1
|
Dai P, Chen C, Yu J, Ma C, Zhang X. New insights into sperm physiology regulation: Enlightenment from G-protein-coupled receptors. Andrology 2024; 12:1253-1271. [PMID: 38225815 DOI: 10.1111/andr.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND G-protein-coupled receptors are critical in many physiological and pathological processes in various organs. Serving as the control panel for sensing extracellular stimuli, G-protein-coupled receptors recognise various ligands, including light, temperature, odours, pheromones, hormones, neurotransmitters, chemokines, etc. Most recently, G-protein-coupled receptors residing in spermatozoa have been found to be indispensable for sperm function. OBJECTIVE Here, we have summarised cutting-edge findings on the functional mechanisms of G-protein-coupled receptors that are known to be associated with sperm functions and the activation of their downstream effectors, providing new insights into the roles of G-protein-coupled receptors in sperm physiology. RESULTS Emerging studies hint that alterations in G-protein-coupled receptors could affect sperm function, implicating their role in fertility, but solid evidence needs to be continuing excavated with various means. Several members of the G-protein-coupled receptor superfamily, including olfactory receptors, opsins, orphan G-protein-coupled receptors, CXC chemokine receptor 4, CC chemokine receptor 5 and CC chemokine receptor 6 as well as their downstream effector β-arrestins, etc., were suggested to be essential for sperm motility, capacitation, thermotaxis, chemotaxis, Ca2+ influx through CatSper channel and fertilisation capacity. CONCLUSION The present review provides a comprehensive overview of studies describing G-protein-coupled receptors and their potential action in sperm function. We also present a critical discussion of these issues, and a possible framework for future investigations on the diverse ligands, biological functions and cell signalling of G-protein-coupled receptors in spermatozoa. Here, the G-protein-coupled receptors and their related G proteins that specifically were identified in spermatozoa were summarised, and provided references valuable for further illumination, despite the evidence that is not overwhelming in most cases.
Collapse
Affiliation(s)
- Pengyuan Dai
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Jingyan Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Chaoye Ma
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| |
Collapse
|
2
|
Tian L, Andrews C, Yan Q, Yang JJ. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis Transl Med 2024; 10:167-194. [PMID: 39027195 PMCID: PMC11252437 DOI: 10.1002/cdt3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Corey Andrews
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Qiuyun Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Qian Z, Luo K, Zhang M, Yao G. Comparative analysis of calcium-sensing receptor (CaSR) expression and function in normal and abnormal human sperm and spermatogenic cells. ZYGOTE 2024; 32:250-255. [PMID: 39291604 DOI: 10.1017/s0967199424000091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The calcium-sensing receptor (CaSR) is a critical mediator of calcium homeostasis in various tissues. Its role in human reproduction, especially in sperm function and male fertility, remains not fully elucidated. This study investigates the expression patterns of CaSR in normal and abnormal sperm and spermatogenic cells and evaluates its potential effect on sperm motility and morphology. Using immunohistochemistry (IHC), quantitative PCR (qPCR), we assessed the expression levels of CaSR in normal sperm, spermatogonia, and cases of asthenozoospermia, oligozoospermia, and teratozoospermia. In vitro functional assays were performed to analyze the effects of CaSR modulation on sperm motility under varying conditions, including the presence of specific CaSR agonists and antagonists. Our study revealed distinct patterns of CaSR expression in normal sperm and spermatogonia compared with those in abnormal sperm samples, particularly in cases of asthenozoospermia, oligozoospermia, and teratozoospermia. A marked decrease in CaSR expression was evident in these abnormal samples, highlighting its significance in normal sperm functionality. Functional assays further elucidated the role of CaSR in sperm motility. Activation of CaSR through specific agonists enhanced sperm motility, while inhibition by antagonists led to reduced motility. Our findings suggest that CaSR plays a significant role in maintaining sperm functionality and that changes in its expression may be associated with male infertility. These insights into the molecular underpinnings of sperm physiology highlight CaSR as a potential therapeutic target for treating certain forms of male infertility.
