1
|
Albash R, Abdelbari MA, Elbesh RM, Khaleel EF, Badi RM, Eldehna WM, Elkaeed EB, El Hassab MA, Ahmed SM, Mosallam S. Sonophoresis mediated diffusion of caffeine loaded Transcutol® enriched cerosomes for topical management of cellulite. Eur J Pharm Sci 2024; 201:106875. [PMID: 39121922 DOI: 10.1016/j.ejps.2024.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The goal of this research was to augment the deposition of caffeine loaded Transcutol® enriched cerosomes (TECs) gel for efficient topical treatment of cellulite utilizing the sonophoresis technique. Caffeine-loaded TECs were prepared using thin film hydration method applying 23 factorial design to study the impact of different factors, each with two levels on the entrapment efficiency (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP) of the formulated TECs. The studied factors were cetyl trimethyl ammonium bromide (CTAB) amount (mg) (X1), phosphatidylcholine (PC) amount (mg) (X2), and Transcutol® amount (mg) (X3). Design-Expert® software was utilized to determine the optimum TECs formulation. Afterward, the optimum TECs formulation was loaded into a gel and subjected to extra investigations. The optimum TECs formulation was (TEC5) which was prepared using 10 mg of CTAB, 150 mg of PC, and 10 mg of Transcutol®. TEC5 presented EE% of 87.44 ± 0.14 %, PS of 308.60 ± 13.38 nm, PDI of 0.455 ± 0.030, and ZP of 50.20 ± 1.55 mV. TEC5 had a fiber-like morphology, with elongated tubules of ceramide. Further, the optimum TECs formulation showed a high stability profile. Moreover, an in vivo dermatokinetic study showed superior deposition of caffeine from TEC5 gel coupled with the sonophoresis on rat skin compared to TEC5 gel and caffeine gel. Moreover, the histopathological study of TEC5 on rat skin confirmed the non-irritant nature of TEC 5 gel mediated by ultrasonic waves through the skin. Overall, the outcomes exposed the obvious superiority of sonophoresis delivered TECs-gel for topical delivery of caffeine for cellulite management.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| | - Manar Adel Abdelbari
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Rovan M Elbesh
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Misr University for Science and Technology, Giza, Egypt
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir 61421, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir 61421, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria; Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sara Mohamed Ahmed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
2
|
Atia HA, Shahien MM, Ibrahim S, Ahmed EH, Elariny HA, Abdallah MH. Plant-Based Nanovesicular Gel Formulations Applied to Skin for Ameliorating the Anti-Inflammatory Efficiency. Gels 2024; 10:525. [PMID: 39195054 DOI: 10.3390/gels10080525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Inflammation is a vascular response that occurs when the immune system responds to a range of stimuli including viruses, allergens, damaged cells, and toxic substances. Inflammation is accompanied by redness, heat, swelling, discomfort, and loss of function. Natural products have been shown to have considerable therapeutic benefits, and they are increasingly being regarded as feasible alternatives for clinical preventative, diagnostic, and treatment techniques. Natural products, in contrast to developed medications, not only contain a wide variety of structures, they also display a wide range of biological activities against a variety of disease states and molecular targets. This makes natural products appealing for development in the field of medicine. In spite of the progress that has been made in the application of natural products for clinical reasons, there are still factors that prevent them from reaching their full potential, including poor solubility and stability, as well limited efficacy and bioavailability. In order to address these problems, transdermal nanovesicular gel systems have emerged as a viable way to overcome the hurdles that are encountered in the therapeutic use of natural products. These systems have a number of significant advantages, including the ability to provide sustained and controlled release, a large specific surface area, improved solubility, stability, increased targeting capabilities and therapeutic effectiveness. Further data confirming the efficacy and safety of nanovesicles-gel systems in delivering natural products in preclinical models has been supplied by extensive investigations conducted both in vitro and in vivo. This study provides a summary of previous research as well as the development of novel nanovesicular gel formulations and their application through the skin with a particular emphasis on natural products used for treatment of inflammation.
