1
|
Zhang X, Li Q, Wang J, Huang J, Huang W, Huang Y. Physicochemical properties and in vitro release of formononetin nano-particles by ultrasonic probe-assisted precipitation in four polar organic solvents. Food Chem 2024; 461:140918. [PMID: 39181045 DOI: 10.1016/j.foodchem.2024.140918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
Although formononetin has a considerable biological activity, its therapeutic use is limited by its low solubility. Formononetin was dissolved in ethanol, methanol, N, N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) in this investigation, the antisolvent precipitation procedure with the assistance of an external ultrasonic probe was used to manufacture the formononetin nano-particles. The ideal parameters for response surface BBD optimization are as follows: feed volume flow rate of 6 mL/min; ultrasonic power of 860 W; and liquid-liquid ratio of 1:12.5. The formononetin nano-particles have a smaller particle diameter than raw sample; the lowest size can be as small as (329 ± 1.99) nm, which is 45 times smaller than raw. An in vitro digestion test using a solution that simulated intestinal solution revealed that the release rate of the nano-particle was 1.75 times than that of the raw formononetin. The formononetin nano-particles generated by the aforementioned four solvents have the following order of diameter: ethanol > methanol > DMF > DMSO. This study provided a technical reference for the functional food components in deep processing.
Collapse
Affiliation(s)
| | - Qiyuan Li
- Jiaying University, Meizhou 514000, China
| | | | | | | | - Yan Huang
- Jiaying University, Meizhou 514000, China.
| |
Collapse
|
2
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
3
|
Wang Y, Mo Y, Sun Y, Li J, An Y, Feng N, Liu Y. Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties. J Nanobiotechnology 2024; 22:669. [PMID: 39487532 PMCID: PMC11531169 DOI: 10.1186/s12951-024-02930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Orally administered nanocarriers play an important role in improving druggability, promoting intestinal absorption, and enhancing therapeutic applications for the treatment of local and systemic diseases. However, the delivering efficiency and cell response in mucosa to orally administered nanocarriers is affected by the physiological environment and barriers in the gastrointestinal tract, the physicochemical properties of the nanocarriers, and their bidirectional interactions. Goblet cells secrete and form extracellular mucus, which hinders the movement of nanoparticles. Meanwhile, intestinal epithelial cells may absorb the NPs, allowing for their transcytosis or degradation. Conversely, nanoparticle-induced toxicity may occur as a biological response to the nanoparticle exposure. Additionally, immune response and cell functions in secretions such as mucin, peptide, and cytokines may also be altered. In this review, we discuss the bidirectional interactions between nanoparticles and cells focusing on enterocytes and goblet cells, M cells, and immune cells in the mucosa according to the essential role of intestinal epithelial cells and their crosstalk with immune cells. Furthermore, we discuss the recent advances of how the physiochemical properties of nanoparticles influence their interplay, delivery, and fate in intestinal mucosa. Understanding the fate of nanoparticles with different physiochemical properties from the perspective of their interaction with cells in mucosa provides essential support for the development, rational design, potency maximation, and application of advanced oral nanocarrier delivery systems.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yilei Mo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yingwei Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Jing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yu An
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| | - Ying Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| |
Collapse
|
4
|
Zou Z, Xue Y, Adu-Frimpong M, Wang C, Jin Z, Xu Y, Yu J, Xu X, Zhu Y. Formononetin-Loaded Self-Microemulsion Drug Delivery Systems for Improved Solubility and Oral Bioavailability: Fabrication, Characterization, In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2024; 25:261. [PMID: 39487315 DOI: 10.1208/s12249-024-02975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
This study aimed to construct a self-microemulsion drug delivery system (SMEDDS) for Formononetin (FMN) to improve its solubility and bioavailability while combining the nanocrystals (NCs) technology. The SMEDDS prescription composition was optimized with a pseudo-three-phase diagram, followed by a series of in vitro and in vivo evaluations of the selected optimal prescriptions. FMN-NCs loaded SMEDDS showed a homogeneous spherical shape in the Transmission electron microscope and the particle size was measured as (20.65 ± 1.42) nm. The in vitro cumulative release rate in each dissolution medium within 30 min was higher than 80%, much higher than that of FMN (6%) and FMN-NCs (40%); Cellular experiments confirm that the formulation has a high safety profile and significantly promotes cellular uptake. The results of pharmacokinetics and intestinal absorption in rats showed that the relative bioavailability of FMN-NCs and FMN-NCs loaded SMEDDS were (154.80 ± 3.76)% and (557.73 ± 32.88)%, respectively, and both of them significantly increased the rate and extent of absorption of the drug in intestinal segments. FMN-NCs loaded SMEDDS significantly enhanced the solubility and bioavailability of FMN.
