1
|
Li D, Jan de Beur S, Hou C, Ruzhnikov MR, Seeley H, Cutting GR, Sheridan MB, Levine MA. Recurrent small variants in NESP55/NESPAS associated with broad GNAS methylation defects and pseudohypoparathyroidism type 1B. JCI Insight 2024; 9:e185874. [PMID: 39541438 DOI: 10.1172/jci.insight.185874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Pseudohypoparathyroidism type 1B (PHP1B) is associated with epigenetic changes in the maternal allele of the imprinted GNAS gene that inhibit expression of the α subunit of Gs (Gsα), thereby leading to parathyroid hormone resistance in renal proximal tubule cells where expression of Gsα from the paternal GNAS allele is normally silent. Although all patients with PHP1B show loss of methylation for the exon A/B differentially methylated region (DMR), some patients with autosomal dominant PHP1B (AD-PHP1B) and most patients with sporadic PHP1B have additional methylation defects that affect the DMRs corresponding to exons XL, AS1, and NESP. Because the genetic defect is unknown in most of these patients, we sought to identify the underlying genetic basis for AD-PHP1B in 2 multigenerational families with broad GNAS methylation defects and negative clinical exomes. Genome sequencing identified small GNAS variants in each family that were also present in unrelated individuals with PHP1B in a replication cohort. Maternal transmission of one GNAS microdeletion showed reduced penetrance in some unaffected patients. Expression of AS transcripts was increased, and NESP was decreased, in cells from affected patients. These results suggest that the small deletion activated AS transcription, leading to methylation of the NESP DMR with consequent inhibition of NESP transcription, and thereby provide a potential mechanism for PHP1B.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, and
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Suzanne Jan de Beur
- Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Maura Rz Ruzhnikov
- Neurology and Neurological Sciences, Pediatrics, Division of Medical Genetics, and
| | - Hilary Seeley
- Division of Pediatric Endocrinology, Stanford University and Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Molly B Sheridan
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael A Levine
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Endocrinology and Diabetes and The Center for Bone Health, The Children's Hospital of Philadelphia, and Department of Pediatrics University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Morgan RK, Wang K, Svoboda LK, Rygiel CA, Lalancette C, Cavalcante R, Bartolomei MS, Prasasya R, Neier K, Perera BP, Jones TR, Colacino JA, Sartor MA, Dolinoy DC. Effects of Developmental Lead and Phthalate Exposures on DNA Methylation in Adult Mouse Blood, Brain, and Liver: A Focus on Genomic Imprinting by Tissue and Sex. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67003. [PMID: 38833407 PMCID: PMC11166413 DOI: 10.1289/ehp14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. It is unknown whether epigenetic changes in surrogate tissues such as the blood are reflective of similar changes in target tissues such as cortex or liver. OBJECTIVE We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. METHODS Female mice were exposed to human relevant doses of either Pb (32 ppm ) via drinking water or DEHP (5 mg / kg-day ) via chow for 2 weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and ChIP-enrich were used for genomic annotations and gene set enrichment tests of DMRs, respectively. RESULTS The cortex contained the majority of DMRs associated with Pb (66%) and DEHP (57%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n = 13 and 8 DMRs with Pb and DEHP exposure, respectively) and exposure types (n = 55 and 39 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures, with some signatures replicated between target and surrogate tissues. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, and we again observed a replication of DMR signatures between blood and target tissues. Specifically, we observed hypermethylation of the Grb10 ICR in both blood and liver of Pb-exposed male animals. CONCLUSIONS These data provide preliminary evidence that imprinted genes may be viable candidates in the search for epigenetic biomarkers of toxicant exposure in target tissues. Additional research is needed on allele- and developmental stage-specific effects, as well as whether other imprinted genes provide additional examples of this relationship. https://doi.org/10.1289/EHP14074.