Collapse
Affiliation(s)
- Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Mona M Shahien
- Department of Pediatrics, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Somaia Ibrahim
- Department of Pediatrics, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Marwa H Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
3
|
Ibrahiem B, Shamma R, Salama A, Refai H. Magnetic targeting of lornoxicam/SPION bilosomes loaded in a thermosensitive in situ hydrogel system for the management of osteoarthritis: Optimization, in vitro, ex vivo, and in vivo studies in rat model via modulation of RANKL/OPG. Drug Deliv Transl Res 2024; 14:1982-2002. [PMID: 38158473 PMCID: PMC11153292 DOI: 10.1007/s13346-023-01503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Osteoarthritis is a bone and joint condition characterized pathologically by articular cartilage degenerative damage and can develop into a devastating and permanently disabling disorder. This investigation aimed to formulate the anti-inflammatory drug lornoxicam (LOR) into bile salt-enriched vesicles loaded in an in situ forming hydrogel as a potential local treatment of osteoarthritis. This was achieved by formulating LOR-loaded bilosomes that are also loaded with superparamagnetic iron oxide nanoparticles (SPIONs) for intra-muscular (IM) administration to improve joint targeting and localization by applying an external magnet to the joint. A 31.22 full factorial design was employed to develop the bilosomal dispersions and the optimized formula including SPION (LSB) was loaded into a thermosensitive hydrogel. Moreover, in vivo evaluation revealed that the IM administration of LSB combined with the application of an external magnet to the joint reversed carrageen-induced suppression in motor activity and osteoprotegerin by significantly reducing the elevations in mitogen-activated protein kinases, extracellular signal-regulated kinase, and receptor activator of nuclear factor kappa beta/osteoprotegerin expressions. In addition, the histopathological evaluation of knee joint tissues showed a remarkable improvement in the injured joint tissues. The results proved that the developed LSB could be a promising IM drug delivery system for osteoarthritis management.
Collapse
Affiliation(s)
- Basma Ibrahiem
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, 12566, Egypt
| | - Rehab Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Abeer Salama
- Department of Pharmacology, National Research Centre (NRC), Giza, 12622, Egypt
| | - Hanan Refai
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, 12566, Egypt.
| |
Collapse
|
4
|
Nimhan G, Narwade M, Jadon RS, Gajbhiye K. Nanofiber-based Delivery of Luliconazole: Fabrication, Characterization, and Therapeutic Performance Assessment. AAPS PharmSciTech 2024; 25:94. [PMID: 38710898 DOI: 10.1208/s12249-024-02815-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024] Open
Abstract
This study introduces and assesses the potential of a Luliconazole-loaded nanofiber (LUL-NF) patch, fabricated through electrospinning, for enhancing topical drug delivery. The primary objectives involve evaluating the nanofiber structure, characterizing physical properties, determining drug loading and release kinetics, assessing antifungal efficacy, and establishing the long-term stability of the NF patch. LUL-NF patches were fabricated via electrospinning and observed by SEM at approximately 200 nm dimensions. The comprehensive analysis included physical properties (thickness, folding endurance, swelling ratio, weight, moisture content, and drug loading) and UV analysis for drug quantification. In vitro studies explored sustained drug release kinetics, while microbiological assays evaluated antifungal efficacy against Candida albicans and Aspergillus Niger. Stability studies confirmed long-term viability. Comparative analysis with the pure drug, placebo NF patch, LUL-NF patch, and Lulifod gel was conducted using agar diffusion, revealing enhanced performance of the LUL-NF patch. SEM analysis revealed well-defined LUL-NF patches (0.80 mm thickness) with exceptional folding endurance (> 200 folds) and a favorable swelling ratio (12.66 ± 0.73%). The patches exhibited low moisture uptake (3.4 ± 0.09%) and a moisture content of 11.78 ± 0.54%. Drug loading in 1 cm2 section was 1.904 ± 0.086 mg, showing uniform distribution and sustained release kinetics in vitro. The LUL-NF patch demonstrated potent antifungal activity. Stability studies affirmed long-term stability, and comparative analysis highlighted increased inhibition compared to a pure drug, LUL-NF patch, and a commercial gel. The electrospun LUL-NF patch enhances topical drug delivery, promising extended therapy through single-release, one-time application, and innovative drug delivery strategies, supported by thorough analysis.