Collapse
Affiliation(s)
- Zhihui Zou
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuanyuan Xue
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), 0215-5321, Navrongo, UK, Ghana
| | - ChengWei Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhou Jin
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ying Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuan Zhu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
5
|
Zheng X, Zhang J, Zhang L, Huangfu X, Li Y, Chen J. Controlled preparation of curcumin nanocrystals by detachable stainless steel microfluidic chip. Int J Pharm 2024; 663:124574. [PMID: 39134290 DOI: 10.1016/j.ijpharm.2024.124574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
Microfluidic technology has not been extensively utilized in nanocrystals manufacture, although it has been used in the production of liposomes and LNPs. This is mainly due to concerns including blockage of narrow pipes and corrosion of organic solvents on chips. In this study, a detachable stainless steel microfluidic chip with split-and-recombine (SAR) structure was engraved and used to prepare curcumin nanocrystal suspensions by a microfluidic-antisolvent precipitation method. A simulation study of the mixing activities of three chip structures was conducted by COMSOL Multiphysics software. Then the curcumin nanocrystals preparation was optimized by Box-Behnken design to screen different stabilizers and solvents. Two curcumin nanocrystals formulations with an average particle size of 59.29 nm and 168.40 nm were obtained with PDIs of 0.131 and 0.058, respectively. Compared to curcumin powder, the formulation showed an increase in dissolution rate in 0.1 M HCL while pharmacokinetic study indicated that Cmax was increased by 4.47 and 3.14 times and AUC0-∞ were 4.26 and 3.14 times greater. No clogging or deformation of the chip was observed after long usage. The results demonstrate that the stainless steel microfluidic chips with SAR structure have excellent robustness and controllability. It has the potential to be applied in GMP manufacturing of nanocrystals.
Collapse
Affiliation(s)
- Xiaojing Zheng
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Jun Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Li Zhang
- Instrumental Analysis Center, Shanghai Jiao Tong University, No.800, Dongchuan Road, Shanghai 200240, China
| | - Xiaolong Huangfu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingjian Li
- Formulation Development, Boehringer Ingelheim Animal Health, North Brunswick, NJ 08902, USA
| | - Jian Chen
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
6
|
Tu L, Wang J, Sun Y, Wan Y. Fabrication of Luteolin Nanoemulsion by Box-Behnken Design to Enhance its Oral Absorption Via Lymphatic Transport. AAPS PharmSciTech 2024; 25:206. [PMID: 39237659 DOI: 10.1208/s12249-024-02898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Intestinal lymphatic transport offers an alternative and effective way to deliver drugs, such as avoiding first-pass metabolism, enhancing oral bioavailability, and facilitating the treatment of targeted lymphoid-related diseases. However, the clinical use of luteolin (LUT) is limited by its poor water solubility and low bioavailability, and enhancing lymphatic transport by nanoemulsion may be an efficient way to enhance its oral bioavailability. The objective of this work is to prepare the luteolin nanoemulsions (LUT NEs), optimized its preparation parameters by using Box-Behnken design optimization (BBD) and evaluated it in vitro and in vivo. An Caco-2 / Raji B cell co-incubation monolayer model was established to simulate the M-cell pathway, and the differences in the transmembrane transport of LUT and NEs were compared. Cycloheximide (CHX) was utilized to establish rat chylomicron (CM) blocking model, and for investigating the influence of pharmacokinetic parameters in rats thereafter. The results showed that LUT NEs have good stability, the particle sizes were about 23.87 ± 0.57 nm. Compared with LUT suspension, The Papp of LUT NEs was enhanced for 3.5-folds, the oral bioavailability was increased by about 2.97-folds. In addition, after binding with chylomicron, the oral bioavailability of LUT NEs was decreased for about 30% (AUC 0-∞ (μg/L*h): 5.356 ± 1.144 vs 3.753 ± 0.188). These results demonstrated that NEs could enhance the oral absorption of luteolin via lymphatic transport routes.
Collapse
Affiliation(s)
- Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, People's Republic of China
| | - Ju Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, People's Republic of China
| | - Yongbing Sun
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, People's Republic of China
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
7
|
Macedo LDO, Masiero JF, Bou-Chacra NA. Drug Nanocrystals in Oral Absorption: Factors That Influence Pharmacokinetics. Pharmaceutics 2024; 16:1141. [PMID: 39339178 PMCID: PMC11434809 DOI: 10.3390/pharmaceutics16091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the safety and convenience of oral administration, poorly water-soluble drugs compromise absorption and bioavailability. These drugs can exhibit low dissolution rates, variability between fed and fasted states, difficulty permeating the mucus layer, and P-glycoprotein efflux. Drug nanocrystals offer a promising strategy to address these challenges. This review focuses on the opportunities to develop orally administered nanocrystals based on pharmacokinetic outcomes. The impacts of the drug particle size, morphology, dissolution rate, crystalline state on oral bioavailability are discussed. The potential of the improved dissolution rate to eliminate food effects during absorption is also addressed. This review also explores whether permeation or dissolution drives nanocrystal absorption. Additionally, it addresses the functional roles of stabilizers. Drug nanocrystals may result in prolonged concentrations in the bloodstream in some cases. Therefore, nanocrystals represent a promising strategy to overcome the challenges of poorly water-soluble drugs, thus encouraging further investigation into unclear mechanisms during oral administration.