Collapse
Affiliation(s)
- Zhengli Qian
- Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University,Zunyi, China
| | - Keyan Luo
- Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University,Zunyi, China
| | - Mingzhe Zhang
- Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University,Zunyi, China
| | - Guanping Yao
- Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University,Zunyi, China
| |
Collapse
|
4
|
Yahyavi SK, Boisen IM, Cui Z, Jorsal MJ, Kooij I, Holt R, Juul A, Blomberg Jensen M. Calcium and vitamin D homoeostasis in male fertility. Proc Nutr Soc 2024; 83:95-108. [PMID: 38072394 DOI: 10.1017/s002966512300486x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Calcium and vitamin D have well-established roles in maintaining calcium balance and bone health. Decades of research in human subjects and animals have revealed that calcium and vitamin D also have effects on many other organs including male reproductive organs. The presence of calcium-sensing receptor, vitamin D receptor, vitamin D activating and inactivating enzymes and calcium channels in the testes, male reproductive tract and human spermatozoa suggests that vitamin D and calcium may modify male reproductive function. Functional animal models have shown that vitamin D deficiency in male rodents leads to a decrease in successful mating and fewer pregnancies, often caused by impaired sperm motility and poor sperm morphology. Human studies have to a lesser extent validated these findings; however, newer studies suggest a positive effect of vitamin D supplementation on semen quality in cases with vitamin D deficiency, which highlights the need for initiatives to prevent vitamin D deficiency. Calcium channels in male reproductive organs and spermatozoa contribute to the regulation of sperm motility and capacitation, both essential for successful fertilisation, which supports a need to avoid calcium deficiency. Studies have demonstrated that vitamin D, as a regulator of calcium homoeostasis, influences calcium influx in the testis and spermatozoa. Emerging evidence suggests a potential link between vitamin D deficiency and male infertility, although further investigation is needed to establish a definitive causal relationship. Understanding the interplay between vitamin D, calcium and male reproductive health may open new avenues for improving fertility outcomes in men.
Collapse
Affiliation(s)
- Sam Kafai Yahyavi
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ida Marie Boisen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Zhihui Cui
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mads Joon Jorsal
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ireen Kooij
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rune Holt
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Qi R, Liang Y, Yu J, Chen B, Jiang J, Wu X, Lu W, Li Z. Liraglutide improved the reproductive function of obese mice by upregulating the testicular AC3/cAMP/PKA pathway. Reprod Biol Endocrinol 2024; 22:31. [PMID: 38509558 PMCID: PMC10953080 DOI: 10.1186/s12958-024-01202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The incidence of male reproductive dysfunction is increasing annually, and many studies have shown that obesity can cause severe harm to male reproductive function. The mechanism of male reproductive dysfunction caused by obesity is unclear, and there is no ideal treatment. Identification of effective therapeutic drugs and elucidation of the molecular mechanism involved in male reproductive health are meaningful. In this study, we investigated the effects of the GLP-1 receptor agonist liraglutide on sex hormones, semen quality, and testicular AC3/cAMP/PKA levels in high-fat-diet-induced obese mice. METHODS Obese mice and their lean littermates were treated with liraglutide or saline for 12 weeks. Body weight was measured weekly. Fasting blood glucose (FBG) was measured using a blood glucose test strip. The serum levels of insulin (INS), luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), free testosterone (F-TESTO), estradiol (E2), and sex hormone binding globulin (SHBG) were detected using ELISA. The sperm morphology and sperm count were observed after Pap staining. The mRNA and protein expression levels of testicular GLP-1R and AC3 were measured by RT-qPCR and Western blot, respectively. Testicular cAMP levels and PKA activity were detected using ELISA. RESULTS Liraglutide treatment can decrease body weight, FBG, INS, HOMA-IR, E2 and SHBG levels; increase LH, FSH, T, and F-TESTO levels; increase sperm count; decrease the sperm abnormality rate; and increase GLP-1R and AC3 expression levels and cAMP levels and PKA activity in testicular tissue. CONCLUSIONS Liraglutide can improve the sex hormone levels and semen quality of obese male mice. In addition to its weight loss effect, liraglutide can improve the reproductive function of obese male mice, which may also be related to the upregulation of AC3/cAMP/PKA pathway in the testis. This work lays the groundwork for future clinical studies.