Collapse
Affiliation(s)
- Gauri Nimhan
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune, 411038, India
| | - Mahaveer Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune, 411038, India
| | | | - Kavita Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune, 411038, India.
| |
Collapse
|
5
|
Batur E, Özdemir S, Durgun ME, Özsoy Y. Vesicular Drug Delivery Systems: Promising Approaches in Ocular Drug Delivery. Pharmaceuticals (Basel) 2024; 17:511. [PMID: 38675470 PMCID: PMC11054584 DOI: 10.3390/ph17040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Ocular drug delivery poses unique challenges due to the complex anatomical and physiological barriers of the eye. Conventional dosage forms often fail to achieve optimal therapeutic outcomes due to poor bioavailability, short retention time, and off-target effects. In recent years, vesicular drug delivery systems have emerged as promising solutions to address these challenges. Vesicular systems, such as liposome, niosome, ethosome, transfersome, and others (bilosome, transethosome, cubosome, proniosome, chitosome, terpesome, phytosome, discome, and spanlastics), offer several advantages for ocular drug delivery. These include improved drug bioavailability, prolonged retention time on the ocular surface, reduced systemic side effects, and protection of drugs from enzymatic degradation and dilution by tears. Moreover, vesicular formulations can be engineered for targeted delivery to specific ocular tissues or cells, enhancing therapeutic efficacy while minimizing off-target effects. They also enable the encapsulation of a wide range of drug molecules, including hydrophilic, hydrophobic, and macromolecular drugs, and the possibility of combination therapy by facilitating the co-delivery of multiple drugs. This review examines vesicular drug delivery systems, their advantages over conventional drug delivery systems, production techniques, and their applications in management of ocular diseases.
Collapse
Affiliation(s)
- Eslim Batur
- Health Science Institute, Istanbul University, 34126 Istanbul, Türkiye;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University-Cerrahpaşa, 34500 Istanbul, Türkiye
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, 34445 Istanbul, Türkiye;
| | - Samet Özdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, 34445 Istanbul, Türkiye;
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, 34445 Istanbul, Türkiye;
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye;
| |
Collapse
|
6
|
Khan FA, Irshad R, Tanveer N, Yaqoob S, Razaullah, Ali R, Ali N, Saifullah J, Ali Hasan K, Naz S, Qadir A, Jabeen A, Wang Y. Unleashing the potential of vanillic acid: A new twist on nature's recipe to fight inflammation and circumvent azole-resistant fungal infections. Bioorg Chem 2024; 145:107254. [PMID: 38432152 DOI: 10.1016/j.bioorg.2024.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Vanillic acid (VA) - a naturally occurring phenolic compound in plants - is not only used as a flavoring agent but also a prominent metabolite post tea consumption. VA and its associated compounds are believed to play a significant role in preventing diseases, underscoring the need for a systematic investigation. Herein, we report a 4-step synthesis employing the classical organic reactions, such as Willamson's alkylation, Fischer-Spier reaction, and Steglich esterification, complemented with a protection-deprotection strategy to prepare 46 VA derivatives across the five series (1a-1i, 2a-2i, 3, 3a-3i, 4a-4i, 5a-5i) in high yields. The synthesized compounds were investigated for their antifungal, anti-inflammatory, and toxic effects. Notably, compound 1a demonstrated remarkable ROS inhibition with an IC50 value of 5.1 ± 0.7 µg/mL, which is more than twice as effective as the standard ibuprofen drug. A subset of the synthesized derivatives (2b, 2c, 2e, 3b-3d, 4a-4c, 5a, and 5e) manifested their antifungal effect against drug-resistant Candida strains. Compound 5g, in particular, revealed synergism with the established antifungal drugs amphotericin B (AMB) and fluconazole (FLZ), doubling FLZ's potency against azole resistant Candida albican ATCC 36082. Furthermore, 5g improved the potency of these antifungals against FLZ-sensitive strains, including C. glabrata ATCC 2001 and C. parapsilosis ATCC 22019, as well as various multidrug-resistant (MDR) Candida strains, namely C. albicans ATCC 14053, C. albicans CL1, and C. krusei SH2L OM341600. Additionally, pharmacodynamics of compound 5g was examined using time-kill assay, and a benign safety profile was observed with no hemolytic activity in whole blood, and no cytotoxicity towards the normal BJ human cell line. The synergistic potential of 5g was further investigated through both experimental methods and docking simulations.These findings highlight the therapeutic potential of VA derivatives, particularly in addressing inflammation and circumventing FLZ resistance in Candida albicans.