Collapse
Affiliation(s)
| | | | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo 05508-000, SP, Brazil
| |
Collapse
|
8
|
Bedogni G, Michelena LV, Seremeta K, Okulik N, Salomon C. Exploring the Dissolution, Solid-state Properties, and Long-term Storage Stability of Cryoprotectant-free Fenbendazole Nanoparticles. AAPS PharmSciTech 2024; 25:199. [PMID: 39198340 DOI: 10.1208/s12249-024-02921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Fenbendazole is an antiparasitic drug widely used in veterinary medicine to treat parasitic infections caused in animals like cattle, horses, sheep, and dogs. Recently, it has been repositioned as a potential alternative for cancer treatment. However, it is a highly hydrophobic molecule (0.9 ug/mL), which can compromise its dissolution rate and absorption. Thus, this work aimed to apply a nanotechnological approach to improve drug solubility and dissolution performance. Fenbendazole nanoparticles stabilized by different poloxamers were obtained by lyophilization without cryoprotectants. The behavior of the drug in the solid state was analyzed by X-ray diffractometry, differential scanning calorimetry, and infrared spectroscopy. The nanosystems were also evaluated for solubility and dissolution rate. A long-term stability evaluation was performed for three years at room temperature. The yields of the lyophilization ranged between 75 and 81% for each lot. The nanoparticles showed a submicron size (< 340 nm) and a low polydispersity depending on the stabilizer. The physicochemical properties of the prepared systems indicated a remarkable amorphization of the drug, which influenced its solubility and dissolution performance. The drug dissolution from both the fresh and aged nanosystems was significantly higher than that of the raw drug. In particular, nanoparticles prepared with poloxamer 407 showed no significant modifications in their particle size in three years of storage. Physical stability studies indicated that the obtained systems prepared with P188, P237, and P407 suffered certain recrystallization during long storage at 25 °C. These findings confirm that selected poloxamers exhibited an important effect in formulating fenbendazole nanosystems with improved dissolution.
Collapse
Affiliation(s)
- Giselle Bedogni
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario, 2000, Argentina
| | - Lina Vargas Michelena
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario, 2000, Argentina
| | - Katia Seremeta
- Departamento de Ciencias Básicas y Aplicadas, Universidad Nacional del Chaco Austral, Cte. Fernández 755, Pcia. Roque Sáenz Peña, Chaco, 3700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chaco, Presidencia Roque Sáenz Peña, Argentina
| | - Nora Okulik
- Departamento de Ciencias Básicas y Aplicadas, Universidad Nacional del Chaco Austral, Cte. Fernández 755, Pcia. Roque Sáenz Peña, Chaco, 3700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chaco, Presidencia Roque Sáenz Peña, Argentina
| | - Claudio Salomon
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario, 2000, Argentina.
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina.
| |
Collapse
|
9
|
Wang X, Deng F, Ji T, Zhang C, Tian Y, Zhang H, Zheng A, Chen Y, He B, Dai W, Zhang H, Zhang Q, Wang X. Impact of Physiological Characteristics on Chylomicron Pathway-Mediated Absorption of Nanocrystals in the Pediatric Population. ACS NANO 2024; 18:23136-23153. [PMID: 39153194 DOI: 10.1021/acsnano.4c05391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Nanocrystals exhibit significant advantages in improving the oral bioavailability of poorly soluble drugs. However, the complicated absorption properties of nanocrystals and the differences in physiological characteristics between children and adults limit pediatric applications of nanocrystals. To elucidate the absorption differences and the underlying mechanisms between children and adults, the pharmacokinetics and tissue distribution of aprepitant crystals with different particle sizes (NC200, NC500, and MC2.5) in rats and mice at different ages were studied, and their absorption mechanisms were investigated in Caco-2 cells, mice, and rats. It was found that childhood animals demonstrated higher bioavailability compared with adolescent and adult animals, which was related to higher bile salt concentration and accelerated drug dissolution in the intestine of childhood animals. The majority of nanocrystals were dissolved and formed micelles under the influence of bile salts. Compared with intact nanocrystals, the bile salt micelle-associated aprepitant was absorbed through the chylomicron pathway, wherein Apo B assisted in the reassembling of the aprepitant micelles after endocytosis. Higher bile salt concentration and Apo B expression in the intestines of childhood animals are both responsible for the higher chylomicron transport pathways. Elucidation of the chylomicron pathway in the varied absorption of nanocrystals among children, adolescents, and adults provides strong theoretical guidance for promoting the rational and safe use of nanocrystals in pediatric populations.
