1
|
Anjani QK, Johnson AR, Sabri AH, Lutz R, Tignor S, Ballard J, Rudd N, Zhao L, Vora LK, Barrett SE, Wagner A, Donnelly RF. Delivery of Islatravir via High Drug-Load, Long-acting Microarray Patches for the Prevention or Treatment of Human Immunodeficiency Virus. Adv Healthc Mater 2025; 14:e2403615. [PMID: 39840486 PMCID: PMC11912095 DOI: 10.1002/adhm.202403615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/07/2025] [Indexed: 01/23/2025]
Abstract
This research focuses on developing and characterizing islatravir-loaded dissolving microarray patches (MAPs) to provide an effective, minimally invasive treatment option for human immunodeficiency virus (HIV-1) prevention and treatment. The research involves manufacturing these MAPs using a double-casting approach, and conducting in vitro and in vivo evaluations. Results show that the MAPs have excellent needle fidelity, structural integrity, and mechanical strength. in vitro studies demonstrate that the MAPs can penetrate skin up to 580 µm and dissolve within 2 hours. Permeation studies reveal that the delivery efficiency of islatravir across the skin is around 40%. In rodent models, these dissolving MAPs sustain islatravir delivery for up to 3 months. Scaling up the MAPs and increasing drug loading produced detectable levels in minipig. Projections from animal data suggest that these dissolving MAPs can achieve effective islatravir levels for a month after a single application in humans. These findings indicate dissolving MAPs as a minimally invasive approach to sustained release of islatravir.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ashley R Johnson
- Sterile and Specialty Products, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan Lutz
- Absorption, Distribution, Metabolism & Excretion, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Steven Tignor
- Small Molecule Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Jeanine Ballard
- Absorption, Distribution, Metabolism & Excretion, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Nathan Rudd
- Pharmaceutical Sciences R&D, Merck Animal Health, 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Li Zhao
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Stephanie E Barrett
- Sterile and Specialty Products, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Angela Wagner
- Sterile and Specialty Products, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
2
|
Anjani QK, Detamornrat U, Larrañeta E, Donnelly RF. Hydrogel-forming microarray patches combined with powder-based reservoir for labetalol hydrochloride transdermal delivery. Int J Pharm 2025; 669:125061. [PMID: 39653288 DOI: 10.1016/j.ijpharm.2024.125061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Hypertension is the most common pregnancy disorder and can lead to life-threatening conditions for both mother and fetus. However, managing this condition with oral and intravenous labetalol can be challenging, highlighting the need for alternative delivery methods. This study presents, for the first time, the development of novel powder-based reservoirs incorporated with hydrogel-forming microarray patches (MAPs) to facilitate the transdermal delivery of labetalol hydrochloride (HCl). A holder, created from poly(propylene) using a 3D printer, was designed to house labetalol HCl powder, which was then combined with hydrogel-forming MAPs. This novel system improved the insertion profile of MAPs into Parafilm® layers and excised full-thickness neonatal porcine skin, achieving up to 85 % of needle height penetration without compromising needle integrity (only 8 % height reduction after applying 32 N of force). The current holder design was able to load 50 mg of labetalol HCl and allowed for single or multiple injections of deionised water to dissolve the powder and facilitate permeation through dermatomed neonatal porcine skin in in vitro studies using a Franz cell setup. The results showed that this powder-based reservoir design delivered labetalol HCl more effectively over 24 h compared to directly compressed tablets. Additionally, poly(vinyl alcohol)/poly(vinyl pyrrolidone)/citric acid-based hydrogel-forming MAPs delivered more labetalol HCl than Gantrez® S-97/poly(ethylene glycol)-based MAPs (9 mg vs. 5 mg) in 24 h. This novel system holds promise for improving the delivery of compounds in a simple manner, though further design modifications for one-step application are needed.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
3
|
Ghanma R, Anjani QK, Naser YA, Sabri AHB, Hutton ARJ, Vora LK, Himawan A, Greer B, McCarthy HO, Donnelly RF. Risperidone-cyclodextrin complex reservoir combined with hydrogel-forming microneedle array patches for enhanced transdermal delivery. Eur J Pharm Biopharm 2024; 202:114415. [PMID: 39013492 DOI: 10.1016/j.ejpb.2024.