderi
- Faculté de pharmacie, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, 31 avenue Monge, 37200, Tours, France
- Faculty of Pharmacy, University of Gezira, 21111, Wad Madani, Gezira, Sudan
| | - Laura Wils
- Faculté de pharmacie, EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 avenue Monge, 37200, Tours, France
| | - Charlotte Leman-Loubière
- Faculté de pharmacie, EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 avenue Monge, 37200, Tours, France
| | - Sandra Henry
- Faculté de pharmacie, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, 31 avenue Monge, 37200, Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Dublin 8, Ireland
| | - Igor Chourpa
- Faculté de pharmacie, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, 31 avenue Monge, 37200, Tours, France
| | - Emilie Munnier
- Faculté de pharmacie, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, 31 avenue Monge, 37200, Tours, France
| | - Abdalla A Elbashir
- Faculty of Science, Department of Chemistry, University of Khartoum, 11115, Khartoum, Sudan
| | - Leslie Boudesocque-Delaye
- Faculté de pharmacie, EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 avenue Monge, 37200, Tours, France
| | - Franck Bonnier
- Faculté de pharmacie, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, 31 avenue Monge, 37200, Tours, France.
| |
Collapse
|
41
|
de Menezes BRC, Rodrigues KF, Schatkoski VM, Pereira RM, Ribas RG, Montanheiro TLDA, Thim GP. Current advances in drug delivery of nanoparticles for respiratory disease treatment. J Mater Chem B 2021; 9:1745-1761. [PMID: 33508058 DOI: 10.1039/d0tb01783c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cases of respiratory diseases have been increasing around the world, affecting the health and quality of life of millions of people every year. Chronic respiratory diseases (CRDs) and acute respiratory infections (ARIs) are responsible for many hospital admissions and deaths, requiring sophisticated treatments that facilitate the delivery of therapeutics to specific target sites with controlled release. In this context, different nanoparticles (NPs) have been explored to match this demand, such as lipid, liposome, protein, carbon-based, polymeric, metallic, oxide, and magnetic NPs. The use of NPs as drug delivery systems can improve the efficacy of commercial drugs due to their advantages related to sustained drug release, targeting effects, and patient compliance. The current review presents an updated summary of recent advances regarding the use of NPs as drug delivery systems to treat diseases related to the respiratory tract, such as CRDs and ARIs. The latest applications presented in the literature were considered, and the opportunities and challenges of NPs in the drug delivery field are discussed.
Collapse
Affiliation(s)
- Beatriz Rossi Canuto de Menezes
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Karla Faquine Rodrigues
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Vanessa Modelski Schatkoski
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Raíssa Monteiro Pereira
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Renata Guimarães Ribas
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Thaís Larissa do Amaral Montanheiro
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Gilmar Patrocínio Thim
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| |
Collapse
|
42
|
Bogomolov A. Developing Multisensory Approach to the Optical Spectral Analysis. SENSORS (BASEL, SWITZERLAND) 2021; 21:3541. [PMID: 34069638 PMCID: PMC8160663 DOI: 10.3390/s21103541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
This article presents an overview of research aimed at developing a scientific approach to creating multisensor optical systems for chemical analysis. The review is mainly based on the author's works accomplished over the recent 10 years at Samara State Technical University with broad international cooperation. It consists of an introduction and five sections that describe state of the art in the field of optical sensing, suggested development methodology of optical multisensor systems, related aspects of experimental design and process analytical technology followed by a collection of practical examples in different application fields: food and pharmaceutical production, medical diagnostics, and ecological monitoring. The conclusion summarizes trends and prospects of the multisensory approach to optical spectral analysis.
Collapse
Affiliation(s)
- Andrey Bogomolov
- Laboratory of Multivariate Analysis and Global Modeling, Samara State Technical University, 244 Molodogvardeyskaya Str., 443100 Samara, Russia
| |
Collapse
|
43
|
Sanada T, Yoshida N, Kimura K, Tsuboi H. Detection Method of Falsified Medicines by Using a Low-Cost Raman Scattering Spectrometer Combined with Soft Independent Modeling of Class Analogy and Partial Least Squares Discriminant Analysis. Biol Pharm Bull 2021; 44:691-700. [PMID: 33952825 DOI: 10.1248/bpb.b20-01041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There are many reports of falsified medicines that may cause harm to patients. A rapid and simple method of identifying falsified medicines that could be used in the field is required. Although Raman scattering spectroscopy has become popular as a non-destructive analysis, few validation experiments on falsified medicines that are actually distributed on the market have been conducted. In this study, we validated a discriminant analysis using an ultra-compact, portable, and low-cost Raman scattering spectrometer combined with multivariate analysis. The medicines were three types of erectile dysfunction therapeutic tablet and one type of antifungal tablet: tadalafil (Cialis), vardenafil hydrochloride (Levitra), sildenafil citrate (Viagra), and fluconazole (Diflucan), which is sometimes advertised as female Viagra. For each medicine, the authentic standard product and products obtained by personal import via the internet (genuine or falsified) were used. Discriminant analyses were performed on the Raman spectra combined with soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). It was possible to identify all falsified samples by SIMCA using the standard product model for all four products. Using the PLS-DA using the PLS models of the four standard products, falsified Levitra and Diflucan samples were classified correctly, although some falsified Cialis and all Viagra samples also belonged to the standard class. In this study, SIMCA might be more suitable than PLS-DA for identifying falsified medicines. A spectroscopic module that combines the low-cost Raman scattering spectroscopy with SIMCA might contribute to the rapid identification of falsified medicines in the field.