Collapse
Affiliation(s)
- Xing Wang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing 100191, China
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Feiyang Deng
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Tianyi Ji
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing 100191, China
| | - Chengning Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ying Chen
- Guangdong Institute for Drug Control, Guangzhou 510700, China
- NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510700, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510700, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510700, China
| |
Collapse
|
10
|
Han N, Liu Y, Liu X, Li P, Lu Y, Du S, Wu K. The Controlled Preparation of a Carrier-Free Nanoparticulate Formulation Composed of Curcumin and Piperine Using High-Gravity Technology. Pharmaceutics 2024; 16:808. [PMID: 38931928 PMCID: PMC11207529 DOI: 10.3390/pharmaceutics16060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Carrier-free nanoparticulate formulations are an advantageous platform for the oral administration of insoluble drugs with the expectation of improving their bioavailability. However, the key limitation of exploiting carrier-free nanoparticulate formulations is the controlled preparation of drug nanoparticles on the basis of rational prescription design. In the following study, we used curcumin (Cur) and piperine (Pip) as model water-insoluble drugs and developed a new method for the controlled preparation of carrier-free drug nanoparticles via multidrug co-assembly in a high-gravity environment. Encouraged by the controlled regulation of the nucleation and crystal growth rate of high-gravity technology accomplished by a rotating packed bed, co-amorphous Cur-Pip co-assembled multidrug nanoparticles with a uniform particle size of 130 nm were successfully prepared, exhibiting significantly enhanced dissolution performance and in vitro cytotoxicity. Moreover, the hydrogen bonding interactions between Cur and Pip in nanoparticles provide them with excellent re-dispersibility and storage stability. Moreover, the oral bioavailability of Cur was dramatically enhanced as a result of the smaller particle size of the co-assembled nanoparticles and the effective metabolic inhibitory effect of Pip. The present study provides a controlled approach to preparing a carrier-free nanoparticulate formulation through a multidrug co-assembly process in the high-gravity field to improve the oral bioavailability of insoluble drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.H.); (Y.L.); (X.L.); (P.L.); (Y.L.)
| | - Kai Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.H.); (Y.L.); (X.L.); (P.L.); (Y.L.)
| |
Collapse
|
11
|
Shabatina TI, Gromova YA, Vernaya OI, Soloviev AV, Shabatin AV, Morosov YN, Astashova IV, Melnikov MY. Pharmaceutical Nanoparticles Formation and Their Physico-Chemical and Biomedical Properties. Pharmaceuticals (Basel) 2024; 17:587. [PMID: 38794157 PMCID: PMC11124199 DOI: 10.3390/ph17050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The use of medicinal substances in nanosized forms (nanoforms, nanoparticles) allows the therapeutic effectiveness of pharmaceutical preparations to be increased due to several factors: (1) the high specific surface area of nanomaterials, and (2) the high concentration of surface-active centers interacting with biological objects. In the case of drug nanoforms, even low concentrations of a bioactive substance can have a significant therapeutic effect on living organisms. These effects allow pharmacists to use lower doses of active components, consequently lowering the toxic side effects of pharmaceutical nanoform preparations. It is known that many drug substances that are currently in development are poorly soluble in water, so they have insufficient bioavailability. Converting them into nanoforms will increase their rate of dissolution, and the increased saturation solubility of drug nanocrystals also makes a significant contribution to their high therapeutic efficiency. Some physical and chemical methods can contribute to the formation of both pure drug nanoparticles and their ligand or of polymer-covered nanoforms, which are characterized by higher stability. This review describes the most commonly used methods for the preparation of nanoforms (nanoparticles) of different medicinal substances, paying close attention to modern supercritical and cryogenic technologies and the advantages and disadvantages of the described methods and techniques; moreover, the improvements in the physico-chemical and biomedical properties of the obtained medicinal nanoforms are also discussed.
