1
|
Hernández-Ramírez LC, Perez-Rivas LG, Theodoropoulou M, Korbonits M. An Update on the Genetic Drivers of Corticotroph Tumorigenesis. Exp Clin Endocrinol Diabetes 2024; 132:678-696. [PMID: 38830604 DOI: 10.1055/a-2337-2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The genetic landscape of corticotroph tumours of the pituitary gland has dramatically changed over the last 10 years. Somatic changes in the USP8 gene account for the most common genetic defect in corticotrophinomas, especially in females, while variants in TP53 or ATRX are associated with a subset of aggressive tumours. Germline defects have also been identified in patients with Cushing's disease: some are well-established (MEN1, CDKN1B, DICER1), while others are rare and could represent coincidences. In this review, we summarise the current knowledge on the genetic drivers of corticotroph tumorigenesis, their molecular consequences, and their impact on the clinical presentation and prognosis.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
2
|
Romanet P, Charnay T, Sahakian N, Cuny T, Castinetti F, Barlier A. Challenges in molecular diagnosis of multiple endocrine neoplasia. Front Endocrinol (Lausanne) 2024; 15:1445633. [PMID: 39398337 PMCID: PMC11466760 DOI: 10.3389/fendo.2024.1445633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Multiple endocrine neoplasia (MEN) is a group of rare genetic diseases characterized by the occurrence of multiple tumors of the endocrine system in the same patient. The first MEN described was MEN1, followed by MEN2A, and MEN2B. The identification of the genes responsible for these syndromes led to the introduction of family genetic screening programs. More than twenty years later, not all cases of MENs have been resolved from a genetic point of view, and new clinicogenetic entities have been described. In this review, we will discuss the strategies and difficulties of genetic screening for classic and newly described MENs in a clinical setting, from limitations in sequencing, to problems in classifying variants, to the identification of new candidate genes. In the era of genomic medicine, characterization of new candidate genes and their specific tumor risk is essential for inclusion of patients in personalized medicine programs as well as to permit accurate genetic counseling to be proposed for families.
Collapse
Affiliation(s)
- Pauline Romanet
- Aix Marseille Univ, APHM, INSERM, MMG, La Timone University Hospital, Laboratory of Molecular Biology GEnOPé, BIOGENOPOLE, Marseille, France
| | - Théo Charnay
- Aix Marseille Univ, APHM, INSERM, MMG, La Timone University Hospital, Laboratory of Molecular Biology GEnOPé, BIOGENOPOLE, Marseille, France
| | - Nicolas Sahakian
- Aix Marseille Univ, APHM, INSERM, MMG, La Conception University Hospital, Department of Endocrinology, Marseille, France
| | - Thomas Cuny
- Aix Marseille Univ, APHM, INSERM, MMG, La Conception University Hospital, Department of Endocrinology, Marseille, France
| | - Frédéric Castinetti
- Aix Marseille Univ, APHM, INSERM, MMG, La Conception University Hospital, Department of Endocrinology, Marseille, France
| | - Anne Barlier
- Aix Marseille Univ, APHM, INSERM, MMG, La Timone University Hospital, Laboratory of Molecular Biology GEnOPé, BIOGENOPOLE, Marseille, France
| |
Collapse
|
3
|
Lanzaro F, De Biasio D, Cesaro FG, Stampone E, Tartaglione I, Casale M, Bencivenga D, Marzuillo P, Roberti D. Childhood Multiple Endocrine Neoplasia (MEN) Syndromes: Genetics, Clinical Heterogeneity and Modifying Genes. J Clin Med 2024; 13:5510. [PMID: 39336996 PMCID: PMC11432259 DOI: 10.3390/jcm13185510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/15/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Multiple endocrine neoplasia (MEN) syndromes are part of a spectrum of clinically well-defined tumor syndromes ultimately characterized by histologically similar tumors arising in patients and families with mutations in one of the following four genes: MEN1, RET, CDKN1B, and MAX. The high level of genetic and phenotypic heterogeneity has been linked to phenocopies and modifying genes, as well as unknown mechanisms that might be investigated in the future based on preclinical and translational considerations. MEN1, also known as Wermer's syndrome (OMIM *131100), is an autosomal dominant syndrome codifying for the most frequent MEN syndrome showing high penetrance due to mutations in the MEN1 gene; nevertheless, clinical manifestations vary among patients in terms of tumor localization, age of onset, and clinical aggressiveness/severity, even within the same families. This has been linked to the effect of modifying genes, as described in the review. MEN 2-2b-4 and 5 also show remarkable clinical heterogeneity. The traditional view of genetically predisposing monogenic or multifactorial disorders is no longer valid, and mandates a change in scientific focus. Phenotypes are indeed rarely consistent across genetic backgrounds and environments. In the future, understanding factors and genetic variants that control cellular functions and the expression of disease genes should provide insights into fundamental disease processes, providing implications for counseling and therapeutic and prophylactic possibilities.
Collapse
Affiliation(s)
- Francesca Lanzaro
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| | - Delia De Biasio
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| | - Francesco Giustino Cesaro
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy
| | - Immacolata Tartaglione
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| | - Maddalena Casale
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| | - Domenico Roberti
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Naples, Italy
| |
Collapse
|
4
|
Martinerie L, Bouligand J, North MO, Bertherat J, Assié G, Espiard S. Consensus statement by the French Society of Endocrinology (SFE) and French Society of Pediatric Endocrinology & Diabetology (SFEDP) for the diagnosis of Cushing's syndrome: Genetics of Cushing's syndrome. ANNALES D'ENDOCRINOLOGIE 2024; 85:284-293. [PMID: 38253221 DOI: 10.1016/j.ando.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Cushing's syndrome is due to overproduction of cortisol, leading to abnormal and prolonged exposure to cortisol. The most common etiology is Cushing disease, while adrenal causes are rarer. Knowledge of the genetics of Cushing's syndrome, and particularly the adrenal causes, has improved considerably over the last 10 years, thanks in particular to technical advances in high-throughput sequencing. The present study, by a group of experts from the French Society of Endocrinology and the French Society of Pediatric Endocrinology and Diabetology, reviewed the literature on germline genetic alterations leading to a predisposition to develop Cushing's syndrome. The review led to a consensus statement on genetic screening for Cushing disease and adrenal Cushing's syndrome.
Collapse
Affiliation(s)
- Laetitia Martinerie
- Department of Pediatric Endocrinology, CHU Robert-Debré, AP-HP, Paris, France
| | - Jérôme Bouligand
- Faculté de médecine Paris-Saclay, Inserm Unit UMRS1185 Endocrine Physiology and Physiopathology, Paris, France
| | - Marie-Odile North
- Department of Genetics and Molecular Biology, hôpital Cochin, AP-HP, University of Paris, Paris, France
| | - Jérôme Bertherat
- Endocrinology Department, centre de référence maladies rares de la surrénale (CRMRS), hôpital Cochin, AP-HP, University of Paris, Paris, France
| | - Guillaume Assié
- Endocrinology Department, centre de référence maladies rares de la surrénale (CRMRS), hôpital Cochin, AP-HP, University of Paris, Paris, France
| | - Stéphanie Espiard
- Service d'endocrinologie, diabétologie, métabolisme et nutrition, CHU de Lille, 59000 Lille, France.