Collapse
Affiliation(s)
- Farooq-Ahmad Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Rimsha Irshad
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nimra Tanveer
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sana Yaqoob
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Razaullah
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Raza Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nida Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Jafar Saifullah
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khwaja Ali Hasan
- Molecular and Structural Biochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan.
| | - Shahida Naz
- Molecular and Structural Biochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Abdul Qadir
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
7
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Singh S, Patil VM, Paliwal SK, Masand N. Nanotechnology-based Drug Delivery of Topical Antifungal Agents. Pharm Nanotechnol 2024; 12:185-196. [PMID: 37594096 DOI: 10.2174/2211738511666230818125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Among the various prominent fungal infections, superficial ones are widespread. A large number of antifungal agents and their formulations for topical use are commercially available. They have some pharmacokinetic limitations which cannot be retracted by conventional delivery systems. While nanoformulations composed of lipidic and polymeric nanoparticles have the potential to overcome the limitations of conventional systems. The broad spectrum category of antifungals i.e. azoles (ketoconazole, voriconazole, econazole, miconazole, etc.) nanoparticles have been designed, prepared and their pharmacokinetic and pharmacodynamic profile was established. This review briefly elaborates on the types of nano-based topical drug delivery systems and portrays their advantages for researchers in the related field to benefit the available antifungal therapeutics.
Collapse
Affiliation(s)
- Sumita Singh
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan, India
- Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Vaishali M Patil
- Charak School of Pharmacy, Chaudhary Charan Singh (CCS) University, Meerut, Uttar Pradesh, India
| | | | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
9
|
Memariani M, Memariani H. Antifungal properties of cathelicidin LL-37: current knowledge and future research directions. World J Microbiol Biotechnol 2023; 40:34. [PMID: 38057654 DOI: 10.1007/s11274-023-03852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The threat of fungal diseases is substantially underestimated worldwide, but they have serious consequences for humans, animals, and plants. Given the limited number of existing antifungal drugs together with the emergence of drug-resistant strains, many researchers have actively sought alternatives or adjuvants to antimycotics. The best way to tackle these issues is to unearth potential antifungal agents with new modes of action. Antimicrobial peptides are being hailed as a promising source of novel antimicrobials since they exhibit rapid and broad-spectrum microbicidal activities with a reduced likelihood of developing drug resistance. Recent years have witnessed an explosion in knowledge on microbicidal activity of LL-37, the sole human cathelicidin. Herein, we provide a summary of the current understanding about antifungal properties of LL-37, with particular emphasis on its molecular mechanisms. We further illustrate fruitful areas for future research. LL-37 is able to inhibit the growth of clinically and agronomically relevant fungi including Aspergillus, Candida, Colletotrichum, Fusarium, Malassezia, Pythium, and Trichophyton. Destruction of the cell wall integrity, membrane permeabilization, induction of oxidative stress, disruption of endoplasmic reticulum homeostasis, formation of autophagy-like structures, alterations in expression of numerous fungal genes, and inhibition of cell cycle progression are the key mechanisms underlying antifungal effects of LL-37. Burgeoning evidence also suggests that LL-37 may act as a potential anti-virulence peptide. It is hoped that this review will not only motivate researchers to conduct more detailed studies in this field, but also inspire further innovations in the design of LL-37-based drugs for the treatment of fungal infections.
Collapse
Affiliation(s)
- Mojtaba Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wang X, Jin X, Xie Z, Zhang H, Liu T, Zheng H, Luan X, Sun Y, Fang W, Chang W, Lou H. Benzamidine Conjugation Converts Expelled Potential Active Agents into Antifungals against Drug-Resistant Fungi. J Med Chem 2023; 66:13684-13704. [PMID: 37787457 DOI: 10.1021/acs.jmedchem.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Fungal infections present a growing global public health concern, necessitating the development of novel antifungal drugs. However, many potential antifungals, particularly the expelled potential active agents (EPAAs), are often underestimated owing to their limitations in cellular entry or expulsion by efflux pumps. Herein, we identified 68 EPAAs out of 2322 candidates with activity against a Candida albicans efflux pump-deficient strain and no inhibitory activity against the wild-type strain. Using a novel conjugation strategy involving benzamidine (BM) as a mitochondrion-targeting warhead, we successfully converted EPAAs into potent antifungals against various urgent-threat azole-resistantCandida strains. Among the obtained EPAA-BM conjugates, IS-2-BM (11) exhibited excellent antifungal activities and induced negligible drug resistance. Furthermore, IS-2-BM prevented biofilm formation, eradicated mature biofilms, and exhibited excellent therapeutic effects in a murine model of systemic candidiasis. These findings provide a promising strategy for increasing the possibilities of discovering more antifungals.