Collapse
Affiliation(s)
- Tatyana I. Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical State University, Moscow 105005, Russia
| | - Yana A. Gromova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
| | - Olga I. Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical State University, Moscow 105005, Russia
| | - Andrei V. Soloviev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
| | - Andrei V. Shabatin
- Frumkin Institute of Physical Chemistry and Electrochemistry RAN, Moscow 119071, Russia;
| | - Yurii N. Morosov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical State University, Moscow 105005, Russia
| | - Irina V. Astashova
- Department of Mechanic and Mathematics, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Michail Y. Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
| |
Collapse
|
12
|
Sun T, Zhang F, Xu Y, Wang X, Jia J, Sang L, Li J, Wang D, Yu Z. Lysine-Polydopamine Nanocrystals Loaded with the Codrug Abemaciclib-Flurbiprofen for Oral Treatment of Cancer. ACS OMEGA 2024; 9:18137-18147. [PMID: 38680297 PMCID: PMC11044242 DOI: 10.1021/acsomega.3c10142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) combined with chemotherapeutic agents for the treatment of colorectal cancer (CRC) are a promising therapeutic strategy. NSAIDs can effectively boost the antitumor efficacy of chemotherapeutic agents by inhibiting the synthesis of COX-2. However, hazardous side effects and barriers to oral drug absorption are the main challenges for combination therapy with chemotherapeutics and NSAIDs. To address these issues, a safe and effective lysine-polydopamine@abemaciclib-flurbiprofen (Flu) codrug nanocrystal (Lys-PDA@AF NCs) was designed. Abemaciclib (Abe), a novel and effective inhibitor of the CDK4/6 enzyme, and Flu were joined to prepare Abemaciclib-Flu codrug (AF) by amide bonds, and then the AF was made into nanocrystals. Lysine-modified polydopamine was selected as a shell to encapsulate nanocrystals to enhance intestinal adhesion and penetration and lengthen the duration time of drugs in vivo. Nuclear magnetic resonance, Fourier transform infrared, Massspectrometry, X-ray photoelectron spectroscopy, Transmission electron microscopy, and drug loading were used to evaluate the physicochemical characteristics of the nanocrystals. In our study, Abe and Flu were released to exert their synergistic effect when the amide bond of AF was broken and the amide bond was sensitive to cathepsin B which is overexpressed in most tumor tissues, thus increasing the selectivity of the drug to the tumor. The results showed that Lys-PDA@AF NCs had higher cytotoxicity for CRC cell with an IC50 of 4.86 μg/mL. Additionally, pharmacokinetics showed that Abe and Flu had similar absorption rates in the Lys-PDA@AF NCs group, improving the safety of combination therapy. Meanwhile, in vivo experiments showed that Lys-PDA@AF NCs had excellent antitumor effects and safety. Overall, it was anticipated that the created Lys-PDA@AF NCs would be a potential method for treating cancer.
Collapse
Affiliation(s)
- Ting Sun
- Department
of Pharmaceutics, School of Pharmacy, Shenyang
Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Faxing Zhang
- Department
of Pharmaceutics, School of Pharmacy, Shenyang
Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Yuyi Xu
- Department
of Pharmaceutics, School of Pharmacy, Shenyang
Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Xiaowei Wang
- Nanjing
University Medical School Affiliated Nanjing Drum Tower Hospital, No. 321, Zhongshan Road, Nanjing 210000, PR China
| | - Jiajia Jia
- Department
of Pharmaceutics, School of Pharmacy, Shenyang
Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Lihong Sang
- Department
of Pharmacy, Gansu Wuwei Tumor Hospital, No. 31, Sanitation Lane, Haizang
Road, Liangzhou District, Wuwei 733000, PR China
| | - Ji Li
- Department
of Pharmaceutics, School of Pharmacy, Shenyang
Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Dongkai Wang
- Department
of Pharmaceutics, School of Pharmacy, Shenyang
Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Zhiguo Yu
- Department
of Pharmaceutics, School of Pharmacy, Shenyang
Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| |
Collapse
|
13
|
Yang D, Wang L, Zhang L, Wang M, Li D, Liu N, Liu D, Zhao M, Yao X. Construction, characterization and bioactivity evaluation of curcumin nanocrystals with extremely high solubility and dispersion prepared by ultrasound-assisted method. ULTRASONICS SONOCHEMISTRY 2024; 104:106835. [PMID: 38460473 PMCID: PMC10940784 DOI: 10.1016/j.ultsonch.2024.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Curcumin (Cur) as a natural pigment and biological component, can be widely used in food and beverages. However, the water insolubility of Cur significantly limits its applications. In this study, we prepared a series of nanocrystals via ultrasound-assisted method to improve the solubility and availability of Cur. The results showed artemisia sphaerocephala krasch polysaccharide (ASKP), gum arabic (GA) and wheat protein (WP) were outstanding stabilizers for nanocryatals except traditional agent, poloxamer 188 (F68). The obtained curcumin nanocrystals (Cur-NC) displayed a rod-shaped, crystal- and nanosized structure, and extremely high loading capacity (more over 80 %, w/w). Compared with raw powder, Cur-NC greatly improved the water solubility and dispersibility, and the slow and complete release of Cur of Cur-NC also endowed them excellent antioxidant capacities even at 10 μg/mL. Importantly, as functional factor additive in beverages (e.g. water and emulsion), Cur-NC could increase the content of Cur to at least 600 μg/mL and retain a good stability. Overall, we provided an effective improvement method for the liposoluble active molecules (e.g. Cur) based on the nanocrystals, which not only tremendously enhanced its water solubility, but also strengthened its bioactivity. Notably, our findings broadened the application of water-insoluble compounds.