| |
Collapse
|
5
|
Chevalier B, Coppin L, Romanet P, Cuny T, Maïza JC, Abeillon J, Forestier J, Walter T, Gilly O, Le Bras M, Smati S, Nunes ML, Geslot A, Grunenwald S, Mouly C, Arnault G, Wagner K, Koumakis E, Cortet-Rudelli C, Merlen É, Jannin A, Espiard S, Morange I, Baudin É, Cavaille M, Tauveron I, Teissier MP, Borson-Chazot F, Mirebeau-Prunier D, Savagner F, Pasmant É, Giraud S, Vantyghem MC, Goudet P, Barlier A, Cardot-Bauters C, Odou MF. Beyond MEN1, When to Think About MEN4? Retrospective Study on 5600 Patients in the French Population and Literature Review. J Clin Endocrinol Metab 2024; 109:e1482-e1493. [PMID: 38288531 DOI: 10.1210/clinem/dgae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
CONTEXT Germline CDKN1B variants predispose patients to multiple endocrine neoplasia type 4 (MEN4), a rare MEN1-like syndrome, with <100 reported cases since its discovery in 2006. Although CDKN1B mutations are frequently suggested to explain cases of genetically negative MEN1, the prevalence and phenotype of MEN4 patients is poorly known, and genetic counseling is unclear. OBJECTIVE To evaluate the prevalence of MEN4 in MEN1-suspected patients and characterize the phenotype of MEN4 patients. DESIGN Retrospective observational nationwide study. Narrative review of literature and variant class reassessment. PATIENTS We included all adult patients with class 3/4/5 CDKN1B variants identified by the laboratories from the French Oncogenetic Network on Neuroendocrine Tumors network between 2015 and 2022 through germline genetic testing for MEN1 suspicion. After class reassessment, we compared the phenotype of symptomatic patients with class 4/5 CDKN1B variants (ie, with genetically confirmed MEN4 diagnosis) in our series and in literature with 66 matched MEN1 patients from the UMD-MEN1 database. RESULTS From 5600 MEN1-suspected patients analyzed, 4 with class 4/5 CDKN1B variant were found (0.07%). They presented with multiple duodenal NET, primary hyperparathyroidism (PHPT) and adrenal nodule, isolated PHPT, PHPT, and pancreatic neuroendocrine tumor. We listed 29 patients with CDKN1B class 4/5 variants from the literature. Compared with matched MEN1 patients, MEN4 patients presented lower NET incidence and older age at PHPT diagnosis. CONCLUSION The prevalence of MEN4 is low. PHPT and pituitary adenoma represent the main associated lesions, NETs are rare. Our results suggest a milder and later phenotype than in MEN1. Our observations will help to improve genetic counseling and management of MEN4 families.
Collapse
Affiliation(s)
- Benjamin Chevalier
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
- University of Lille, 59000 Lille, France
- Department of Nuclear Medicine, Lille University Hospital, 59000 Lille, France
| | - Lucie Coppin
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer-Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
- CHU Lille, Service de Biochimie et Biologie moléculaire « Hormonologie, Métabolisme-Nutrition, Oncologie, 59000 Lille, France
| | - Pauline Romanet
- Laboratory of Molecular Biology GEnOPé, Biogénopôle, Aix Marseille Univ, APHM, INSERM, UMR1251 MMG, Hôpital de la Timone, 13005 Marseille, France
| | - Thomas Cuny
- Department of Endocrinology, Aix Marseille Univ, APHM, INSERM, UMR1251 MMG, MARMARA Institute, CRMR HYPO, Hôpital de la Conception, 13005 Marseille, France
| | - Jean-Christophe Maïza
- Department of Endocrinology, Diabetes, and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, 97448 Saint-Pierre, La Réunion, France
| | - Juliette Abeillon
- Hospices Civils de Lyon, Fédération d'Endocrinologie, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Julien Forestier
- Service d'Oncologie Médicale et Hépatogastroentérologie, Hospices Civil de Lyon, 69003 Lyon, France
| | - Thomas Walter
- Service d'Oncologie Médicale et Hépatogastroentérologie, Hospices Civil de Lyon, 69003 Lyon, France
- Université de Lyon, 69003 Lyon, France
| | - Olivier Gilly
- Department of Metabolic and Endocrine Disease, CHU Nîmes, Université Montpellier, 30900 Nîmes, France
| | - Maëlle Le Bras
- Service d'endocrinologie, diabétologie, nutrition, Nantes Université, CHU Nantes, l'institut du thorax, F-44000 Nantes, France
| | - Sarra Smati
- Service d'endocrinologie, diabétologie, nutrition, Nantes Université, CHU Nantes, l'institut du thorax, F-44000 Nantes, France
| | - Marie Laure Nunes
- Department of Endocrinology, Diabetes and Nutrition, University Hospital (CHU) and University of Bordeaux, 33404 Bordeaux, France
| | - Aurore Geslot
- Service d'endocrinologie, maladies métaboliques et nutrition, pôle cardio-vasculaire et métabolique, CHU Larrey, 31059 Toulouse cedex, France
| | - Solange Grunenwald
- Service d'endocrinologie, maladies métaboliques et nutrition, pôle cardio-vasculaire et métabolique, CHU Larrey, 31059 Toulouse cedex, France
| | - Céline Mouly
- Service d'endocrinologie, maladies métaboliques et nutrition, pôle cardio-vasculaire et métabolique, CHU Larrey, 31059 Toulouse cedex, France
| | | | - Kathy Wagner
- Department of Pediatrics, CHU-Lenval, 06200 Nice, France
| | - Eugénie Koumakis
- Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Reference Center for Rare Genetic Bone Disorders, OSCAR Filière, Rheumatology Department, Cochin Hospital, AP-HP Centre-Paris University, INSERM U1160, Institut Imagine, 75014 Paris, France
| | - Christine Cortet-Rudelli
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
| | - Émilie Merlen
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
| | - Arnaud Jannin
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
- University of Lille, 59000 Lille, France
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer-Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Stéphanie Espiard
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
- University of Lille, 59000 Lille, France
| | - Isabelle Morange
- Department of Endocrinology, Aix Marseille Univ, APHM, INSERM, UMR1251 MMG, MARMARA Institute, CRMR HYPO, Hôpital de la Conception, 13005 Marseille, France
| | - Éric Baudin
- Department of Endocrine Oncology and Imaging, Gustave Roussy Cancer Campus Grand, 94800 Villejuif, France
| | - Mathias Cavaille
- U1240 Imagerie Moléculaire et Stratégies Théranostiques, INSERM, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, 63000 Clermont Ferrand, France
| | - Igor Tauveron
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
- Laboratoire GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Marie-Pierre Teissier
- Unité INSERM 1094 & IRD, Université de Limoges, 87025 Limoges, France
- Service d'Endocrinologie-Diabétologie et Maladies métaboliques, Centre hospitalier universitaire Dupuytren 2, 87042 Limoges, France
| | - Françoise Borson-Chazot
- Hospices Civils de Lyon, Fédération d'Endocrinologie, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Delphine Mirebeau-Prunier
- Unité Mixte de Recherche (UMR) MITOVASC, Laboratoire de Biochimie et Biologie Moléculaire, INSERM U1083, CNRS 6015, Université d'Angers, Centre Hospitalier Universitaire d'Angers, Angers 49933, France
| | - Frédérique Savagner
- Laboratory of Biochemistry and Molecular Biology, IFB-CHU, 31000 Toulouse, France
| | - Éric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, 75014 Paris, France
- Institut Cochin, Cancer Department, Inserm U1016, CNRS UMR8104, Université de Paris, CARPEM, 75014 Paris, France
| | - Sophie Giraud
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, 69029 Bron Cedex, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
- University of Lille, 59000 Lille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), European Genomic Institute for Diabetes (EGID), CHU Lille, 59000 Lille, France
| | - Pierre Goudet
- Service de Chirurgie Viscérale et Endocrinienne, Centre Hospitalier Universitaire François Mitterand, 21000 Dijon, France
| | - Anne Barlier
- Laboratory of Molecular Biology GEnOPé, Biogénopôle, Aix Marseille Univ, APHM, INSERM, UMR1251 MMG, Hôpital de la Timone, 13005 Marseille, France
| | - Catherine Cardot-Bauters
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
| | - Marie Françoise Odou
- CHU Lille, Service de Biochimie et Biologie moléculaire « Hormonologie, Métabolisme-Nutrition, Oncologie, 59000 Lille, France
- University of Lille, Inserm, CHU Lille, U1286-Infinite-Institute for Translational Research in Inflammation, 59000 Lille, France
| |
Collapse
|
6
|
Korbonits M, Blair JC, Boguslawska A, Ayuk J, Davies JH, Druce MR, Evanson J, Flanagan D, Glynn N, Higham CE, Jacques TS, Sinha S, Simmons I, Thorp N, Swords FM, Storr HL, Spoudeas HA. Consensus guideline for the diagnosis and management of pituitary adenomas in childhood and adolescence: Part 1, general recommendations. Nat Rev Endocrinol 2024; 20:278-289. [PMID: 38336897 DOI: 10.1038/s41574-023-00948-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/12/2024]
Abstract
Tumours of the anterior part of the pituitary gland represent just 1% of all childhood (aged <15 years) intracranial neoplasms, yet they can confer high morbidity and little evidence and guidance is in place for their management. Between 2014 and 2022, a multidisciplinary expert group systematically developed the first comprehensive clinical practice consensus guideline for children and young people under the age 19 years (hereafter referred to as CYP) presenting with a suspected pituitary adenoma to inform specialist care and improve health outcomes. Through robust literature searches and a Delphi consensus exercise with an international Delphi consensus panel of experts, the available scientific evidence and expert opinions were consolidated into 74 recommendations. Part 1 of this consensus guideline includes 17 pragmatic management recommendations related to clinical care, neuroimaging, visual assessment, histopathology, genetics, pituitary surgery and radiotherapy. While in many aspects the care for CYP is similar to that of adults, key differences exist, particularly in aetiology and presentation. CYP with suspected pituitary adenomas require careful clinical examination, appropriate hormonal work-up, dedicated pituitary imaging and visual assessment. Consideration should be given to the potential for syndromic disease and genetic assessment. Multidisciplinary discussion at both the local and national levels can be key for management. Surgery should be performed in specialist centres. The collection of outcome data on novel modalities of medical treatment, surgical intervention and radiotherapy is essential for optimal future treatment.