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Hydrogel-forming microneedle array patches (HFMAPs) are microneedles that create microconduits upon insertion and swelling in the skin, potentially allowing prolonged drug delivery without generating sharps waste. Delivering hydrophobic drugs using HFMAPs poses challenges, which can be addressed using solubility enhancers such as cyclodextrins (CDs). This study aimed to deliver risperidone (RIS) transdermally using HFMAPs. To enhance the aqueous solubility of RIS hydroxypropyl-beta-cyclodextrin (HP-β-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) were utilised and their performance was tested using phase solubility studies. The aqueous solubility of RIS was enhanced by 4.75-fold and 2-fold using HP-β-CD and HP-γ-CD, respectively. RIS-HP-β-CD complex (CX) and physical mixture (PM) directly compressed tablets were prepared and combined with HFMAPs. Among the tested formulations, RIS-HP-β-CD PM reservoirs with 11 x 11 PVA/PVP HFMAPs exhibited the best performance in ex vivo studies and were further evaluated in in vivo experiments using female Sprague Dawley rats. The extended wear time of the MAPs resulted in the sustained release of RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) in plasma samples, lasting from 3 to 5 days with a 1-day application and up to 10 days with a 5-day application. For a 1-day application, HFMAPs showed greater systemic exposure to RIS compared to intramuscular control (AUC0-t: 13330.05 ± 2759.95 ng/mL/hour versus 2706 ± 1472 ng/mL/hour). Moreover, RIS exposure was extended to 5 days (AUC0-t: 12292.37 ± 1801.94 ng/mL/hour). In conclusion, HFMAPs could serve as an alternative for delivering RIS in a sustained manner, potentially improving the treatment of schizophrenia.
Collapse
Affiliation(s)
- Rand Ghanma
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yara A Naser
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Achmad Himawan
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brett Greer
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
4
|
Ghanma R, Naser YA, Kurnia Anjani Q, Hidayat Bin Sabri A, Hutton ARJ, Vora LK, Himawan A, Moreno-Castellanos N, Greer B, McCarthy HO, Paredes AJ, Donnelly RF. Dissolving microarray patches for transdermal delivery of risperidone for schizophrenia management. Int J Pharm 2024; 660:124342. [PMID: 38880253 DOI: 10.1016/j.ijpharm.2024.124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Schizophrenia is a psychiatric disorder that results from abnormal levels of neurotransmitters in the brain. Risperidone (RIS) is a common drug prescribed for the treatment of schizophrenia. RIS is a hydrophobic drug that is typically administered orally or intramuscularly. Transdermal drug delivery (TDD) could potentially improve the delivery of RIS. This study focused on the development of RIS nanocrystals (NCs), for the first time, which were incorporated into dissolving microneedle array patches (DMAPs) to facilitate the drug delivery of RIS. RIS NCs were formulated via wet-media milling technique using poly(vinylalcohol) (PVA) as a stabiliser. NCs with particle size of 300 nm were produced and showed an enhanced release profile up to 80 % over 28 days. Ex vivo results showed that 1.16 ± 0.04 mg of RIS was delivered to both the receiver compartment and full-thickness skin from NCs loaded DMAPs compared to 0.75 ± 0.07 mg from bulk RIS DMAPs. In an in vivo study conducted using female Sprague Dawley rats, both RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) were detected in plasma samples for 5 days. In comparison with the oral group, DMAPs improved the overall pharmacokinetic profile in plasma with a ∼ 15 folds higher area under the curve (AUC) value. This work has represented the novel delivery of the antipsychotic drug, RIS, through microneedles. It also offers substantial evidence to support the broader application of MAPs for the transdermal delivery of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Rand Ghanma
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Yara A Naser
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Achmad Himawan
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Brett Greer
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
Li H, Anjani QK, Hutton ARJ, Paris JL, Moreno‐Castellanos N, Himawan A, Larrañeta E, Donnelly RF. Design of a Novel Delivery Efficiency Feedback System for Biphasic Dissolving Microarray Patches Based on Poly(Lactic Acid) and Moisture-Indicating Silica. Adv Healthc Mater 2024; 13:e2304082. [PMID: 38471772 PMCID: PMC11468354 DOI: 10.1002/adhm.202304082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Dissolving microarray patches (DMAPs) represent an innovative approach to minimally invasive transdermal drug delivery, demonstrating efficacy in delivering both small and large therapeutic molecules. However, concerns raised in end-user surveys have hindered their commercialization efforts. One prevalent issue highlighted in these surveys is the lack of clear indicators for successful patch insertion and removal time. To address this challenge, a color-change-based feedback system is devised, which confirms the insertion and dissolution of DMAPs, aiming to mitigate the aforementioned problems. The approach combines hydrophilic needles containing model drugs (fluorescein sodium and fluorescein isothiocyanate (FITC)-dextran) with a hydrophobic poly(lactic acid) baseplate infused with moisture-sensitive silica gel particles. The successful insertion and subsequent complete dissolution of the needle shaft are indicated by the progressive color change of crystal violet encapsulated in the silica. Notably, distinct color alterations on the baseplate, observed 30 min and 1 h after insertion for FITC-dextran and fluorescein sodium DMAPs respectively, signal the full dissolution of the needles, confirming the complete cargo delivery and enabling timely patch removal. This innovative feedback system offers a practical solution for addressing end-user concerns and may significantly contribute to the successful commercialization of DMAPs by providing a visualized drug delivery method.