Collapse
Affiliation(s)
- Dan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Xi'an Key Laboratory of Antiviral and Antimicrobial Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Lili Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Linxuan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mengqi Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Dan Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Dechun Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
14
|
Ren C, Zhong D, Qi Y, Liu C, Liu X, Chen S, Yan S, Zhou M. Bioinspired pH-Responsive Microalgal Hydrogels for Oral Insulin Delivery with Both Hypoglycemic and Insulin Sensitizing Effects. ACS NANO 2023; 17:14161-14175. [PMID: 37406357 DOI: 10.1021/acsnano.3c04897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The oral form of insulin is more convenient and has better patient compliance than subcutaneous or intravenous insulin. Current oral insulin preparations, however, cannot overcome the enzyme barrier, chemical barrier, and epithelial barrier of the gastrointestinal tract completely. In this study, a microalgae-based oral insulin delivery strategy (CV@INS@ALG) was developed using Chlorella vulgaris (CV)-based insulin delivery system cross-linking with sodium alginate (ALG). CV@INS@ALG could overcome the gastrointestinal barrier, protect insulin from harsh gastric conditions, and achieve a pH-responsive drug release in the intestine. CV@INS@ALG might contribute to two mechanisms of insulin absorption, including direct insulin release from the delivery system and endocytosis by M cells and macrophages. In the streptozotocin (STZ)-induced type 1 diabetic mouse model, CV@INS@ALG showed a more effective and long-lasting hypoglycemic effect than direct insulin injection and did not cause any damage to the intestinal tract. Additionally, the long-term oral administration of the carrier CV@ALG effectively ameliorated gut microbiota disorder, and significantly increased the abundance of probiotic Akkermansia in db/db type 2 diabetic mice, thereby enhancing the insulin sensitivity of mice. Microalgal insulin delivery systems could be degraded and metabolized in the intestinal tract after oral administration, showing good biodegradability and biosafety. This insulin delivery strategy based on microalgal biomaterials provides a natural, efficient, and multifunctional solution for oral insulin delivery.
Collapse
Affiliation(s)
- Chaojie Ren
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Danni Zhong
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Chaoyi Liu
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xingyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | | | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Min Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
15
|
He Y, Cheng M, Yang R, Li H, Lu Z, Jin Y, Feng J, Tu L. Research Progress on the Mechanism of Nanoparticles Crossing the Intestinal Epithelial Cell Membrane. Pharmaceutics 2023; 15:1816. [PMID: 37514003 PMCID: PMC10384977 DOI: 10.3390/pharmaceutics15071816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Improving the stability of drugs in the gastrointestinal tract and their penetration ability in the mucosal layer by implementing a nanoparticle delivery strategy is currently a research focus in the pharmaceutical field. However, for most drugs, nanoparticles failed in enhancing their oral absorption on a large scale (4 folds or above), which hinders their clinical application. Recently, several researchers have proved that the intestinal epithelial cell membrane crossing behaviors of nanoparticles deeply influenced their oral absorption, and relevant reviews were rare. In this paper, we systematically review the behaviors of nanoparticles in the intestinal epithelial cell membrane and mainly focus on their intracellular mechanism. The three key complex intracellular processes of nanoparticles are described: uptake by intestinal epithelial cells on the apical side, intracellular transport and basal side exocytosis. We believe that this review will help scientists understand the in vivo performance of nanoparticles in the intestinal epithelial cell membrane and assist in the design of novel strategies for further improving the bioavailability of nanoparticles.