Collapse
Affiliation(s)
- Xue Wang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461002, China
| | - Hongyang Zhang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Tiantian Liu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongbo Zheng
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiaoyi Luan
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yan Sun
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
11
|
Adel Abdelbari M, El-Gazar AA, Ahmed Abdelbary A, Hassen Elshafeey A, Mosallam S. Brij® integrated bilosomes for improving the transdermal delivery of niflumic acid for effective treatment of osteoarthritis: In vitro characterization, ex vivo permeability assessment, and in vivo study. Int J Pharm 2023; 640:123024. [PMID: 37156309 DOI: 10.1016/j.ijpharm.2023.123024] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Bilosomes are innovative vesicular carriers containing bile salt with a non-ionic surfactant. Being highly flexible, bilosomes can squeeze themselves through the skin carrying the drug to the action site and improving its skin penetration. The objective of this research was to encapsulate niflumic acid (NA), a non-steroidal anti-inflammatory drug into Brij® integrated bilosomes (BIBs) for effective treatment of osteoarthritis through transdermal delivery. BIBs were formulated using 100 mg of Span 20 with different amounts of sodium cholate (NaC), sodium taurocholate (NaTC), or sodium glycocholate (NaGC) as bile salt, with the addition of 5 mg of Brij-93 or Brij-35. BIBs were prepared utilizing ethanol injection method with the application of (31×22) complete factorial design using Design-Expert® software. The optimal BIBs formulation determined was (B5) which contains 5 mg of NaTC used as bile salt and 5 mg of Brij-93. B5 exhibited entrapment efficiency% = 95.21 ± 0.00%, particle size = 373.05 ± 0.07 nm, polydispersity index = 0.27 ± 0.01, and zeta potential = -32.00 ± 0.00 mV. It also had a high elasticity with a spherical shape. B5 gel displayed a sustained release profile with a significantly 2.3 folds' higher drug permeation percent across rat skin than that permeated from NA gel. Moreover, in vivo anti-osteoarthritic and histopathological studies assured the efficacy and safety of B5 gel and its superiority over NA gel. Generally, the outcomes confirmed the great efficacy of NA loaded BIBs for the topical treatment of osteoarthritis.
Collapse
Affiliation(s)
- Manar Adel Abdelbari
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Aly Ahmed Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, Cairo, Egypt
| | - Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
12
|
Aljohani AA, Alanazi MA, Munahhi LA, Hamroon JD, Mortagi Y, Qushawy M, Soliman GM. Binary ethosomes for the enhanced topical delivery and antifungal efficacy of ketoconazole. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
13
|
Integration of terpesomes loaded Levocetrizine dihydrochloride gel as a repurposed cure for Methicillin-Resistant Staphylococcus aureus (MRSA)-Induced skin infection; D-optimal optimization, ex-vivo, in-silico, and in-vivo studies. Int J Pharm 2023; 633:122621. [PMID: 36693486 DOI: 10.1016/j.ijpharm.2023.122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
The intention of this work is to assess the repurposed antimicrobial impact of Levocetirizine dihydrochloride (LVC), which is a well-known antihistaminic drug, in addition, to augment the antimicrobial effect by using terpene-enriched vesicles (TPs). To investigate how various parameters affect TPs aspects, TPs were made employing the ethanol-injection-method and optimized d-optimal design. The TPs were characterized based on their entrapment efficiency percentage (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). The optimum TP was submitted to more examinations. The optimum TP (TP12) showed a spherical vesicle having an EE% of 66.39 ± 0.12%, PS of 243.3 ± 4.60 nm, PDI of 0.458 ± 0.003, and ZP of 24.2 ± 0.55 mV. The in-vitro release study results demonstrated that LVC is sustainedly liberated from the optimum TP compared to LVC-solution. The ex-vivo assessment showed that LVC was released in a more sustained manner from TPs-gel related to LVC solution, optimum TP, and LVC gel. Ex-vivo visualization by confocal laser scanning microscopy showed good deposition of the fluorescein-labeled TP. Further, the in-vitro anti-bacterial effect and biofilm inhibition and detachment assessment confirmed the potency of LVC against Methicillin-resistant-Staphylococcus-aureus (MRSA). The in-silico study demonstrated that the LVC has excellent stability with other ingredients combined with it in the TPs, further, it proved that LVC is a potential candidate for treating MRSA. In-vivo assessments revealed a good antimicrobial effect toward MRSA infection. Moreover, the histopathological evaluation confirmed the safety of using TPs-gel topically. In conclusion, MRSA-related skin infections may be treated using the LVC loaded TPs-gel as a promising system.
Collapse
|