Collapse
Affiliation(s)
- Huanhuan Li
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
| | | | | | - Juan Luis Paris
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina‐IBIMA Plataforma BIONANDMálaga29590Spain
| | | | - Achmad Himawan
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyUniversitas HasanuddinMakassar90245Indonesia
| | - Eneko Larrañeta
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
| | | |
Collapse
|
6
|
Anjani QK, Moreno-Castellanos N, Li Y, Sabri AHB, Donnelly RF. Dissolvable microarray patches of levodopa and carbidopa for Parkinson's disease management. Eur J Pharm Biopharm 2024; 199:114304. [PMID: 38663522 DOI: 10.1016/j.ejpb.2024.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Carbidopa and levodopa remain the established therapeutic standard for managing Parkinson's disease. Nevertheless, their oral administration is hindered by rapid enzymatic degradation and gastrointestinal issues, limiting their efficacy, and necessitating alternative delivery methods. This work presents a novel strategy employing dissolving microarray patches (MAPs) loaded with carbidopa and levodopa, formulated with Tween® 80 to improve their transdermal delivery. The fabricated MAPs demonstrated an acceptable mechanical strength, resisting pressures equivalent to manual human thumb application (32 N) onto the skin. Additionally, these MAPs exhibited an insertion depth of up to 650 µm into excised neonatal porcine skin. Ex vivo dermatokinetic studies could achieve delivery efficiencies of approximately 53.35 % for levodopa and 40.14 % for carbidopa over 24 h, demonstrating their significant potential in drug delivery. Biocompatibility assessments conducted on human dermal fibroblast cells corroborated acceptable cytocompatibility, confirming the suitability of these MAPs for dermal application. In conclusion, dissolving MAPs incorporating carbidopa and levodopa represent a promising alternative for improving the therapeutic management of Parkinson's disease.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Yaocun Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
7
|
Anjani QK, Nainggolan ADC, Li H, Miatmoko A, Larrañeta E, Donnelly RF. Parafilm® M and Strat-M® as skin simulants in in vitro permeation of dissolving microarray patches loaded with proteins. Int J Pharm 2024; 655:124071. [PMID: 38554738 DOI: 10.1016/j.ijpharm.2024.124071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
In vitro permeation studies play a crucial role in early formulation optimisation before extensive animal model investigations. Biological membranes are typically used in these studies to mimic human skin conditions accurately. However, when focusing on protein and peptide transdermal delivery, utilising biological membranes can complicate analysis and quantification processes. This study aims to explore Parafilm®M and Strat-M® as alternatives to dermatomed porcine skin for evaluating protein delivery from dissolving microarray patch (MAP) platforms. Initially, various MAPs loaded with different model proteins (ovalbumin, bovine serum albumin and amniotic mesenchymal stem cell metabolite products) were prepared. These dissolving MAPs underwent evaluation for insertion properties and in vitro permeation profiles when combined with different membranes, dermatomed porcine skin, Parafilm®M, and Strat-M®. Insertion profiles indicated that both Parafilm®M and Strat-M® showed comparable insertion depths to dermatomed porcine skin (in range of 360-430 µm), suggesting promise as membrane substitutes for insertion studies. In in vitro permeation studies, synthetic membranes such as Parafilm®M and Strat-M® demonstrated the ability to bypass protein-derived skin interference, providing more reliable results compared to dermatomed neonatal porcine skin. Consequently, these findings present valuable tools for preliminary screening across various MAP formulations, especially in the transdermal delivery of proteins and peptides.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | | | - Huanhuan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Andang Miatmoko
- Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, Campus C, Mulyorejo, Surabaya 60115, Indonesia; Stem Cell Research and Development Center, Airlangga University, Institute of Tropical Disease Building, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
8
|
Picco CJ, Anjani QK, Donnelly RF, Larrañeta E. An isocratic RP-HPLC-UV method for simultaneous quantification of tizanidine and lidocaine: application to in vitro release studies of a subcutaneous implant. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:979-989. [PMID: 38165785 DOI: 10.1039/d3ay01833d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Implantable devices have been widely investigated to improve the treatment of multiple diseases. Even with low drug loadings, these devices can achieve effective delivery and increase patient compliance by minimizing potential side effects, consequently enhancing the quality of life of the patients. Moreover, multi-drug products are emerging in the pharmaceutical field, capable of treating more than one ailment concurrently. Therefore, a simple analytical method is essential for detecting and quantifying different analytes used in formulation development and evaluation. Here, we present, for the first time, an isocratic method for tizanidine hydrochloride (TZ) and lidocaine (LD) loaded into a subcutaneous implant, utilizing reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a UV detector. These implants have the potential to treat muscular spasticity while providing pain relief for several days after implantation. Chromatographic separation of the two drugs was accomplished using a C18 column, with a mobile phase consisting of 0.1% TFA in water and MeOH in a 58 : 42 ratio, flowing at 0.7 ml min-1. The method exhibited specificity and robustness, providing accurate and precise results. It displayed linearity within the range of 0.79 to 100 μg ml-1, with an R2 value of 1 for the simultaneous analysis of TZ and LD. The developed method demonstrated selectivity, offering limits of detection and quantification of 0.16 and 0.49 μg ml-1 for TZ, and 0.30 and 0.93 μg ml-1 for LD, respectively. Furthermore, the solution containing both TZ and LD proved stable under various storage conditions. While this study applied the method to assess an implant device, it has broader applicability for analysing and quantifying the in vitro drug release of TZ and LD from diverse dosage forms in preclinical settings.
Collapse
Affiliation(s)
- Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
9
|
Andranilla RK, Anjani QK, Hartrianti P, Donnelly RF, Ramadon D. Fabrication of dissolving microneedles for transdermal delivery of protein and peptide drugs: polymer materials and solvent casting micromoulding method. Pharm Dev Technol 2023; 28:1016-1031. [PMID: 37987717 DOI: 10.1080/10837450.2023.2285498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Proteins and peptides are rapidly developing pharmaceutical products and are expected to continue growing in the future. However, due to their nature, their delivery is often limited to injection, with drawbacks such as pain and needle waste. To overcome these limitations, microneedles technology is developed to deliver protein and peptide drugs through the skin. One type of microneedles, known as dissolving microneedles, has been extensively studied for delivering various proteins and peptides, including ovalbumin, insulin, bovine serum albumin, polymyxin B, vancomycin, and bevacizumab. This article discusses polymer materials used for fabricating dissolving microneedles, which are poly(vinylpyrrolidone), hyaluronic acid, poly(vinyl alcohol), carboxymethylcellulose, GantrezTM, as well as other biopolymers like pullulan and ulvan. The paper is focused solely on solvent casting micromoulding method for fabricating dissolving microneedles containing proteins and peptides, which will be divided into one-step and two-step casting micromoulding. Additionally, future considerations in the market plan for dissolving microneedles are discussed in this article.