Collapse
Affiliation(s)
- Yunjie He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Meng Cheng
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Ruyue Yang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Haocheng Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Zhiyang Lu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jianfang Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| |
Collapse
|
16
|
Kapourani A, Chachlioutaki K, Andriotis EG, Fatouros DG, Barmpalexis P. Evaluating PAA/PVA thermal crosslinking process during the preparation of in-situ high-drug loading amorphous solid dispersions. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
K PD, D RD, S B, B Narayanan VH. In-vivo pharmacokinetic studies of Dolutegravir loaded spray dried Chitosan nanoparticles as milk admixture for paediatrics infected with HIV. Sci Rep 2022; 12:13907. [PMID: 35974065 PMCID: PMC9381509 DOI: 10.1038/s41598-022-18009-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Dolutegravir (DTG) is an antiretroviral drug approved in the year 2013, and being categorized as a BCS-II molecule, it possesses solubility issues. In order to enhance the solubility and improve its bioavailability, DTG-loaded Chitosan nanoparticles (NPs) were synthesized utilizing spray drying technology. The developed nanoformulation was characterized for its physicochemical properties and investigated for the feasibility of its administration through an oral route along with milk/food as an admixture for paediatric antiretroviral therapy. The in vivo oral bioavailability studies were conducted in Balb-C mice, where the animals were treated with the selected formulation of DTG-loaded Chitosan NPs and compared to pure DTG. The NPs exhibited 2.5-fold increase in the Cmax (77.54 ± 7.93 μg/mL) when compared to the pure DTG (30.15 ± 8.06 μg/mL). This phenomenon was further reflected by the improved bioavailability of DTG (AUC: 678.3 ± 10.07 μg/h/mL) in the NPs administered to mice when compared to the AUC of animals administered with pure DTG (405.29 ± 7 μg/h/mL). Altogether, the research findings showed that Chitosan-based NPs were ideal carriers for oral administration of DTG along with milk and exhibited great potential to enhance the bioavailability of the drug and treatment adherence for paediatric HIV patients.
Collapse
Affiliation(s)
- Priya Dharshini K
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India
| | - Ramya Devi D
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India
| | - Banudevi S
- Centre for Nanotechnology and Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
18
|
Yang S, Zhu G. 7,8-Dihydroxyflavone and Neuropsychiatric Disorders: A Translational Perspective from the Mechanism to Drug Development. Curr Neuropharmacol 2022; 20:1479-1497. [PMID: 34525922 PMCID: PMC9881092 DOI: 10.2174/1570159x19666210915122820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF) is a kind of natural flavonoid with the potential to cross the blood-brain barrier. 7,8-DHF effectively mimics the effect of brain-derived neurotrophic factor (BDNF) in the brain to selectively activate tyrosine kinase receptor B (TrkB) and downstream signaling pathways, thus playing a neuroprotective role. The preclinical effects of 7,8-DHF have been widely investigated in neuropsychiatric disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, and memory impairment. Besides the effect on TrkB, 7,8-DHF could also function through fighting against oxidative stress, cooperating with estrogen receptors, or regulating intestinal flora. This review focuses on the recent experimental studies on depression, neurodegenerative diseases, and learning and memory functions. Additionally, the structural modification and preparation of 7,8-DHF were also concluded and proposed, hoping to provide a reference for the follow-up research and clinical drug development of 7,8-DHF in the field of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China,Address correspondence to this author at the Anhui University of Chinese Medicine, Meishan Road 103, Hefei 230038, China; E-mail:
| |
Collapse
|
19
|
Lipid-Coated Nanocrystals as a Tool for Improving the Antioxidant Activity of Resveratrol. Antioxidants (Basel) 2022; 11:antiox11051007. [PMID: 35624871 PMCID: PMC9137619 DOI: 10.3390/antiox11051007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/16/2023] Open
Abstract
Trans-resveratrol, a polyphenolic phytoalexin found in various plant sources, has been the focus of increasing attention in recent years because of its role in the prevention of many human diseases, and particularly because of its antioxidant properties. However, the in vivo effect of trans-resveratrol after oral administration is negligible when compared to its efficacy in vitro, due to its low bioavailability. Moreover, it presents stability issues as it is an extremely photosensitive compound when exposed to light. This work aims to develop lipid-coated nanocrystals in order to improve the antioxidant activity and bioavailability of trans-resveratrol. Lipid-coated trans-resveratrol nanocrystals with sizes lower than 500 nm, spherical shapes and smooth surfaces were obtained via a milling method. They showed a faster dissolution rate than the coarse trans-resveratrol powder. The antioxidant properties of trans-resveratrol were not impaired by the milling process. The in vivo pharmacokinetics of lipid-coated trans-resveratrol nanocrystals were evaluated after oral administration to rats, with a commercial Phytosome® formulation being used for comparison purposes. An increase in the trans-resveratrol area under the curve was observed and the lipid-coated nanocrystal formulation led to an enhancement in the oral bioavailability of the compound.
