1
|
Schröder MAM, Greenald D, Lodewijk R, van Herwaarden AE, Span PN, Sweep FCGJ, Mitchell RT, Claahsen-van der Grinten HL. Evaluation of Ex Vivo Adrenocorticotropic Hormone Responsiveness of Human Fetal Testis. Endocrinology 2023; 164:bqad165. [PMID: 37935047 PMCID: PMC10652325 DOI: 10.1210/endocr/bqad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Testicular adrenal rest tumors (TARTs), commonly occurring in males with congenital adrenal hyperplasia, may arise from chronic stimulation of adrenocorticotropic hormone (ACTH)-sensitive cells in the testes. It is not yet established whether the human fetal testis (HFT) is responsive to ACTH. To investigate this, we cultured HFT tissue with and without ACTH for up to 5 days, and quantified adrenal steroid hormones and expression of adrenal steroidogenic enzymes. Fetal testis and adrenal tissue produced high levels of testosterone and cortisol, respectively, indicating viability. In contrast to fetal adrenal tissues, the expression of ACTH receptor MC2R was either absent or expressed at extremely low levels in ex vivo HFT tissue and no clear response to ACTH in gene expression or steroid hormone production was observed. Altogether, this study suggests that the HFT is unresponsive to ACTH, which would indicate that a TART does not arise from fetal testicular cells chronically exposed to ACTH in utero.
Collapse
Affiliation(s)
- Mariska A M Schröder
- Department of Pediatrics, Radboud Amalia Children's Hospital, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboudumc Graduate School, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- MRC Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, and the Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
| | - David Greenald
- MRC Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, and the Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
| | - Renate Lodewijk
- Department of Laboratory Medicine, Radboudumc Graduate School, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Antonius E van Herwaarden
- Department of Laboratory Medicine, Radboudumc Graduate School, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Paul N Span
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboudumc Graduate School, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboudumc Graduate School, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, and the Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
| | - Hedi L Claahsen-van der Grinten
- Department of Pediatrics, Radboud Amalia Children's Hospital, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
2
|
Luca E, Zitzmann K, Bornstein S, Kugelmeier P, Beuschlein F, Nölting S, Hantel C. Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System. Cancers (Basel) 2023; 15:4601. [PMID: 37760571 PMCID: PMC10526768 DOI: 10.3390/cancers15184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.
Collapse
Affiliation(s)
- Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | | | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| |
Collapse
|
3
|
Schneider G, Ruggiero C, Renault L, Doghman-Bouguerra M, Durand N, Hingrai G, Dijoud F, Plotton I, Lalli E. ACTH and prolactin synergistically and selectively regulate CYP17 expression and adrenal androgen production in human foetal adrenal organ cultures. Eur J Endocrinol 2023; 189:327-335. [PMID: 37638769 DOI: 10.1093/ejendo/lvad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE The essential role of ACTH on the growth and function of the human foetal adrenal (HFA) has long been recognized. In addition, many studies have suggested a role of the pituitary hormone prolactin (PRL) in the regulation of the HFA, but the effects of this hormone on steroidogenesis and gene expression are still unknown. Our objective was to investigate the effect of ACTH and PRL on the steroidogenic capacities of the HFA. DESIGN In vitro/ex vivo experimental study. METHODS We used a hanging drop in vitro organ culture system. First trimester HFA samples were cultured for 14 days in basal conditions or treated with ACTH, PRL, or a combination of the 2 (3 to 11 replicates depending on the experiment). Steroids were measured by liquid chromatography/tandem mass spectrometry or immunoassay, gene expression by RT-qPCR, and protein expression by immunoblot. RESULTS ACTH significantly increased corticosterone, cortisol, and cortisone production, both by itself and when used together with PRL. PRL stimulation by itself had no effect. Combined stimulation with ACTH + PRL synergistically and selectively increased adrenal androgen (DHEAS and Δ4-androstenedione) production and CYP17A1 expression in the HFA, while treatment with each single hormone had no significant effect on those steroids. CONCLUSIONS These results have important implications for our understanding of the hormonal cues regulating adrenal steroidogenesis in the HFA during the first trimester in physiological and pathological conditions and warrant further studies to characterize the molecular mechanisms of converging ACTH and PRL signalling to regulate CYP17A1 expression.