Collapse
Affiliation(s)
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Pietradewi Hartrianti
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute for Life Sciences, East Jakarta, DKI Jakarta, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| |
Collapse
|
10
|
Anjani QK, Sabri AHB, Hamid KA, Moreno-Castellanos N, Li H, Donnelly RF. Tip loaded cyclodextrin-carvedilol complexes microarray patches. Carbohydr Polym 2023; 320:121194. [PMID: 37659788 DOI: 10.1016/j.carbpol.2023.121194] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 09/04/2023]
Abstract
Carvedilol, a β-blocker prescribed for chronic heart failure, suffers from poor bioavailability and rapid first pass metabolism when administered orally. Herein, we present the development of tip microarray patches (MAPs) composed of ternary cyclodextrin (CD) complexes of carvedilol for transdermal delivery. The ternary complex with hydroxypropyl γ-cyclodextrin (HPγCD) and poly(vinyl pyrrolidone) (PVP) reduced the crystallinity of carvedilol, as evidenced by DSC, XRD, NMR, and SEM analysis. MAPs were fabricated using a two-step process with the ternary complex as the needle layer. The resulting MAPs were capable of breaching ex vivo neonatal porcine skin to a depth ≈600 μm with minimal impact to needle height. Upon insertion, the needle dissolved within 2 h, leading to the transdermal delivery of carvedilol. The MAPs displayed minimal toxicity and acceptable biocompatibility in cell assays. In rats, MAPs achieved significantly higher AUC levels of carvedilol than oral administration, with a delayed Tmax and sustained plasma levels over several days. These findings suggest that the carvedilol-loaded dissolving MAPs have the potential to revolutionise the treatment of chronic heart failure.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Khuriah Abdul Hamid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, 42300 Puncak Alam, Malaysia
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Huanhuan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
11
|
Anjani QK, Pandya AK, Demartis S, Domínguez-Robles J, Moreno-Castellanos N, Li H, Gavini E, Patravale VB, Donnelly RF. Liposome-loaded polymeric microneedles for enhanced skin deposition of rifampicin. Int J Pharm 2023; 646:123446. [PMID: 37751787 DOI: 10.1016/j.ijpharm.2023.123446] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a prevailing bacterial pathogen linked to superficial skin and soft tissue infections (SSTIs). Rifampicin (RIF), a potent antibiotic against systemic and localised staphylococcal infections, faces limitations due to its low solubility. This constraint hampers its therapeutic potential for MRSA-induced SSTIs. To address this, an advanced liposomal system was designed for efficient dermal RIF delivery. Rifampicin-loaded liposomes (LipoRIF) were embedded within polymeric dissolving microneedles (DMNs) to enable targeted intradermal drug delivery. A robust Design of Experiment (DoE) methodology guided the systematic preparation and optimisation of LipoRIF formulations. The optimal LipoRIF formulation integrated within polymeric DMNs. These LipoRIF-DMNs exhibited favourable mechanical properties and effective skin insertion characteristics. Notably, in vitro assays on skin deposition unveiled a transformative result - the DMN platform significantly enhanced LipoRIF deposition within the skin, surpassing LipoRIF dispersion alone. Moreover, LipoRIF-DMNs displayed minimal cytotoxicity toward cells. Encouragingly, rigorous in vitro antimicrobial evaluations demonstrated LipoRIF-DMNs' capacity to inhibit MRSA growth compared to the control group. LipoRIF-DMNs propose a potentially enhanced, minimally invasive approach to effectively manage SSTIs and superficial skin ailments stemming from MRSA infections.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Anjali K Pandya
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra 400 019, India
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Huanhuan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Piazza Università 21, Sassari 07100, Italy
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra 400 019, India
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
12
|
Pereira MN, Nogueira LL, Cunha-Filho M, Gratieri T, Gelfuso GM. Methodologies to Evaluate the Hair Follicle-Targeted Drug Delivery Provided by Nanoparticles. Pharmaceutics 2023; 15:2002. [PMID: 37514188 PMCID: PMC10383440 DOI: 10.3390/pharmaceutics15072002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Nanotechnology has been investigated for treatments of hair follicle disorders mainly because of the natural accumulation of solid nanoparticles in the follicular openings following a topical application, which provides a drug "targeting effect". Despite the promising results regarding the therapeutic efficacy of topically applied nanoparticles, the literature has often presented controversial results regarding the targeting of hair follicle potential of nanoformulations. A closer look at the published works shows that study parameters such as the type of skin model, skin sections analyzed, employed controls, or even the extraction methodologies differ to a great extent among the studies, producing either unreliable results or precluding comparisons altogether. Hence, the present study proposes to review different skin models and methods for quantitative and qualitative analysis of follicular penetration of nano-entrapped drugs and their influence on the obtained results, as a way of providing more coherent study protocols for the intended application.
Collapse
Affiliation(s)
- Maíra N Pereira
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Luma L Nogueira
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| |
Collapse
|