Collapse
|
20
|
Zhao P, Hu G, Chen H, Li M, Wang Y, Sun N, Wang L, Xu Y, Xia J, Tian B, Liu Y, He Z, Fu Q. Revealing the roles of polymers in supersaturation stabilization from the perspective of crystallization behaviors: A case of nimodipine. Int J Pharm 2022; 616:121538. [PMID: 35124119 DOI: 10.1016/j.ijpharm.2022.121538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
Formulating drugs into amorphous solid dispersions (ASDs) represents an attractive means to enhance the aqueous solubility of drugs. Furthermore, water-soluble polymers have proven highly advantageous for stabilizing supersaturated solutions of ASDs. However, the performance and mechanism of various polymers in stabilizing supersaturated drug solutions have not been well-studied. The aim of this study was to investigate the effects of different commercial polymers on the dissolution behaviors and supersaturation stabilization of the ASDs and to further explore the mechanism of polymer mediated supersaturation maintenance by studying the crystallization behaviors of the ASDs. In this study, nimodipine (NMD) was used as a model drug because of its poor water-solubility and fast crystallization rate in aqueous solution, and three polymers polyvinylpyrrolidone (PVP), vinylpyrrolidone-vinyl acetate copolymer (PVP VA), and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soluplus) was selected as the drug carriers to form the ASDs with NMD. Solid-state characterizations of the ASDs confirmed the amorphous state of the ASD systems. ASDPVP VA demonstrated superior supersaturation maintenance in dissolution experiments compared to the other two ASD systems. Among the polymers tested, PVP VA most efficiently maintained dissolution of NMD and prevented its crystallization from the supersaturated solution. The ability of PVP VA to most-effectively maintain supersaturation of the drug was manifested by inhibition of crystal nucleation rather than inhibition of crystal growth following nucleation. These results suggest that nucleation inhibition was instrumental in enabling the polymer-mediated supersaturation maintenance, at least with NMD.
Collapse
Affiliation(s)
- Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guowei Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Haonan Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Yiting Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Nan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lulu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yuan Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jialong Xia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Yanhua Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
21
|
De Grandi D, Meghdadi A, LuTheryn G, Carugo D. Facile production of quercetin nanoparticles using 3D printed centrifugal flow reactors. RSC Adv 2022; 12:20696-20713. [PMID: 35919149 PMCID: PMC9295137 DOI: 10.1039/d2ra02745c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
A 3D printed reactor-in-a-centrifuge (RIAC) was developed to produce drug nanocrystals. Quercetin nanocrystals were manufactured at varying operational and formulation conditions, and had a small size (190–302 nm) and low size dispersity (PDI < 0.1).
Collapse
Affiliation(s)
- Davide De Grandi
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia 27100, Italy
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Alireza Meghdadi
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
- Department of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Gareth LuTheryn
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Dario Carugo
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
22
|
Khan MA, Ansari MM, Arif ST, Raza A, Choi HI, Lim CW, Noh HY, Noh JS, Akram S, Nawaz HA, Ammad M, Alamro AA, Alghamdi AA, Kim JK, Zeb A. Eplerenone nanocrystals engineered by controlled crystallization for enhanced oral bioavailability. Drug Deliv 2021; 28:2510-2524. [PMID: 34842018 PMCID: PMC8635601 DOI: 10.1080/10717544.2021.2008051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Poor aqueous solubility of eplerenone (EPL) is a major obstacle to achieve sufficient bioavailability after oral administration. In this study, we aimed to develop and evaluate eplerenone nanocrystals (EPL-NCs) for solubility and dissolution enhancement. D-optimal combined mixture process using Design-Expert software was employed to generate different combinations for optimization. EPL-NCs were prepared by a bottom-up, controlled crystallization technique during freeze-drying. The optimized EPL-NCs were evaluated for their size, morphology, thermal behavior, crystalline structure, saturation solubility, dissolution profile, in vivo pharmacokinetics, and acute toxicity. The optimized EPL-NCs showed mean particle size of 46.8 nm. Scanning electron microscopy revealed the formation of elongated parallelepiped shaped NCs. DSC and PXRD analysis confirmed the crystalline structure and the absence of any polymorphic transition in EPL-NCs. Furthermore, EPL-NCs demonstrated a 17-fold prompt increase in the saturation solubility of EPL (8.96 vs. 155.85 µg/mL). The dissolution rate was also significantly higher as indicated by ∼95% dissolution from EPL-NCs in 10 min compared to only 29% from EPL powder. EPL-NCs improved the oral bioavailability as indicated by higher AUC, Cmax, and lower Tmax than EPL powder. Acute oral toxicity study showed that EPL-NCs do not pose any toxicity concern to the blood and vital organs. Consequently, NCs prepared by controlled crystallization technique present a promising strategy to improve solubility profile, dissolution velocity and bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Muhammad Ayub Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Mohsin Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Abida Raza
- Nanomedicine Research Laboratory, National Institute of Lasers and Optronics (NILOP), PIEAS, Islamabad, Pakistan
| | - Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Chang-Wan Lim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Ha-Yeon Noh
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Jin-Su Noh
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Salman Akram
- Laboratory for the Study of Rheology and the Adhesion of Medical Adhesives, IPREM, University of Pau and Pays de l'Adour, Pau, France
| | - Hafiz Awais Nawaz
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amani Ahmed Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|