Collapse
Affiliation(s)
- Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | | - Anna Boguslawska
- Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
| | - John Ayuk
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Justin H Davies
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Maralyn R Druce
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane Evanson
- Neuroradiology, Barts Health NHS Trust, London, UK
| | | | - Nigel Glynn
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Thomas S Jacques
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Saurabh Sinha
- Sheffield Children's and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ian Simmons
- The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Nicky Thorp
- The Christie NHS Foundation Trust, Manchester, UK
| | | | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen A Spoudeas
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
8
|
Sahakian N, Castinetti F, Romanet P, Reznik Y, Brue T. Updates on the genetics of multiple endocrine neoplasia. ANNALES D'ENDOCRINOLOGIE 2024; 85:127-135. [PMID: 38325596 DOI: 10.1016/j.ando.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 02/09/2024]
Abstract
Multiple endocrine neoplasia (MEN) is a group of syndromes with a genetic predisposition to the appearance of endocrine tumors, and shows autosomal dominant transmission. The advent of molecular genetics has led to improvements in the management of MEN in terms of diagnosis, prognosis and therapy. The genetics of MEN is the subject of regular updates, which will be presented throughout this paper. MEN1, the first to be described, is associated with the MEN1 gene. MEN1 is well known in terms of the observed phenotype, with genetic analysis being conclusive in 90% of patients with a typical phenotype, but is negative in around 10% of families with MEN1. Improvement in analysis techniques and the identification of other genes responsable for phenocopies allows the resolution of some, but not all, cases, notably non-familial forms suspected to be fortuitous assocations with tumors. MEN4 is a rare phenocopy of MEN1 linked to constitutional mutations in the CDKN1B gene. Though it closely resembles the phenotype of MEN1, published data suggests the appearance of tumors is later and less frequent in MEN4. MEN2, which results from mutations in the RET oncogene, shows a strong genotype-phenotype correlation. This correlation is particularly evident in the major manifestation of MEN2, medullary thyroid carcinoma (MTC), in which disease aggressiveness is dependent on the pathogenic variant of RET. However, recent studies cast doubt on this correlation between MTC and pathogenic variant. Lastly, the recent description of families carrying a mutation in MAX, which is known to predispose to the development of pheochromocytoma and paraganglioma, and presents a phenotypic spectrum that evokes MEN, suggests the existence of another syndrome, MEN5.
Collapse
Affiliation(s)
- Nicolas Sahakian
- Aix Marseille Univ, AP-HM, Inserm, MMG, MarMaRa, Marseille, France; Department of Endocrinology, CRMR HYPO, La Conception University Hospital, AP-HM, Marseille, France.
| | - Frederic Castinetti
- Aix Marseille Univ, AP-HM, Inserm, MMG, MarMaRa, Marseille, France; Department of Endocrinology, CRMR HYPO, La Conception University Hospital, AP-HM, Marseille, France
| | - Pauline Romanet
- Aix Marseille Univ, AP-HM, Inserm, MMG, MarMaRa, Marseille, France; Laboratory of Molecular Biology, Biogenopole, Timone University Hospital, AP-HM, Marseille, France
| | - Yves Reznik
- Department of endocrinology, diabetes, metabolic disorders, University Hospital Caen, Caen, France
| | - Thierry Brue
- Aix Marseille Univ, AP-HM, Inserm, MMG, MarMaRa, Marseille, France; Department of Endocrinology, CRMR HYPO, La Conception University Hospital, AP-HM, Marseille, France
| |
Collapse
|
9
|
Mazarico-Altisent I, Capel I, Baena N, Bella-Cueto MR, Barcons S, Guirao X, Albert L, Cano A, Pareja R, Caixàs A, Rigla M. Novel germline variants of CDKN1B and CDKN2C identified during screening for familial primary hyperparathyroidism. J Endocrinol Invest 2023; 46:829-840. [PMID: 36334246 PMCID: PMC10023768 DOI: 10.1007/s40618-022-01948-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE CDKN1B mutations were established as a cause of multiple endocrine neoplasia 4 (MEN4) syndrome in patients with MEN1 phenotype without a mutation in the MEN1 gene. In addition, variants in other cyclin-dependent kinase inhibitors (CDKIs) were found in some MEN1-like cases without the MEN1 mutation. We aimed to describe novel germline mutations of these genes in patients with primary hyperparathyroidism (PHPT). METHODS During genetic screening for familial hyperparathyroidism, three novel CDKIs germline mutations in three unrelated cases between January 2019 and November 2021 were identified. In this report, we describe clinical features, DNA sequence analysis, and familial segregation studies based on these patients and their relatives. Genome-wide DNA study of loss of heterozygosity (LOH), copy number variation (CNV), and p27/kip immunohistochemistry was performed on tumour samples. RESULTS DNA screening was performed for atypical parathyroid adenomas in cases 1 and 2 and for cystic parathyroid adenoma and young age at diagnosis of PHPT in case 3. Genetic analysis identified likely pathogenic variants of CDKN1B in cases 1 and 2 and a variant of the uncertain significance of CDKN2C, with uniparental disomy in the tumour sample, in case 3. Neoplasm screening of probands showed other non-endocrine tumours in case 1 (colon adenoma with dysplasia and atypical lipomas) and case 2 (aberrant T-cell population) and a non-functional pituitary adenoma in case 3. CONCLUSION Germline mutations in CDKIs should be included in gene panels for genetic testing of primary hyperparathyroidism. New germline variants here described can be added to the current knowledge.
Collapse
Affiliation(s)
- I Mazarico-Altisent
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain.
| | - I Capel
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - N Baena
- Genetic Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - M R Bella-Cueto
- Pathology Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - S Barcons
- Surgery Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - X Guirao
- Surgery Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - L Albert
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - A Cano
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - R Pareja
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - A Caixàs
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - M Rigla
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| |
Collapse
|
10
|
Abstract
Hereditary pituitary tumorigenesis is seen in a relatively small proportion (around 5%) of patients with pituitary neuroendocrine tumors (PitNETs). The aim of the current review is to describe the main clinical and molecular features of such pituitary tumors associated with hereditary or familial characteristics, many of which have now been genetically identified. The genetic patterns of inheritance are classified into isolated familial PitNETs and the syndromic tumors. In general, the established genetic causes of familial tumorigenesis tend to present at a younger age, often pursue a more aggressive course, and are more frequently associated with growth hormone hypersecretion compared to sporadic tumors. The mostly studied molecular pathways implicated are the protein kinase A and phosphatidyl-inositol pathways, which are in the main related to mutations in the syndromes of familial isolated pituitary adenoma (FIPA), Carney complex syndrome, and X-linked acrogigantism. Another well-documented mechanism consists of the regulation of p27 or p21 proteins, with further acceleration of the pituitary cell cycle through the check points G1/S and M/G1, mostly documented in multiple endocrine neoplasia type 4. In conclusion, PitNETs may occur in relation to well-established familial germline mutations which may determine the clinical phenotype and the response to treatment, and may require family screening.