Collapse
Affiliation(s)
- Rachel K. Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Christine A. Rygiel
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Claudia Lalancette
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Raymond Cavalcante
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rexxi Prasasya
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kari Neier
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Bambarendage P.U. Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Tamara R. Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Abbas A, Hammad AS, Al-Shafai M. The role of genetic and epigenetic GNAS alterations in the development of early-onset obesity. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108487. [PMID: 38103632 DOI: 10.1016/j.mrrev.2023.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND GNAS (guanine nucleotide-binding protein, alpha stimulating) is an imprinted gene that encodes Gsα, the α subunit of the heterotrimeric stimulatory G protein. This subunit mediates the signalling of a diverse array of G protein-coupled receptors (GPCRs), including the melanocortin 4 receptor (MC4R) that serves a pivotal role in regulating food intake, energy homoeostasis, and body weight. Genetic or epigenetic alterations in GNAS are known to cause pseudohypoparathyroidism in its different subtypes and have been recently associated with isolated, early-onset, severe obesity. Given the diverse biological functions that Gsα serves, multiple molecular mechanisms involving various GPCRs, such as MC4R, β2- and β3-adrenoceptors, and corticotropin-releasing hormone receptor, have been implicated in the pathophysiology of severe, early-onset obesity that results from genetic or epigenetic GNAS changes. SCOPE OF REVIEW This review examines the structure and function of GNAS and provides an overview of the disorders that are caused by defects in this gene and may feature early-onset obesity. Moreover, it elucidates the potential molecular mechanisms underlying Gsα deficiency-induced early-onset obesity, highlighting some of their implications for the diagnosis, management, and treatment of this complex condition. MAJOR CONCLUSIONS Gsα deficiency is an underappreciated cause of early-onset, severe obesity. Therefore, screening children with unexplained, severe obesity for GNAS defects is recommended, to enhance the molecular diagnosis and management of this condition.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ayat S Hammad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Urakawa T, Sano S, Kawashima S, Nakamura A, Shima H, Ohta M, Yamada Y, Nishida A, Narusawa H, Ohtsu Y, Matsubara K, Dateki S, Maruo Y, Fukami M, Ogata T, Kagami M. (Epi)genetic and clinical characteristics in 84 patients with pseudohypoparathyroidism type 1B. Eur J Endocrinol 2023; 189:590-600. [PMID: 38039118 DOI: 10.1093/ejendo/lvad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE Pseudohypoparathyroidism type 1B (PHP1B) caused by methylation defects of differentially methylated regions (DMRs) on the GNAS locus can be categorized into groups according to etiologies and methylation defect patterns of the DMRs. The aim of this study was to clarify the clinical characteristics of each group. DESIGN Comprehensive molecular analyses consisting of methylation, copy number, and microsatellite analyses. METHODS Eighty-four patients with PHP1B were included in this study. We classified them into 5 groups, namely, autosomal dominant inheritance-PHP1B (Group 1, G1), sporadic-PHP1B (G2), and atypical-PHP1B (G3-G5), based on the methylation defect patterns in 4 DMRs on the GNAS locus and etiologies and evaluated the clinical findings in each group and compared them among the groups. RESULTS G2 had the youngest age and the highest serum intact parathyroid hormone levels among the 5 groups at the time of diagnosis. The most common symptoms at the time of diagnosis were tetany in G1, and seizures or loss of consciousness in G2. Albright's hereditary osteodystrophy and PHP-suggestive features were most frequently observed in the G2 proband. Nine patients had neurodevelopmental disorders (NDs) consisting of mild to borderline intellectual disability and/or developmental delay. There were no significant correlations between the average methylation ratios of 7 CpG sites in the GNAS-A/B:TSS-DMR and hormonal and biochemical findings. CONCLUSION This study revealed the differences in some clinical characteristics, particularly clinical features, and ages at the time of diagnosis between G2 and other groups and detailed NDs observed in some patients with PHP1B.
Collapse
Affiliation(s)
- Tatsuki Urakawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Endocrinology and Metabolism, Shizuoka Children's Hospital, Shizuoka 420-8660, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Hirohito Shima
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Motoki Ohta
- Department of Pediatrics, Saiseikai Shigaken Hospital, Ritto 520-3046, Japan
| | - Yuki Yamada
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Ai Nishida
- Diabetes and Endocrinology, Kameda Medical Center, Kamogawa 296-0041, Japan
| | - Hiromune Narusawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Yoshiaki Ohtsu
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi 371-0034, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Sciences, Otsu 520-2192, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu 432-8580, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
5
|
Morgan RK, Wang K, Svoboda LK, Rygiel CA, Lalancette C, Cavalcante R, Bartolomei MS, Prasasya R, Neier K, Perera BP, Jones TR, Colacino JA, Sartor MA, Dolinoy DC. Effects of Developmental Lead and Phthalate Exposures on DNA Methylation in Adult Mouse Blood, Brain, and Liver Identifies Tissue- and Sex-Specific Changes with Implications for Genomic Imprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560131. [PMID: 37873115 PMCID: PMC10592650 DOI: 10.1101/2023.09.29.560131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. Objective We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. Methods Female mice were exposed to human relevant doses of either Pb (32ppm) via drinking water or DEHP (5 mg/kg-day) via chow for two weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and Chipenrich were used for genomic annotations and geneset enrichment tests of DMRs, respectively. Results The cortex contained the majority of DMRs associated with Pb (69%) and DEHP (58%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n = 17 and 14 DMRs with Pb and DEHP exposure, respectively) and exposure types (n = 79 and 47 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, with 15 and 17 ICR-located DMRs across cortex, blood, and liver in each gene, respectively. The ICRs were also the location of DMRs replicated across target and surrogate tissues, suggesting epigenetic changes these regions may be potentially viable biomarkers. Conclusions We observed Pb- and DEHP-specific DNAm changes in cortex, blood, and liver, and the greatest degree of overlap in DMR signatures was seen between exposures followed by sex and tissue type. DNAm at imprinted control regions was altered by both Pb and DEHP, highlighting the susceptibility of genomic imprinting to these exposures during the perinatal window of development.