Collapse
Affiliation(s)
- Grégoire Schneider
- Department of Pediatric Surgery, University Hospital of Lyon, 69002 Lyon, France
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
| | - Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560 Valbonne, France
- Université Côte d'Azur, 06560 Valbonne, France
| | - Lucie Renault
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
- Reproductive Medicine and Biology, University Hospital of Lyon, 69002 Lyon, France
| | - Mabrouka Doghman-Bouguerra
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560 Valbonne, France
- Université Côte d'Azur, 06560 Valbonne, France
| | - Nelly Durand
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560 Valbonne, France
- Université Côte d'Azur, 06560 Valbonne, France
| | - Guillaume Hingrai
- Orthogenics Department, University Hospital of Lyon, 69002 Lyon, France
| | - Frédérique Dijoud
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
- Inserm U1208, 69675 Bron, France
- Department of Pathology, University Hospital of Lyon, 69002 Lyon, France
| | - Ingrid Plotton
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
- Reproductive Medicine and Biology, University Hospital of Lyon, 69002 Lyon, France
- Inserm U1208, 69675 Bron, France
- Department of Clinical Biochemistry, University Hospital of Lyon, 69002 Lyon, France
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560 Valbonne, France
- Université Côte d'Azur, 06560 Valbonne, France
- Inserm, 06560 Valbonne, France
| |
Collapse
|
4
|
del Valle I, Young MD, Kildisiute G, Ogunbiyi OK, Buonocore F, Simcock IC, Khabirova E, Crespo B, Moreno N, Brooks T, Niola P, Swarbrick K, Suntharalingham JP, McGlacken-Byrne SM, Arthurs OJ, Behjati S, Achermann JC. An integrated single-cell analysis of human adrenal cortex development. JCI Insight 2023; 8:e168177. [PMID: 37440461 PMCID: PMC10443814 DOI: 10.1172/jci.insight.168177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
The adrenal glands synthesize and release essential steroid hormones such as cortisol and aldosterone, but many aspects of human adrenal gland development are not well understood. Here, we combined single-cell and bulk RNA sequencing, spatial transcriptomics, IHC, and micro-focus computed tomography to investigate key aspects of adrenal development in the first 20 weeks of gestation. We demonstrate rapid adrenal growth and vascularization, with more cell division in the outer definitive zone (DZ). Steroidogenic pathways favored androgen synthesis in the central fetal zone, but DZ capacity to synthesize cortisol and aldosterone developed with time. Core transcriptional regulators were identified, with localized expression of HOPX (also known as Hop homeobox/homeobox-only protein) in the DZ. Potential ligand-receptor interactions between mesenchyme and adrenal cortex were seen (e.g., RSPO3/LGR4). Growth-promoting imprinted genes were enriched in the developing cortex (e.g., IGF2, PEG3). These findings reveal aspects of human adrenal development and have clinical implications for understanding primary adrenal insufficiency and related postnatal adrenal disorders, such as adrenal tumor development, steroid disorders, and neonatal stress.