Collapse
Affiliation(s)
- Eleni Armeni
- Dept. of Endocrinology, Royal Free Hospital, London, NW3 2QG, UK.
| | - Ashley Grossman
- Dept. of Endocrinology, Royal Free Hospital, London, NW3 2QG, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
- Green Templeton College, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Singeisen H, Renzulli MM, Pavlicek V, Probst P, Hauswirth F, Muller MK, Adamczyk M, Weber A, Kaderli RM, Renzulli P. Multiple endocrine neoplasia type 4: a new member of the MEN family. Endocr Connect 2023; 12:e220411. [PMID: 36520683 PMCID: PMC9874964 DOI: 10.1530/ec-22-0411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Multiple endocrine neoplasia type 4 (MEN4) is caused by a CDKN1B germline mutation first described in 2006. Its estimated prevalence is less than one per million. The aim of this study was to define the disease characteristics. METHODS A systematic review was performed according to the PRISMA 2020 criteria. A literature search from January 2006 to August 2022 was done using MEDLINE® and Web of ScienceTM. RESULTS Forty-eight symptomatic patients fulfilled the pre-defined eligibility criteria. Twenty-eight different CDKN1B variants, mostly missense (21/48, 44%) and frameshift mutations (17/48, 35%), were reported. The majority of patients were women (36/48, 75%). Men became symptomatic at a median age of 32.5 years (range 10-68, mean 33.7 ± 23), whereas the same event was recorded for women at a median age of 49.5 years (range 5-76, mean 44.8 ± 19.9) (P = 0.25). The most frequently affected endocrine organ was the parathyroid gland (36/48, 75%; uniglandular disease 31/36, 86%), followed by the pituitary gland (21/48, 44%; hormone-secreting 16/21, 76%), the endocrine pancreas (7/48, 15%), and the thyroid gland (4/48, 8%). Tumors of the adrenal glands and thymus were found in three and two patients, respectively. The presenting first endocrine pathology concerned the parathyroid (27/48, 56%) and the pituitary gland (11/48, 23%). There were one (27/48, 56%), two (13/48, 27%), three (3/48, 6%), or four (5/48, 10%) syn- or metachronously affected endocrine organs in a single patient, respectively. CONCLUSION MEN4 is an extremely rare disease, which most frequently affects women around 50 years of age. Primary hyperparathyroidism as a uniglandular disease is the leading pathology.
Collapse
Affiliation(s)
- Hélène Singeisen
- Department of Internal Medicine, Endocrinology, Cantonal Hospital Thurgau, Münsterlingen, Switzerland
| | | | - Vojtech Pavlicek
- Department of Internal Medicine, Endocrinology, Cantonal Hospital Thurgau, Münsterlingen, Switzerland
| | - Pascal Probst
- Department of Surgery, Cantonal Hospital Thurgau, Frauenfeld, Switzerland
| | - Fabian Hauswirth
- Department of Surgery, Cantonal Hospital Thurgau, Münsterlingen, Switzerland
| | - Markus K Muller
- Department of Surgery, Cantonal Hospital Thurgau, Frauenfeld, Switzerland
| | - Magdalene Adamczyk
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Reto Martin Kaderli
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pietro Renzulli
- Department of Surgery, Cantonal Hospital Thurgau, Münsterlingen, Switzerland
- Correspondence should be addressed to P Renzulli:
| |
Collapse
|
12
|
Halperin R, Arnon L, Nasirov S, Friedensohn L, Gershinsky M, Telerman A, Friedman E, Bernstein-Molho R, Tirosh A. Germline CDKN1B variant type and site are associated with phenotype in MEN4. Endocr Relat Cancer 2023; 30:ERC-22-0174. [PMID: 36256846 DOI: 10.1530/erc-22-0174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Multiple endocrine neoplasia 4 (MEN4) is a rare multiglandular endocrine neoplasia syndrome clinically hallmarked by primary hyperparathyroidism (PHPT), pituitary adenoma (PitAd), and neuroendocrine tumors (NET), clinically overlapping MEN1. The underlying mutated gene - CDKN1B, encodes for the cell-cycle regulator p27. Possible genotype-phenotype correlations in MEN4 have not been thoroughly assessed. Prompted by the findings in three Israeli MEN4 kindreds, we performed a literature review on published and unpublished data from previously reported MEN4/CDKN1B cases. Univariate analysis analyzed time-dependent risks for developing PHPT, PitAd, or NET by variant type and position along the gene. Overall, 74 MEN4 cases were analyzed. PHPT risk was 53.4% by age 60 years (mean age at diagnosis age 50.6 ± 13.9 years), risk for PitAd was 23.2% and risk for NET was 16.2% (34.4 ± 21.4 and 52.9 ± 13.9 years, respectively). The frameshift variant p.Q107fs was the most common variant identified (4/41 (9.7%) kindreds). Patients with indels had higher risk for PHPT vs point mutations (log-rank, P = 0.029). Variants in codons 94-96 were associated with higher risk for PHPT (P < 0.001) and PitAd (P = 0.031). To conclude, MEN4 is clinically distinct from MEN1, with lower risk and older age for PHPT diagnosis. We report recurrent CDKN1B frameshift variants and possible genotype-phenotype correlations.
Collapse
Affiliation(s)
- Reut Halperin
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| | - Liat Arnon
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sapir Nasirov
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| | - Limor Friedensohn
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Gershinsky
- Department of Endocrinology and Diabetes, Lady Davis Carmel Medical Center and Linn Medical Center and Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alona Telerman
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Eitan Friedman
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
- Personalized Preventive Genetics Center, Assuta Medical Center, Tel-Aviv, Israel
| | - Rinat Bernstein-Molho
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
- The Susanne Levy Gertner Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Amit Tirosh
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| |
Collapse
|
13
|
Hernández-Ramírez LC, Pankratz N, Lane J, Faucz FR, Chittiboina P, Kay DM, Beethem Z, Mills JL, Stratakis CA. Genetic drivers of Cushing's disease: Frequency and associated phenotypes. Genet Med 2022; 24:2516-2525. [PMID: 36149413 PMCID: PMC9729444 DOI: 10.1016/j.gim.2022.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Cushing's disease (CD) is often explained by a single somatic sequence change. Germline defects, however, often go unrecognized. We aimed to determine the frequency and associated phenotypes of genetic drivers of CD in a large cohort. METHODS We studied 245 unrelated patients with CD (139 female, 56.7%), including 230 (93.9%) pediatric and 15 (6.1%) adult patients. Germline exome sequencing was performed in 184 patients; tumor exome sequencing was also done in 27 of them. A total of 43 germline samples and 92 tumor samples underwent Sanger sequencing of specific genes. Rare variants of uncertain significance, likely pathogenic (LP), or pathogenic variants in CD-associated genes, were identified. RESULTS Germline variants (13 variants of uncertain significance, 8 LP, and 11 pathogenic) were found in 8 of 19 patients (42.1%) with positive family history and in 23 of 226 sporadic patients (10.2%). Somatic variants (1 LP and 7 pathogenic) were found in 20 of 119 tested individuals (16.8%); one of them had a coexistent germline defect. Altogether, variants of interest were identified at the germline level in 12.2% of patients, at the somatic level in 7.8%, and coexisting germline and somatic variants in 0.4%, accounting for one-fifth of the cohort. CONCLUSION We report an estimate of the contribution of multiple germline and somatic genetic defects underlying CD in a single cohort.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD; Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD
| | - Denise M Kay
- Newborn Screening Program, Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Zachary Beethem
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - James L Mills
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD; Human Genetics & Precision Medicine, IMBB, FORTH, Heraklion, Crete; ELPEN Research Institute, Athens, Greece.
| |
Collapse
|
14
|
Melmed S, Kaiser UB, Lopes MB, Bertherat J, Syro LV, Raverot G, Reincke M, Johannsson G, Beckers A, Fleseriu M, Giustina A, Wass JAH, Ho KKY. Clinical Biology of the Pituitary Adenoma. Endocr Rev 2022; 43:1003-1037. [PMID: 35395078 PMCID: PMC9695123 DOI: 10.1210/endrev/bnac010] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 02/06/2023]
Abstract
All endocrine glands are susceptible to neoplastic growth, yet the health consequences of these neoplasms differ between endocrine tissues. Pituitary neoplasms are highly prevalent and overwhelmingly benign, exhibiting a spectrum of diverse behaviors and impact on health. To understand the clinical biology of these common yet often innocuous neoplasms, we review pituitary physiology and adenoma epidemiology, pathophysiology, behavior, and clinical consequences. The anterior pituitary develops in response to a range of complex brain signals integrating with intrinsic ectodermal cell transcriptional events that together determine gland growth, cell type differentiation, and hormonal production, in turn maintaining optimal endocrine health. Pituitary adenomas occur in 10% of the population; however, the overwhelming majority remain harmless during life. Triggered by somatic or germline mutations, disease-causing adenomas manifest pathogenic mechanisms that disrupt intrapituitary signaling to promote benign cell proliferation associated with chromosomal instability. Cellular senescence acts as a mechanistic buffer protecting against malignant transformation, an extremely rare event. It is estimated that fewer than one-thousandth of all pituitary adenomas cause clinically significant disease. Adenomas variably and adversely affect morbidity and mortality depending on cell type, hormone secretory activity, and growth behavior. For most clinically apparent adenomas, multimodal therapy controlling hormone secretion and adenoma growth lead to improved quality of life and normalized mortality. The clinical biology of pituitary adenomas, and particularly their benign nature, stands in marked contrast to other tumors of the endocrine system, such as thyroid and neuroendocrine tumors.