Collapse
Affiliation(s)
- Tomoko Sanada
- Clinical Pharmacy and Healthcare Sciences, Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Naoko Yoshida
- AI Hospital/Macro Signal Dynamics Research and Development Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Kazuko Kimura
- Medi-Quality Security Institute, Graduate School of Medical Sciences, Kanazawa University
| | - Hirohito Tsuboi
- Clinical Pharmacy and Healthcare Sciences, Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
44
|
Panzitta M, Calamassi N, Sabatini C, Grassi M, Spagnoli C, Vizzini V, Ricchiuto E, Venturini A, Brogi A, Brassier Font J, Pontello L, Bruno G, Minghetti P, Ricci M. Spectrophotometry and pharmaceutical PAT/RTRT: Practical challenges and regulatory landscape from development to product lifecycle. Int J Pharm 2021; 601:120551. [PMID: 33831483 DOI: 10.1016/j.ijpharm.2021.120551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
European Pharmacopoeia includes dedicated chapters for Raman, NIR and Chemometrics, as well as there is a lot of Academia research on the matter. Despite that, the word innovation is often associated to such tools and there is a still slow implementation at industry. The paper is the outcome of the Associazione Farmaceutici dell'Industria (AFI) Study Group on Process Innovation and Product Lifecycle; the aim is to describe some case studies referring to practical approaches in pharmaceutical industry, in order to depict challenges and opportunities for the implementation of spectroscopic techniques. Case studies include: feasibility and pre-screening evaluations, chemometric model development approaches, way for the method maintenance during commercial manufacturing, challenges for implementation on existing equipment and on sterile processes. Case studies refer to oral solid products, liquid products and sterile Active Pharmaceutical Ingradient (API) manufacturing. There are already successful and robust spectroscopic applications in pharmaceutical industry and the technology is mature: this is the outcome of a strong applied research performed at pharmaceutical production departments. It is necessary to acknowledge efforts done by industry as Research for strengthening the cooperation with Academia, so that advantage of process innovation might reach the patients in a fastest way.
Collapse
Affiliation(s)
- Michele Panzitta
- A. Menarini M.L.&S, Via R. Pilo 4, 50131 Firenze, Italy; AFI, Study Group on Product Lifecycle and Process Innovation, viale Ranzoni, 1 20041 Milano
| | - Niccolò Calamassi
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, via del Liceo 1, 06123 Perugia, Italy; AFI, Study Group on Product Lifecycle and Process Innovation, viale Ranzoni, 1 20041 Milano.
| | - Cristina Sabatini
- Janssen Cilag, Via C. Janssen, 04100 Latina LT, Italy; AFI, Study Group on Product Lifecycle and Process Innovation, viale Ranzoni, 1 20041 Milano
| | - Marzia Grassi
- Janssen Cilag, Via C. Janssen, 04100 Latina LT, Italy; AFI, Study Group on Product Lifecycle and Process Innovation, viale Ranzoni, 1 20041 Milano
| | - Chiara Spagnoli
- AFI, Study Group on Product Lifecycle and Process Innovation, viale Ranzoni, 1 20041 Milano; Istituto Biochimico Italiano Giovanni Lorenzini, Via Fossignano, 2, 04011 Aprilia (LT), Italy
| | - Vittoria Vizzini
- AFI, Study Group on Product Lifecycle and Process Innovation, viale Ranzoni, 1 20041 Milano; Istituto Biochimico Italiano Giovanni Lorenzini, Via Fossignano, 2, 04011 Aprilia (LT), Italy
| | - Elisa Ricchiuto
- AFI, Study Group on Product Lifecycle and Process Innovation, viale Ranzoni, 1 20041 Milano; Istituto Biochimico Italiano Giovanni Lorenzini, Via Fossignano, 2, 04011 Aprilia (LT), Italy
| | - Andrea Venturini
- AFI, Study Group on Product Lifecycle and Process Innovation, viale Ranzoni, 1 20041 Milano; Chiesi Italia, Via Palermo, 26/a, 43122 Parma (PR), Italy
| | - Andrea Brogi
- A. Menarini M.L.&S, Via R. Pilo 4, 50131 Firenze, Italy
| | | | - Lino Pontello
- AFI-Associazione Farmaceutici dell'Industria, Viale Ranzoni, 1 20041 Milano
| | - Giorgio Bruno
- AFI-Associazione Farmaceutici dell'Industria, Viale Ranzoni, 1 20041 Milano; Recipharm AB, via Filippo Serperio, 2, Masate (Mi), Italy
| | - Paola Minghetti
- AFI-Associazione Farmaceutici dell'Industria, Viale Ranzoni, 1 20041 Milano; Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Colombo, 71. 20133 MILANO (MI), Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
45
|
Applications of machine vision in pharmaceutical technology: A review. Eur J Pharm Sci 2021; 159:105717. [DOI: 10.1016/j.ejps.2021.105717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
|
46
|
Domokos A, Nagy B, Szilágyi B, Marosi G, Nagy ZK. Integrated Continuous Pharmaceutical Technologies—A Review. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- András Domokos
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Botond Szilágyi
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, H-1111 Budapest, Hungary
| | - György Marosi
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| |
Collapse
|
47
|