Collapse
Affiliation(s)
- Ruibing Qi
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- Department of Endocrinology and Metabolism, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Yuzhen Liang
- Department of Endocrinology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jinming Yu
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Bing Chen
- Department of Endocrinology and Metabolism, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Jiaqin Jiang
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xingye Wu
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Wensheng Lu
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Zhengming Li
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
6
|
Xue Y, Xiong Y, Cheng X, Li K. Applications of laser technology in the manipulation of human spermatozoa. Reprod Biol Endocrinol 2023; 21:93. [PMID: 37865766 PMCID: PMC10589983 DOI: 10.1186/s12958-023-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023] Open
Abstract
The application of laser technology in the field of assisted reproductive technology (ART) has experienced rapid growth over the past decades owing to revolutionary techniques such as intracytoplasmic sperm injection (ICSI), preimplantation genetic testing (PGT), and in vitro manipulation of gametes and embryos. For male gametes, in vitro manipulation techniques include spermatozoa selection, sorting, immobilization, and quality assessment. A number of studies have been conducted to investigate the application of different laser technologies in the manipulation of human spermatozoa. However, there is a lack of a unified understanding of laser application in the in vitro manipulation of sperm and safety considerations in ART and, subsequently, the inability to make clear and accurate decisions on the clinical value of these laser technologies. This review summarizes the advancements and improvements of laser technologies in the manipulation of human spermatozoa, such as photobiomodulation therapy, laser trap systems for sperm analysis and sorting, laser-assisted selection of immotile sperm and laser-assisted immobilization of sperm prior to ICSI. The safety of those technologies used in ART is also discussed. This review will provide helpful and comprehensive insight into the applications of laser technology in the manipulation of human spermatozoa.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuping Xiong
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaohong Cheng
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
7
|
Ke S, Luo T. The Chemosensing Role of CatSper in Mammalian Sperm: An Updated Review. Curr Issues Mol Biol 2023; 45:6995-7010. [PMID: 37754226 PMCID: PMC10528052 DOI: 10.3390/cimb45090442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
After sperm enter the female reproductive tract, the physicochemical and biochemical microenvironment undergoes significant changes. In particular, the large changes in various ions encountered by sperm may alter the physiology of sperm, ultimately compromising capacitation and fertilization. Thus, the rapid response to environmental variations is vital for sperm functions. For example, Calcium, the most crucial ion for sperm functions, enters into sperm via Ca2+ permeable ion channels. The cation channel of sperm (CatSper) is a sperm-specific, pH-sensitive, and Ca2+-permeable ion channel. It is responsible for the predominant Ca2+ entry in mammalian sperm and is involved in nearly every event of sperm to acquire fertilizing capability. In addition, CatSper also serves as a pivotal polymodal chemosensor in mammalian sperm by responding to multiple chemical cues. Physiological chemicals (such as progesterone, prostaglandins, β-defensins, and odorants) provoke Ca2+ entry into sperm by activating CatSper and thus triggering sperm functions. Additionally, synthetic and natural chemicals (such as medicines, endocrine disrupting chemicals, drugs of abuse, and antioxidants) affect sperm functions by regulating CatSper-dependent Ca2+ signaling. Therefore, understanding the interactions between CatSper and extracellular ligands sheds light on the mechanisms underlying male infertility and offers innovative diagnostic and treatment approaches. This underscores the importance of CatSper as a crucial regulatory target in male reproduction, linking sperm function with the extracellular environment. In conclusion, this review comprehensively summarizes the relevant studies describing the environmental factors that affect CatSper in humans and rodents.
Collapse
Affiliation(s)
- Sulun Ke
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- Queen Mary School, Medical College, Nanchang University, Nanchang 330031, China
| | - Tao Luo
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang 330006, China
| |
Collapse
|
8
|
Lazrak A, Song W, Yu Z, Zhang S, Nellore A, Hoopes CW, Woodworth BA, Matalon S. Low molecular weight hyaluronan inhibits lung epithelial ion channels by activating the calcium-sensing receptor. Matrix Biol 2023; 116:67-84. [PMID: 36758905 PMCID: PMC10012407 DOI: 10.1016/j.matbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Herein, we tested the hypothesis that low molecular weight hyaluronan (LMW-HA) inhibits lung epithelial ions transport in-vivo, ex-vivo, and in-vitro by activating the calcium-sensing receptor (CaSR). Twenty-four hours post intranasal instillation of 50-150 µg/ml LMW-HA to C57BL/6 mice, there was a 75% inhibition of alveolar fluid clearance (AFC), a threefold increase in the epithelial lining fluid (ELF) depth, and a 20% increase in lung wet/dry (W/D) ratio. Incubation of human and mouse precision cut lung slices with 150 µg/ml LMW-HA reduced the activity and the open probability (Po) of epithelial sodium channel (ENaC) in alveolar epithelial type 2 (ATII) cells, and in mouse tracheal epithelial cells (MTEC) monolayers as early as 4 h. The Cl- current through cystic fibrosis transmembrane conductance regulator (CFTR) and the activity of Na,K-ATPase were both inhibited by more than 66% at 24 h. The inhibitory effects of LMW-HA on ion channels were reversed by 1 µM NPS-2143, or 150 µg/ml high molecular weight hyaluronan (HMW-HA). In HEK-293 cells expressing the calcium-sensitive Cl- channel TMEM16-A, CaSR was required for the activation of the Cl- current by LMW-HA. This is the first demonstration of lung ions and water transport inhibition by LMW-HA, and its mediation through the activation of CaSR.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA.