Collapse
Affiliation(s)
| | - Ursula B Kaiser
- Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M Beatriz Lopes
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome Bertherat
- Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Luis V Syro
- Hospital Pablo Tobon Uribe and Clinica Medellin - Grupo Quirónsalud, Medellin, Colombia
| | - Gerald Raverot
- Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| | - Martin Reincke
- University Hospital of LMU, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gudmundur Johannsson
- Sahlgrenska University Hospital & Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Andrea Giustina
- San Raffaele Vita-Salute University and IRCCS Hospital, Milan, Italy
| | | | - Ken K Y Ho
- The Garvan Institute of Medical Research and St. Vincents Hospital, Sydney, Australia
| |
Collapse
|
15
|
Coopmans EC, Korbonits M. Molecular genetic testing in the management of pituitary disease. Clin Endocrinol (Oxf) 2022; 97:424-435. [PMID: 35349723 DOI: 10.1111/cen.14706] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Most pituitary tumours occur sporadically without a genetically identifiable germline abnormality, a small but increasing proportion present with a genetic defect that predisposes to pituitary tumour development, either isolated (e.g., aryl hydrocarbon receptor-interacting protein, AIP) or as part of a tumour-predisposing syndrome (e.g., multiple endocrine neoplasia (MEN) type 1, Carney complex, McCune-Albright syndrome or pituitary tumour and paraganglioma association). Genetic alterations in sporadic pituitary adenomas may include somatic mutations (e.g., GNAS, USP8). In this review, we take a practical approach: which genetic syndromes should be considered in case of different presentation, such as tumour type, family history, age of onset and additional clinical features of the patient. DESIGN Review of the recent literature in the field of genetics of pituitary tumours. RESULTS Genetic testing in the management of pituitary disease is recommended in a significant minority of the cases. Understanding the genetic basis of the disease helps to identify patients and at-risk family members, facilitates early diagnosis and therefore better long-term outcome and opens up new pathways leading to tumorigenesis. CONCLUSION We provide a concise overview of the genetics of pituitary tumours and discuss the current challenges and implications of these genetic findings in clinical practice.
Collapse
Affiliation(s)
- Eva C Coopmans
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Cente, Rotterdam, The Netherlands
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
16
|
Yamamoto M, Takahashi Y. Genetic and Epigenetic Pathogenesis of Acromegaly. Cancers (Basel) 2022; 14:cancers14163861. [PMID: 36010855 PMCID: PMC9405703 DOI: 10.3390/cancers14163861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Various genetic and epigenetic factors are involved in the pathogenesis of somatotroph tumors. Although GNAS mutations are the most prevalent cause of somatotroph tumors, the cause of half of all pathogenesis occurrences remains unclarified. However, recent findings including the pangenomic analysis, such as genome, transcriptome, and methylome approaches, and histological characteristics of pituitary tumors, the involvement of AIP and GPR101, the mechanisms of genomic instability, and possible involvement of miRNAs have gradually unveiled the whole landscape of underlying mechanisms of somatotroph tumors. In this review, we will focus on the recent advances in the pathogenesis of somatotroph tumors. Abstract Acromegaly is caused by excessive secretion of GH and IGF-I mostly from somatotroph tumors. Various genetic and epigenetic factors are involved in the pathogenesis of somatotroph tumors. While somatic mutations of GNAS are the most prevalent cause of somatotroph tumors, germline mutations in various genes (AIP, PRKAR1A, GPR101, GNAS, MEN1, CDKN1B, SDHx, MAX) are also known as the cause of somatotroph tumors. Moreover, recent findings based on multiple perspectives of the pangenomic approach including genome, transcriptome, and methylome analyses, histological characterization, genomic instability, and possible involvement of miRNAs have gradually unveiled the whole landscape of the underlying mechanisms of somatotroph tumors. In this review, we will focus on the recent advances in genetic and epigenetic pathogenesis of somatotroph tumors.
Collapse
Affiliation(s)
- Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Correspondence: ; Tel.: +81-78-382-5861
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Department of Diabetes and Endocrinology, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
17
|
Simon J, Theodoropoulou M. Genetics of Cushing's disease. J Neuroendocrinol 2022; 34:e13148. [PMID: 35596671 DOI: 10.1111/jne.13148] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Corticotroph tumours are primarily sporadic monoclonal neoplasms and only rarely found in genetic syndromes. Recurrent mutations in the ubiquitin specific protease 8 (USP8) gene are found in around half of cases. Mutations in other genes such as USP48 and NR3C1 are less frequent, found in less than ~20% of cases. TP53 and ATXR mutations are reported in up to one out of four cases, when focusing in USP8 wild type or aggressive corticotroph tumours and carcinomas. At present, USP8 mutations are the primary driver alterations in sporadic corticotroph tumours, TP53 and ATXR mutations may indicate transition to more aggressive tumour phenotype. Next generation sequencing efforts have identified additional genomic alterations, whose role and importance in corticotroph tumorigenesis remains to be elucidated.
Collapse
Affiliation(s)
- Julia Simon
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
18
|
Seabrook A, Wijewardene A, De Sousa S, Wong T, Sheriff N, Gill AJ, Iyer R, Field M, Luxford C, Clifton-Bligh R, McCormack A, Tucker K. MEN4, the MEN1 Mimicker: A Case Series of three Phenotypically Heterogenous Patients With Unique CDKN1B Mutations. J Clin Endocrinol Metab 2022; 107:2339-2349. [PMID: 35323929 PMCID: PMC9282358 DOI: 10.1210/clinem/dgac162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 12/29/2022]
Abstract
CONTEXT Germline CDKN1B pathogenic variants result in multiple endocrine neoplasia type 4 (MEN4), an autosomal dominant hereditary tumor syndrome variably associated with primary hyperparathyroidism, pituitary adenoma, and duodenopancreatic neuroendocrine tumors. OBJECTIVE To report the phenotype of 3 unrelated cases each with a unique germline CDKN1B variant (of which 2 are novel) and compare these cases with those described in the current literature. DESIGN/METHODS Three case studies, including clinical presentation, germline, and tumor genetic analysis and family history. SETTING Two tertiary University Hospitals in Sydney, New South Wales, and 1 tertiary University Hospital in Canberra, Australian Capital Territory, Australia. OUTCOME Phenotype of the 3 cases and their kindred; molecular analysis and tumor p27kip1 immunohistochemistry. RESULTS Family A: The proband developed multiglandular primary hyperparathyroidism, a microprolactinoma and a multifocal nonfunctioning duodenopancreatic neuroendocrine tumor. Family B: The proband was diagnosed with primary hyperparathyroidism from a single parathyroid adenoma. Family C: The proband was diagnosed with a nonfunctioning pituitary microadenoma and ectopic Cushing's syndrome from an atypical thymic carcinoid tumor. Germline sequencing in each patient identified a unique variant in CDKN1B, 2 of which are novel (c.179G > A, p.Trp60*; c.475G > A, p.Asp159Asn) and 1 previously reported (c.374_375delCT, p.Ser125*). CONCLUSIONS Germline CDKN1B pathogenic variants cause the syndrome MEN4. The phenotype resulting from the 3 pathogenic variants described in this series highlights the heterogenous nature of this syndrome, ranging from isolated primary hyperparathyroidism to the full spectrum of endocrine manifestations. We report the first described cases of a prolactinoma and an atypical thymic carcinoid tumor in MEN4.