Collapse
Affiliation(s)
- Ignacio del Valle
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Matthew D. Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gerda Kildisiute
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Olumide K. Ogunbiyi
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Ian C. Simcock
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research (NIHR) Great Ormond Street Biomedical Research Centre, London, United Kingdom
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Eleonora Khabirova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Berta Crespo
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Nadjeda Moreno
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Tony Brooks
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Paola Niola
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Katherine Swarbrick
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Jenifer P. Suntharalingham
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Sinead M. McGlacken-Byrne
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Owen J. Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research (NIHR) Great Ormond Street Biomedical Research Centre, London, United Kingdom
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - John C. Achermann
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| |
Collapse
|
5
|
Melau C, Gayete Mor B, Lundgaard Riis M, Nielsen JE, Dreisler E, Aaboe K, Tutein Brenøe P, Langhoff Thuesen L, Juul Hare K, Mitchell RT, Frederiksen H, Juul A, Jørgensen A. Dexamethasone affects human fetal adrenal steroidogenesis and subsequent ACTH response in an ex vivo culture model. Front Endocrinol (Lausanne) 2023; 14:1114211. [PMID: 37484942 PMCID: PMC10358843 DOI: 10.3389/fendo.2023.1114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Administration of dexamethasone (DEX) has been used experimentally to suppress androgenization of external genitalia in 46,XX fetuses with congenital adrenal hyperplasia. Despite this, the prenatal biological mechanism-of-action of DEX on fetal development is not known. This study aimed to examine direct effects of DEX on human fetal adrenal (HFA) steroidogenic activity including possible effects on the subsequent response to ACTH-stimulation. Methods Human fetal adrenal (HFA) tissue from 30 fetuses (1st trimester) were cultured ex vivo with A) DEX (10 µm) for 14 days, or B) DEX (10 µm) for 10 days followed by ACTH (1 nM) for 4 days. DEX-mediated effects on HFA morphology, viability, and apoptosis (immunohistochemistry), gene expression (quantitative PCR), and steroid hormone secretion (LC-MS/MS) were investigated. Results DEX-treatment caused decreased androstenedione (p<0.05) and increased cortisol (p<0.01) secretion suggesting that direct effects on the adrenal gland may contribute to the negative feedback on the hypothalamic-pituitary-adrenal axis in vivo. An altered response to ACTH stimulation in HFA pre-treated with DEX included increased androgen (p<0.05) and reduced cortisol production (p<0.05), supporting clinical observations of a temporary decreased ACTH-response following prenatal DEX-treatment. Additionally, the secretion of corticosterone was decreased (p<0.0001) following ACTH-stimulation in the initially DEX-treated HFAs. Discussion The observed effects suggest that prenatal DEX-treatment can cause direct effects on HFA steroidogenesis and in the subsequent response to ACTH-stimulation. This may indicate a requirement for careful monitoring of adrenal function in prenatally DEX-treated neonates, with particular focus on their mineralocorticoid levels.
Collapse
Affiliation(s)
- Cecilie Melau
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Berta Gayete Mor
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - John E. Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Eva Dreisler
- Department of Gynaecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kasper Aaboe
- Department of Gynaecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pia Tutein Brenøe
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Lea Langhoff Thuesen
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital, Hvidovre and Amager Hospital, Hvidovre, Denmark
| | - Kristine Juul Hare
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital, Hvidovre and Amager Hospital, Hvidovre, Denmark
| | - Rod T. Mitchell
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
6
|
Luconi M, Sogorb MA, Markert UR, Benfenati E, May T, Wolbank S, Roncaglioni A, Schmidt A, Straccia M, Tait S. Human-Based New Approach Methodologies in Developmental Toxicity Testing: A Step Ahead from the State of the Art with a Feto-Placental Organ-on-Chip Platform. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15828. [PMID: 36497907 PMCID: PMC9737555 DOI: 10.3390/ijerph192315828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Developmental toxicity testing urgently requires the implementation of human-relevant new approach methodologies (NAMs) that better recapitulate the peculiar nature of human physiology during pregnancy, especially the placenta and the maternal/fetal interface, which represent a key stage for human lifelong health. Fit-for-purpose NAMs for the placental-fetal interface are desirable to improve the biological knowledge of environmental exposure at the molecular level and to reduce the high cost, time and ethical impact of animal studies. This article reviews the state of the art on the available in vitro (placental, fetal and amniotic cell-based systems) and in silico NAMs of human relevance for developmental toxicity testing purposes; in addition, we considered available Adverse Outcome Pathways related to developmental toxicity. The OECD TG 414 for the identification and assessment of deleterious effects of prenatal exposure to chemicals on developing organisms will be discussed to delineate the regulatory context and to better debate what is missing and needed in the context of the Developmental Origins of Health and Disease hypothesis to significantly improve this sector. Starting from this analysis, the development of a novel human feto-placental organ-on-chip platform will be introduced as an innovative future alternative tool for developmental toxicity testing, considering possible implementation and validation strategies to overcome the limitation of the current animal studies and NAMs available in regulatory toxicology and in the biomedical field.