Real-time release testing of dissolution based on surrogate models developed by machine learning algorithms using NIR spectra, compression force and particle size distribution as input data. Int J Pharm 2021; 597:120338. [DOI: 10.1016/j.ijpharm.2021.120338] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/28/2022]
|
48
|
He M, Wan Z, Tsang DCW, Sun Y, Khan E, Hou D, Graham NJD. Performance indicators for a holistic evaluation of catalyst-based degradation-A case study of selected pharmaceuticals and personal care products (PPCPs). JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123460. [PMID: 32683158 DOI: 10.1016/j.jhazmat.2020.123460] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Considerable efforts have been made to develop effective and sustainable catalysts, e.g., carbon-/biochar-based catalyst, for the decontamination of organic pollutants in water/wastewater. Most of the published studies evaluated the catalytic performance mainly upon degradation efficiency of parent compounds; however, comprehensive and field-relevant performance assessment is still in need. This review critically analysed the performance indicators for carbon-/biochar-based catalytic degradation from the perspectives of: (1) degradation of parent compounds, i.e., concentrations, kinetics, reactive oxidative species (ROS) analysis, and residual oxidant concentration; (2) formation of intermediates and by-products, i.e., intermediates analysis, evolution of inorganic ions, and total organic carbon (TOC); and (3) impact assessment of treated samples, i.e., toxicity evolution, disinfection effect, and biodegradability test. Five most frequently detected pharmaceuticals and personal care products (PPCPs) (sulfamethoxazole, carbamazepine, ibuprofen, diclofenac, and acetaminophen) were selected as a case study to articulate the performance indicators for a holistic evaluation of carbon-/biochar-based catalytic degradation. This review also encourages the development of alternative performance indicators to facilitate the rational design of catalysts in future studies.
Collapse
Affiliation(s)
- Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhonghao Wan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Nigel J D Graham
- Faculty of Engineering, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| |
Collapse
|
49
|
Vdovchenko A, Pearce AK, Freeley M, O'Reilly RK, Resmini M. Effect of heterogeneous and homogeneous polymerisation on the structure of pNIPAm nanogels. Polym Chem 2021. [DOI: 10.1039/d1py01333e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The choice of the polymerisation temperature and initiator in the synthesis of poly(N-isopropylacrylamide)-based nanogels can significantly influence their structure, morphology and thermoresponsive properties.
Collapse
Affiliation(s)
- Alena Vdovchenko
- School of Physical and Chemical Science, Queen Mary University of London, London E1 4NS, UK
| | - Amanda K. Pearce
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark Freeley
- School of Physical and Chemical Science, Queen Mary University of London, London E1 4NS, UK
| | | | - Marina Resmini
- School of Physical and Chemical Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
50
|
Boehling P, Jacevic D, Detobel F, Holman J, Wareham L, Metzger M, Khinast JG. Validating a Numerical Simulation of the ConsiGma(R) Coater. AAPS PharmSciTech 2020; 22:10. [PMID: 33244725 PMCID: PMC7691303 DOI: 10.1208/s12249-020-01841-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022] Open
Abstract
Continuous manufacturing is increasingly used in the pharmaceutical industry, as it promises to deliver better product quality while simultaneously increasing production flexibility. GEA developed a semi-continuous tablet coater which can be integrated into a continuous tableting line, accelerating the switch from traditional batch production to the continuous mode of operation. The latter offers certain advantages over batch production, e.g., operational flexibility, increased process/product quality, and decreased cost. However, process understanding is the key element for process control. In this regard, computational tools can improve the fundamental understanding and process performance, especially those related to new processes, such as continuous tablet coating where process mechanics remain unclear. The discrete element method (DEM) and computational fluid dynamics (CFD) are two methods that allow transition from empirical process design to a mechanistic understanding of the individual process units. The developed coupling model allows to track the heat, mass, and momentum exchange between the tablet and fluid phase. The goal of this work was to develop and validate a high-fidelity CFD-DEM simulation model of the tablet coating process in the GEA ConsiGma® coater. After the model development, simulation results for the tablet movement, coating quality, and heat and mass transfer during the coating process were validated and compared to the experimental outcomes. The experimental and simulation results agreed well on all accounts measured, indicating that the model can be used in further studies to investigate the operating space of the continuous tablet coating process.
Collapse
|