Collapse
Affiliation(s)
- Amanda Seabrook
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ayanthi Wijewardene
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sunita De Sousa
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5000
- South Australian Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Tang Wong
- The University of New South Wales, Sydney, NSW, 2052, Australia
- The University of Western Sydney, Sydney, NSW, 2560, Australia
- Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW, 2064, Australia
| | - Nisa Sheriff
- Department of Endocrinology, Hornsby Ku-ring-gai Hospital, Sydney, NSW, 2077, Australia
| | - Anthony J Gill
- The University of Sydney, Sydney, NSW, 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, 2064, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, 2064, Australia
| | - Rakesh Iyer
- Calvary Public Hospital, Canberra, ACT, 2617, Australia
| | - Michael Field
- Familial Cancer Service, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Catherine Luxford
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- The University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | - Katherine Tucker
- Correspondence: Katherine Tucker, MBBS, FRACP, AO, Hereditary Cancer Service Nelune Comprehensive Cancer Centre (Bright Building), 64-66 High St, Randwick, NSW, 2031, Australia.
| |
Collapse
|
19
|
Locantore P, Paragliola RM, Cera G, Novizio R, Maggio E, Ramunno V, Corsello A, Corsello SM. Genetic Basis of ACTH-Secreting Adenomas. Int J Mol Sci 2022; 23:ijms23126824. [PMID: 35743266 PMCID: PMC9224284 DOI: 10.3390/ijms23126824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Cushing's disease represents 60-70% of all cases of Cushing's syndrome, presenting with a constellation of clinical features associated with sustained hypercortisolism. Molecular alterations in corticotrope cells lead to the formation of ACTH-secreting adenomas, with subsequent excessive production of endogenous glucocorticoids. In the last few years, many authors have contributed to analyzing the etiopathogenesis and pathophysiology of corticotrope adenomas, which still need to be fully clarified. New molecular modifications such as somatic mutations of USP8 and other genes have been identified, and several case series and case reports have been published, highlighting new molecular alterations that need to be explored. To investigate the current knowledge of the genetics of ACTH-secreting adenomas, we performed a bibliographic search of the recent scientific literature to identify all pertinent articles. This review presents the most recent updates on somatic and germline mutations underlying Cushing's disease. The prognostic implications of these mutations, in terms of clinical outcomes and therapeutic scenarios, are still debated. Further research is needed to define the clinical features associated with the different genotypes and potential pharmacological targets.
Collapse
Affiliation(s)
- Pietro Locantore
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Rosa Maria Paragliola
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
- Correspondence:
| | - Gianluca Cera
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Roberto Novizio
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Ettore Maggio
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Vittoria Ramunno
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Andrea Corsello
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Salvatore Maria Corsello
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
- Unicamillus, Saint Camillus International University of Medical Sciences, via di S. Alessandro 10, I-00131 Rome, Italy
| |
Collapse
|
20
|
Tabarin A, Assié G, Barat P, Bonnet F, Bonneville JF, Borson-Chazot F, Bouligand J, Boulin A, Brue T, Caron P, Castinetti F, Chabre O, Chanson P, Corcuff JB, Cortet C, Coutant R, Dohan A, Drui D, Espiard S, Gaye D, Grunenwald S, Guignat L, Hindie E, Illouz F, Kamenicky P, Lefebvre H, Linglart A, Martinerie L, North MO, Raffin-Samson ML, Raingeard I, Raverot G, Raverot V, Reznik Y, Taieb D, Vezzosi D, Young J, Bertherat J. Consensus statement by the French Society of Endocrinology (SFE) and French Society of Pediatric Endocrinology & Diabetology (SFEDP) on diagnosis of Cushing's syndrome. ANNALES D'ENDOCRINOLOGIE 2022; 83:119-141. [PMID: 35192845 DOI: 10.1016/j.ando.2022.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cushing's syndrome is defined by prolonged exposure to glucocorticoids, leading to excess morbidity and mortality. Diagnosis of this rare pathology is difficult due to the low specificity of the clinical signs, the variable severity of the clinical presentation, and the difficulties of interpretation associated with the diagnostic methods. The present consensus paper by 38 experts of the French Society of Endocrinology and the French Society of Pediatric Endocrinology and Diabetology aimed firstly to detail the circumstances suggesting diagnosis and the biologic diagnosis tools and their interpretation for positive diagnosis and for etiologic diagnosis according to ACTH-independent and -dependent mechanisms. Secondly, situations making diagnosis complex (pregnancy, intense hypercortisolism, fluctuating Cushing's syndrome, pediatric forms and genetically determined forms) were detailed. Lastly, methods of surveillance and diagnosis of recurrence were dealt with in the final section.
Collapse
Affiliation(s)
- Antoine Tabarin
- Service Endocrinologie, Diabète et Nutrition, Université, Hôpital Haut-Leveque CHU de Bordeaux, 33604 Pessac, France.
| | - Guillaume Assié
- Centre de Référence Maladies Rares de la Surrénale (CRMRS), Service d'Endocrinologie, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Pascal Barat
- Unité d'Endocrinologie-Diabétologie-Gynécologie-Obésité Pédiatrique, Hôpital des Enfants CHU Bordeaux, Bordeaux, France
| | - Fidéline Bonnet
- UF d'Hormonologie Hôpital Cochin, Université de Paris, Institut Cochin Inserm U1016, CNRS UMR8104, Paris, France
| | | | - Françoise Borson-Chazot
- Fédération d'Endocrinologie, Hôpital Louis-Pradel, Hospices Civils de Lyon, INSERM U1290, Université Lyon1, 69002 Lyon, France
| | - Jérôme Bouligand
- Faculté de Médecine Paris-Saclay, Unité Inserm UMRS1185 Physiologie et Physiopathologie Endocriniennes, Paris, France
| | - Anne Boulin
- Service de Neuroradiologie, Hôpital Foch, 92151 Suresnes, France
| | - Thierry Brue
- Aix-Marseille Université, Institut National de la Recherche Scientifique (INSERM) U1251, Marseille Medical Genetics, Marseille, France; Assistance publique-Hôpitaux de Marseille, Service d'Endocrinologie, Hôpital de la Conception, Centre de Référence Maladies Rares HYPO, 13005 Marseille, France
| | - Philippe Caron
- Service d'Endocrinologie et Maladies Métaboliques, Pôle Cardiovasculaire et Métabolique, CHU Larrey, 24, chemin de Pouvourville, TSA 30030, 31059 Toulouse cedex, France
| | - Frédéric Castinetti
- Aix-Marseille Université, Institut National de la Recherche Scientifique (INSERM) U1251, Marseille Medical Genetics, Marseille, France; Assistance publique-Hôpitaux de Marseille, Service d'Endocrinologie, Hôpital de la Conception, Centre de Référence Maladies Rares HYPO, 13005 Marseille, France
| | - Olivier Chabre
- Université Grenoble Alpes, UMR 1292 INSERM-CEA-UGA, Endocrinologie, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Philippe Chanson
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse HYPO, Le Kremlin-Bicêtre, France
| | - Jean Benoit Corcuff
- Laboratoire d'Hormonologie, Service de Médecine Nucléaire, CHU Bordeaux, Laboratoire NutriNeuro, UMR 1286 INRAE, Université de Bordeaux, Bordeaux, France
| | - Christine Cortet
- Service d'Endocrinologie, Diabétologie, Métabolisme et Nutrition, CHU de Lille, Lille, France
| | - Régis Coutant
- Service d'Endocrinologie Pédiatrique, CHU Angers, Centre de Référence, Centre Constitutif des Maladies Rares de l'Hypophyse, CHU Angers, Angers, France
| | - Anthony Dohan
- Department of Radiology A, Hôpital Cochin, AP-HP, 75014 Paris, France
| | - Delphine Drui
- Service Endocrinologie-Diabétologie et Nutrition, l'institut du Thorax, CHU Nantes, 44092 Nantes cedex, France
| | - Stéphanie Espiard
- Service d'Endocrinologie, Diabétologie, Métabolisme et Nutrition, INSERM U1190, Laboratoire de Recherche Translationnelle sur le Diabète, 59000 Lille, France
| | - Delphine Gaye
- Service de Radiologie, Hôpital Haut-Lêveque, CHU de Bordeaux, 33604 Pessac, France
| | - Solenge Grunenwald
- Service d'Endocrinologie, Hôpital Larrey, CHU Toulouse, Toulouse, France
| | - Laurence Guignat
- Centre de Référence Maladies Rares de la Surrénale (CRMRS), Service d'Endocrinologie, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Elif Hindie
- Service de Médecine Nucléaire, CHU de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Frédéric Illouz
- Centre de Référence Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, Service Endocrinologie-Diabétologie-Nutrition, CHU Angers, 49933 Angers cedex 9, France
| | - Peter Kamenicky
- Assistance publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, 94275 Le Kremlin-Bicêtre, France
| | - Hervé Lefebvre
- Service d'Endocrinologie, Diabète et Maladies Métaboliques, CHU de Rouen, Rouen, France
| | - Agnès Linglart