Collapse
Affiliation(s)
- Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Viale Medaglie d’Oro 305, 00136 Rome, Italy
| | - Miguel A. Sogorb
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Susanne Wolbank
- Ludwig Boltzmann Institut for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Alessandra Roncaglioni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Astrid Schmidt
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Marco Straccia
- FRESCI by Science&Strategy SL, C/Roure Monjo 33, Vacarisses, 08233 Barcelona, Spain
| | - Sabrina Tait
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
7
|
Melau C, Riis ML, Nielsen JE, Perlman S, Lundvall L, Thuesen LL, Hare KJ, Hammerum MS, Mitchell RT, Frederiksen H, Juul A, Jørgensen A. The effects of selected inhibitors on human fetal adrenal steroidogenesis differs under basal and ACTH-stimulated conditions. BMC Med 2021; 19:204. [PMID: 34493283 PMCID: PMC8425147 DOI: 10.1186/s12916-021-02080-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disordered fetal adrenal steroidogenesis can cause marked clinical effects including virilization of female fetuses. In postnatal life, adrenal disorders can be life-threatening due to the risk of adrenal crisis and must be carefully managed. However, testing explicit adrenal steroidogenic inhibitory effects of therapeutic drugs is challenging due to species-specific characteristics, and particularly the impact of adrenocorticotropic hormone (ACTH) stimulation on drugs targeting steroidogenesis has not previously been examined in human adrenal tissue. Therefore, this study aimed to examine the effects of selected steroidogenic inhibitors on human fetal adrenal (HFA) steroid hormone production under basal and ACTH-stimulated conditions. METHODS This study used an established HFA ex vivo culture model to examine treatment effects in 78 adrenals from 50 human fetuses (gestational weeks 8-12). Inhibitors were selected to affect enzymes critical for different steps in classic adrenal steroidogenic pathways, including CYP17A1 (Abiraterone acetate), CYP11B1/2 (Osilodrostat), and a suggested CYP21A2 inhibitor (Efavirenz). Treatment effects were examined under basal and ACTH-stimulated conditions in tissue from the same fetus and determined by quantifying the secretion of adrenal steroids in the culture media using liquid chromatography-tandem mass spectrometry. Statistical analysis was performed on ln-transformed data using one-way ANOVA for repeated measures followed by Tukey's multiple comparisons test. RESULTS Treatment with Abiraterone acetate and Osilodrostat resulted in potent inhibition of CYP17A1 and CYP11B1/2, respectively, while treatment with Efavirenz reduced testosterone secretion under basal conditions. ACTH-stimulation affected the inhibitory effects of all investigated drugs. Thus, treatment effects of Abiraterone acetate were more pronounced under stimulated conditions, while Efavirenz treatment caused a non-specific inhibition on steroidogenesis. ACTH-stimulation prevented the Osilodrostat-mediated CYP11B1 inhibition observed under basal conditions. CONCLUSIONS Our results show that the effects of steroidogenic inhibitors differ under basal and ACTH-stimulated conditions in the HFA ex vivo culture model. This could suggest that in vivo effects of therapeutic drugs targeting steroidogenesis may vary in conditions where patients have suppressed or high ACTH levels, respectively. This study further demonstrates that ex vivo cultured HFAs can be used to evaluate steroidogenic inhibitors and thereby provide novel information about the local effects of existing and emerging drugs that targets steroidogenesis.
Collapse
Affiliation(s)
- Cecilie Melau
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - John E Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Signe Perlman
- Department of Gynaecology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lene Lundvall
- Department of Gynaecology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lea Langhoff Thuesen
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital - Hvidovre and Amager Hospital, Hvidovre, Denmark
| | - Kristine Juul Hare
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital - Hvidovre and Amager Hospital, Hvidovre, Denmark
| | - Mette Schou Hammerum
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark. .,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|