| | - Weifeng Song
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Shaoyan Zhang
- Department of Otolaryngology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Anoma Nellore
- Department of Medicine, Division of Infectious Diseases, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Charles W Hoopes
- Division of Cardiothoracic Surgery, Heersink School of Medicine, University of Alabama at Birmingham, AL 35295, USA
| | - Bradford A Woodworth
- Department of Otolaryngology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| |
Collapse
|
9
|
Alkaline Dilution Alters Sperm Motility in Dairy Goat by Affecting sAC/cAMP/PKA Pathway Activity. Int J Mol Sci 2023; 24:ijms24021771. [PMID: 36675287 PMCID: PMC9863640 DOI: 10.3390/ijms24021771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
In dairy goat farming, increasing the female kid rate is beneficial to milk production and is, therefore, economically beneficial to farms. Our previous study demonstrated that alkaline incubation enriched the concentration of X-chromosome-bearing sperm; however, the mechanism by which pH affects the motility of X-chromosome-bearing sperm remains unclear. In this study, we explored this mechanism by incubating dairy goat sperm in alkaline dilutions, examining the pattern of changes in sperm internal pH and Ca2+ concentrations and investigating the role of the sAC/cAMP/PKA pathway in influencing sperm motility. The results showed that adding a calcium channel inhibitor during incubation resulted in a concentration-dependent decrease in the proportion of spermatozoa with forward motility, and the sperm sAC protein activity was positively correlated with the calcium ion concentration (r = 0.9972). The total motility activity, proportion of forward motility, and proportion of X-chromosome-bearing sperm decreased (p < 0.05) when cAMP/PKA protease activity was inhibited. Meanwhile, the enrichment of X-chromosome-bearing sperm by pH did not affect the sperm capacitation state. These results indicate that alkaline dilution incubation reduces Ca2+ entry into X-sperm and the motility was slowed down through the sAC/cAMP/PKA signaling pathway, providing a theoretical foundation for further optimization of the sex control method.
Collapse
|
10
|
Cordero-Martínez J, Jimenez-Gutierrez GE, Aguirre-Alvarado C, Alacántara-Farfán V, Chamorro-Cevallos G, Roa-Espitia AL, Hernández-González EO, Rodríguez-Páez L. Participation of signaling proteins in sperm hyperactivation. Syst Biol Reprod Med 2022; 68:315-330. [DOI: 10.1080/19396368.2022.2122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Charmina Aguirre-Alvarado
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Inmunología e Infectología Centro Médico Nacional La Raza, IMSS, Ciudad de México, Mexico
| | - Verónica Alacántara-Farfán
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica Departamento de Farmacia Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ana L. Roa-Espitia
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Enrique O. Hernández-González
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Lorena Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
11
|
Li R, Qu J, Huang D, He Y, Niu J, Qi J. Expression Analysis of ZPB2a and Its Regulatory Role in Sperm-Binding in Viviparous Teleost Black Rockfish. Int J Mol Sci 2022; 23:ijms23169498. [PMID: 36012756 PMCID: PMC9409380 DOI: 10.3390/ijms23169498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Black rockfish is a viviparous teleost whose sperm could be stored in the female ovary for five months. We previously proposed that zona pellucida (ZP) proteins of black rockfish play a similar sperm-binding role as in mammals. In this study, SsZPB2a and SsZPB2c were identified as the most similar genes with human ZPA, ZPB1 and ZPB2 by Blastp method. Immunohistochemistry showed that ovary-specific SsZPB2a was initially expressed in the cytoplasm of oocytes at stage III. Then it gradually transferred to the region close to the cell membrane and zona pellucida of oocytes at stage IV. The most obvious protein signal was observed at the zona pellucida region of oocytes at stage V. Furthermore, we found that the recombinant prokaryotic proteins rSsZPB2a and rSsZPB2c could bind with the posterior end of sperm head and rSsZPB2a was able to facilitate the sperm survival in vitro. After knocking down Sszpb2a in ovarian tissues cultivated in vitro, the expressions of sperm-specific genes were down-regulated (p < 0.05). These results illustrated the regulatory role of ZP protein to the sperm in viviparous teleost for the first time, which could advance our understanding about the biological function of ZP proteins in the teleost.
Collapse
Affiliation(s)
- Rui Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiangbo Qu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Dan Huang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Correspondence: (J.N.); (J.Q.)
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
- Correspondence: (J.N.); (J.Q.)
| |
Collapse
|