- Paris-Saclay University, AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Filière OSCAR, and Platform of Expertise for Rare Disorders, INSERM, Physiologie et Physiopathologie Endocriniennes, Bicêtre Paris-Saclay Hospital, Le Kremlin-Bicêtre, France
| | - Laetitia Martinerie
- Service d'Endocrinologie Pédiatrique, CHU Robert-Debré, AP-HP, Paris, France; Université de Paris, Paris, France
| | - Marie Odile North
- Service de Génétique et Biologie Moléculaire, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Marie Laure Raffin-Samson
- Service d'Endocrinologie Nutrition, Hôpital Ambroise-Paré, GHU Paris-Saclay, AP-HP Boulogne, EA4340, Université de Versailles-Saint-Quentin, Paris, France
| | - Isabelle Raingeard
- Maladies Endocriniennes, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
| | - Gérald Raverot
- Fédération d'Endocrinologie, Centre de Référence Maladies Rares Hypophysaires, "Groupement Hospitalier Est", Hospices Civils de Lyon, Lyon, France
| | - Véronique Raverot
- Hospices Civils de Lyon, LBMMS, Centre de Biologie Est, Service de Biochimie et Biologie Moléculaire, 69677 Bron cedex, France
| | - Yves Reznik
- Department of Endocrinology and Diabetology, CHU Côte-de-Nacre, 14033 Caen cedex, France; University of Caen Basse-Normandie, Medical School, 14032 Caen cedex, France
| | - David Taieb
- Aix-Marseille Université, CHU La Timone, AP-HM, Marseille, France
| | - Delphine Vezzosi
- Service d'Endocrinologie, Hôpital Larrey, CHU Toulouse, Toulouse, France
| | - Jacques Young
- Assistance publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, 94275 Le Kremlin-Bicêtre, France
| | - Jérôme Bertherat
- Centre de Référence Maladies Rares de la Surrénale (CRMRS), Service d'Endocrinologie, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| |
Collapse
|
21
|
Lavezzi E, Brunetti A, Smiroldo V, Nappo G, Pedicini V, Vitali E, Trivellin G, Mazziotti G, Lania A. Case Report: New CDKN1B Mutation in Multiple Endocrine Neoplasia Type 4 and Brief Literature Review on Clinical Management. Front Endocrinol (Lausanne) 2022; 13:773143. [PMID: 35355569 PMCID: PMC8959648 DOI: 10.3389/fendo.2022.773143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The fourth type of multiple endocrine neoplasia (MEN) is known as a rare variant of MEN presenting a MEN1-like phenotype and originating from a germline mutation in CDKN1B. However, due to the small number of cases documented in the literature, the peculiar clinical features of MEN4 are still largely unknown, and clear indications about the clinical management of these patients are currently lacking. In order to widen our knowledge on MEN4 and to better typify the clinical features of this syndrome, we present two more cases of subjects with MEN4, and through a review of the current literature, we provide some possible indications on these patients' management. CASE PRESENTATION The first report is about a man who was diagnosed with a metastatic ileal G2-NET at the age of 34. Genetic analysis revealed the mutation p.I119T (c.356T>C) of exon 1 of CDKN1B, a mutation already reported in the literature in association with early-onset pituitary adenomas. The second report is about a 76-year-old woman with a multifocal pancreatic G1-NET. Genetic analysis identified the CDKN1B mutation c.482C>G (p.S161C), described here for the first time in association with MEN4 and currently classified as a variant of uncertain significance. Both patients underwent biochemical and imaging screening for MEN1-related diseases without any pathological findings. CONCLUSIONS According to the cases reported in the literature, hyperparathyroidism is the most common clinical feature of MEN4, followed by pituitary adenoma and neuroendocrine tumors. However, MEN4 appears to be a variant of MEN with milder clinical features and later onset. Therefore, these patients might need a different and personalized approach in clinical management and a peculiar screening and follow-up strategy.
Collapse
Affiliation(s)
- Elisabetta Lavezzi
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- *Correspondence: Elisabetta Lavezzi,
| | - Alessandro Brunetti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Valeria Smiroldo
- Oncology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gennaro Nappo
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Eleonora Vitali
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giampaolo Trivellin
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gherardo Mazziotti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Lania
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
22
|
Ferrigno R, Hasenmajer V, Caiulo S, Minnetti M, Mazzotta P, Storr HL, Isidori AM, Grossman AB, De Martino MC, Savage MO. Paediatric Cushing's disease: Epidemiology, pathogenesis, clinical management and outcome. Rev Endocr Metab Disord 2021; 22:817-835. [PMID: 33515368 PMCID: PMC8724222 DOI: 10.1007/s11154-021-09626-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Cushing's disease (CD) is rare in paediatric practice but requires prompt investigation, diagnosis and therapy to prevent long-term complications. Key presenting features are a change in facial appearance, weight gain, growth failure, virilization, disturbed puberty and psychological disturbance. Close consultation with an adult endocrinology department is recommended regarding diagnosis and therapy. The incidence of CD, a form of ACTH-dependent Cushing's syndrome (CS), is equal to approximately 5% of that seen in adults. The majority of ACTH-secreting adenomas are monoclonal and sporadic, although recent studies of pituitary tumours have shown links to several deubiquitination gene defects. Diagnosis requires confirmation of hypercortisolism followed by demonstration of ACTH-dependence. Identification of the corticotroph adenoma by pituitary MRI and/or bilateral inferior petrosal sampling for ACTH may contribute to localisation before pituitary surgery. Transsphenoidal surgery (TSS) with selective microadenomectomy is first-line therapy, followed by external pituitary irradiation if surgery is not curative. Medical therapy to suppress adrenal steroid synthesis is effective in the short-term and bilateral adrenalectomy should be considered in cases unfit for TSS or radiotherapy or when urgent remission is needed after unsuccessful surgery. TSS induces remission of hypercortisolism and improvement of symptoms in 70-100% of cases, particularly when performed by a surgeon with experience in children. Post-TSS complications include pituitary hormone deficiencies, sub-optimal catch-up growth, and persisting excess of BMI. Recurrence of hypercortisolism following remission is recognised but infrequent, being less common than in adult CD patients. With experienced specialist medical and surgical care, the overall prognosis is good. Early referral to an experienced endocrine centre is advised.
Collapse
Affiliation(s)
- Rosario Ferrigno
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Valeria Hasenmajer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvana Caiulo
- Primary care Paediatrician, Local Health Unit of Brindisi, Brindisi, Italy
| | - Marianna Minnetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Mazzotta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, London, UK
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, London, UK
- Royal Free Hospital ENETs Centre of Excellence, London, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | | | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, London, UK.
- Centre for Endocrinology, William Harvey Research Institute, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
23
|
Single-Cell Transcriptomics Reveals the Expression of Aging- and Senescence-Associated Genes in Distinct Cancer Cell Populations. Cells 2021; 10:cells10113126. [PMID: 34831349 PMCID: PMC8623328 DOI: 10.3390/cells10113126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human aging process is associated with molecular changes and cellular degeneration, resulting in a significant increase in cancer incidence with age. Despite their potential correlation, the relationship between cancer- and ageing-related transcriptional changes is largely unknown. In this study, we aimed to analyze aging-associated transcriptional patterns in publicly available bulk mRNA-seq and single-cell RNA-seq (scRNA-seq) datasets for chronic myelogenous leukemia (CML), colorectal cancer (CRC), hepatocellular carcinoma (HCC), lung cancer (LC), and pancreatic ductal adenocarcinoma (PDAC). Indeed, we detected that various aging/senescence-induced genes (ASIGs) were upregulated in malignant diseases compared to healthy control samples. To elucidate the importance of ASIGs during cell development, pseudotime analyses were performed, which revealed a late enrichment of distinct cancer-specific ASIG signatures. Notably, we were able to demonstrate that all cancer entities analyzed in this study comprised cell populations expressing ASIGs. While only minor correlations were detected between ASIGs and transcriptome-wide changes in PDAC, a high proportion of ASIGs was induced in CML, CRC, HCC, and LC samples. These unique cellular subpopulations could serve as a basis for future studies on the role of aging and senescence in human malignancies.
Collapse
|
24
|
Genetics of Acromegaly and Gigantism. J Clin Med 2021; 10:jcm10071377. [PMID: 33805450 PMCID: PMC8036715 DOI: 10.3390/jcm10071377] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Growth hormone (GH)-secreting pituitary tumours represent the most genetically determined pituitary tumour type. This is true both for germline and somatic mutations. Germline mutations occur in several known genes (AIP, PRKAR1A, GPR101, GNAS, MEN1, CDKN1B, SDHx, MAX) as well as familial cases with currently unknown genes, while somatic mutations in GNAS are present in up to 40% of tumours. If the disease starts before the fusion of the epiphysis, then accelerated growth and increased final height, or gigantism, can develop, where a genetic background can be identified in half of the cases. Hereditary GH-secreting pituitary adenoma (PA) can manifest as isolated tumours, familial isolated pituitary adenoma (FIPA) including cases with AIP mutations or GPR101 duplications (X-linked acrogigantism, XLAG) or can be a part of systemic diseases like multiple endocrine neoplasia type 1 or type 4, McCune-Albright syndrome, Carney complex or phaeochromocytoma/paraganglioma-pituitary adenoma association. Family history and a search for associated syndromic manifestations can help to draw attention to genetic causes; many of these are now tested as part of gene panels. Identifying genetic mutations allows appropriate screening of associated comorbidities as well as finding affected family members before the clinical manifestation of the disease. This review focuses on germline and somatic mutations predisposing to acromegaly and gigantism.
Collapse
|
25
|
Abstract
BACKGROUND Pituitary tumours are usually benign and relatively common intracranial tumours, with under- and overexpression of pituitary hormones and local mass effects causing considerable morbidity and increased mortality. While most pituitary tumours are sporadic, around 5% of the cases arise in a familial setting, either isolated [familial isolated pituitary adenoma, related to AIP or X-linked acrogigantism], or in a syndromic disorder, such as multiple endocrine neoplasia type 1 or 4, Carney complex, McCune-Albright syndrome, phaeochromocytoma/paraganglioma with pituitary adenoma, DICER1 syndrome, Lynch syndrome, and USP8-related syndrome. Genetically determined pituitary tumours usually present at younger age and show aggressive behaviour, and are often resistant to different treatment modalities. SUBJECT In this practical summary, we take a practical approach: which genetic syndromes should be considered in case of different presentation, such as tumour type, family history, age of onset and additional clinical features of the patient. CONCLUSION The identification of the causative mutation allows genetic and clinical screening of relatives at risk, resulting in earlier diagnosis, a better therapeutic response and ultimately to better long-term outcomes.
Collapse
Affiliation(s)
- Judit Dénes
- Divison of Endocrinology, 2nd Department of Medicine, Health Center, Hungarian Defence Forces, Budapest, Hungary
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK.
| |
Collapse
|
26
|
Yamamoto M, Nakao T, Ogawa W, Fukuoka H. Aggressive Cushing's Disease: Molecular Pathology and Its Therapeutic Approach. Front Endocrinol (Lausanne) 2021; 12:650791. [PMID: 34220707 PMCID: PMC8242934 DOI: 10.3389/fendo.2021.650791] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cushing's disease is a syndromic pathological condition caused by adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (ACTHomas) mediated by hypercortisolemia. It may have a severe clinical course, including infection, psychiatric disorders, hypercoagulability, and metabolic abnormalities, despite the generally small, nonaggressive nature of the tumors. Up to 20% of ACTHomas show aggressive behavior, which is related to poor surgical outcomes, postsurgical recurrence, serious clinical course, and high mortality. Although several gene variants have been identified in both germline and somatic changes in Cushing's disease, the pathophysiology of aggressive ACTHomas is poorly understood. In this review, we focused on the aggressiveness of ACTHomas, its pathology, the current status of medical therapy, and future prospects. Crooke's cell adenoma (CCA), Nelson syndrome, and corticotroph pituitary carcinoma are representative refractory pituitary tumors that secrete superphysiological ACTH. Although clinically asymptomatic, silent corticotroph adenoma is an aggressive ACTH-producing pituitary adenoma. In this review, we summarize the current understanding of the pathophysiology of aggressive ACTHomas, including these tumors, from a molecular point of view based on genetic, pathological, and experimental evidence. The treatment of aggressive ACTHomas is clinically challenging and usually resistant to standard treatment, including surgery, radiotherapy, and established medical therapy (e.g., pasireotide and cabergoline). Temozolomide is the most prescribed pharmaceutical treatment for these tumors. Reports have shown that several treatments for patients with refractory ACTHomas include chemotherapy, such as cyclohexyl-chloroethyl-nitrosourea combined with 5-fluorouracil, or targeted therapies against several molecules including vascular endothelial growth factor receptor, cytotoxic T lymphocyte antigen 4, programmed cell death protein 1 (PD-1), and ligand for PD-1. Genetic and experimental evidence indicates that some possible therapeutic candidates are expected, such as epidermal growth factor receptor tyrosine kinase inhibitor, cyclin-dependent kinase inhibitor, and BRAF inhibitor. The development of novel treatment options for aggressive ACTHomas is an emerging task.
Collapse
Affiliation(s)
- Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
| | | | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
- *Correspondence: Hidenori Fukuoka,
| |
Collapse
|
27
|
Abstract
Regulation of the serum calcium level in humans is achieved by the endocrine action of parathyroid glands working in concert with vitamin D and a set of critical target cells and tissues including osteoblasts, osteoclasts, the renal tubules, and the small intestine. The parathyroid glands, small highly vascularized endocrine organs located behind the thyroid gland, secrete parathyroid hormone (PTH) into the systemic circulation as is needed to keep the serum free calcium concentration within a tight physiologic range. Primary hyperparathyroidism (HPT), a disorder of mineral metabolism usually associated with abnormally elevated serum calcium, results from the uncontrolled release of PTH from one or several abnormal parathyroid glands. Although in the vast majority of cases HPT is a sporadic disease, it can also present as a manifestation of a familial syndrome. Many benign and malignant sporadic parathyroid neoplasms are caused by loss-of-function mutations in tumor suppressor genes that were initially identified by the study of genomic DNA from patients who developed HPT as a manifestation of an inherited syndrome. Somatic and inherited mutations in certain proto-oncogenes can also result in the development of parathyroid tumors. The clinical and genetic investigation of familial HPT in kindreds found to lack germline variants in the already known HPT-predisposition genes represents a promising future direction for the discovery of novel genes relevant to parathyroid tumor development.
Collapse
Affiliation(s)
- Jenny E. Blau
- Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: William F. Simonds,
| |
Collapse
|
28
|
Yanar EA, Makazan NV, Orlova EM, Kareva MА. [Genetic basis of Cushing's disease in children and targeted therapeutic future perspectives]. ACTA ACUST UNITED AC 2020; 66:39-49. [PMID: 33481366 DOI: 10.14341/probl12676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
Cushing's disease (CD) is a multisystem disorder of a cortisol excess caused by ACTH -secreting pituitary tumor (corticotropinoma). CD in children is due to somatic or germline mutations with the late onset causing multiple endocrine tumors. If not treated, hypercortisolism leads to severe decrease in quality of life and life-threating conditions. The first-line treatment for CD is pituitary surgery, which might be followed by complications and relapse with necessity of additional surgery or initiations of second-line treatment. Recent studies of molecular basis of corticotropinoma development made it possible to employ medical therapy in CD. Understanding of corticotropinoma etiology and pathogenesis is an important part of education for pediatric endocrinologists since we need to keep in mind possibility of multisystem disorder in case of CD in children and because medical therapy might gain more important role for CD treatment in future.The most actual genetic aspects of corticotroph adenomas growth and the medical treatment opportunities are present in this review.
Collapse
|