Collapse
Affiliation(s)
- Rachel K. Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christine A. Rygiel
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claudia Lalancette
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raymond Cavalcante
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rexxi Prasasya
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Neier
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bambarendage P.U. Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Root AW, Levine MA. One half-century of advances in the evaluation and management of disorders of bone and mineral metabolism in children and adolescents. J Pediatr Endocrinol Metab 2023; 36:105-118. [PMID: 36636022 PMCID: PMC10406614 DOI: 10.1515/jpem-2022-0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
The past 50 years of research in pediatric bone and mineral metabolism have led to remarkable progress in the identification and characterization of disorders that affect the developing skeleton. Progress has been facilitated through advances in both technology and biology and this paper provides a brief description of some but not all of the key findings, including identification of the calcium sensing receptor and the polypeptides parathyroid hormone and parathyroid hormone-related protein as well as their shared receptor and signal generating pathways; the elucidation of vitamin D metabolism and actions; discovery of fibroblast growth factor 23 (FGF23), the sodium-phosphate co-transporters and the other components that regulate phosphate metabolism. Moreover, the past half-century of research has led to the delineation of the molecular bases for genetic forms of hypoparathyroidism, pseudohypoparathyroidism, and primary hyperparathyroidism as well as the determination of the genetic causes of osteogenesis imperfecta, osteopetrosis, hypophosphatasia, and other disorders of mineral/bone homeostasis. During the next decade we expect that many of these fundamental discoveries will lead to the development of innovative treatments that will improve the lives of children with these disorders.
Collapse
Affiliation(s)
- Allen W. Root
- Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Michael A. Levine
- Corresponding author: Michael A. Levine, MD, The Center for Bone Health at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA,
| |
Collapse
|
7
|
Miller DE, Hanna P, Galey M, Reyes M, Linglart A, Eichler EE, Jüppner H. Targeted Long-Read Sequencing Identifies a Retrotransposon Insertion as a Cause of Altered GNAS Exon A/B Methylation in a Family With Autosomal Dominant Pseudohypoparathyroidism Type 1b (PHP1B). J Bone Miner Res 2022; 37:1711-1719. [PMID: 35811283 PMCID: PMC9474630 DOI: 10.1002/jbmr.4647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Pseudohypoparathyroidism type Ib (PHP1B) is characterized predominantly by resistance to parathyroid hormone (PTH) leading to hypocalcemia and hyperphosphatemia. These laboratory abnormalities are caused by maternal loss-of-methylation (LOM) at GNAS exon A/B, which reduces in cis expression of the stimulatory G protein α-subunit (Gsα). Paternal Gsα expression in proximal renal tubules is silenced through unknown mechanisms, hence LOM at exon A/B reduces further Gsα protein in this kidney portion, leading to PTH resistance. In a previously reported PHP1B family, affected members showed variable LOM at exon A/B, yet no genetic defect was found by whole-genome sequencing despite linkage to GNAS. Using targeted long-read sequencing (T-LRS), we discovered an approximately 2800-bp maternally inherited retrotransposon insertion nearly 1200 bp downstream of exon XL not found in public databases or in 13,675 DNA samples analyzed by short-read whole-genome sequencing. T-LRS data furthermore confirmed normal methylation at exons XL, AS, and NESP and showed that LOM comprising exon A/B is broader than previously thought. The retrotransposon most likely causes the observed epigenetic defect by impairing function of a maternally derived NESP transcript, consistent with findings in mice lacking full-length NESP mRNA and in PHP1B patients with deletion of exon NESP and adjacent intronic sequences. In addition to demonstrating that T-LRS is an effective strategy for identifying a small disease-causing variant that abolishes or severely reduces exon A/B methylation, our data demonstrate that this sequencing technology has major advantages for simultaneously identifying structural defects and altered methylation. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Danny E. Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Patrick Hanna
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Miranda Galey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Agnès Linglart
- Université Paris-Saclay, Inserm, Physiologie et physiopathologie endocrinienne; AP-HP, Department of molecular genetics, Bicêtre Paris-Saclay hospital, Le Kremlin Bicêtre, France
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Danzig J, Li D, Jan de Beur S, Levine MA. High-throughput Molecular Analysis of Pseudohypoparathyroidism 1b Patients Reveals Novel Genetic and Epigenetic Defects. J Clin Endocrinol Metab 2021; 106:e4603-e4620. [PMID: 34157100 PMCID: PMC8677598 DOI: 10.1210/clinem/dgab460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Patients with pseudohypoparathyroidism type 1b (PHP1b) show disordered imprinting of the maternal GNAS allele or paternal uniparental disomy (UPD). Genetic deletions in STX16 or in upstream exons of GNAS are present in many familial but not sporadic cases. OBJECTIVE Characterization of epigenetic and genetic defects in patients with PHP1b. DESIGN AND PATIENTS DNA from 84 subjects, including 26 subjects with sporadic PHP1b, 27 affected subjects and 17 unaffected and/or obligate gene carriers from 12 PHP1b families, 11 healthy individuals, and 3 subjects with PHP1a was subjected to quantitative pyrosequencing of GNAS differentially methylated regions (DMRs), microarray analysis, and microsatellite haplotype analysis. SETTING Academic medical center. MAIN OUTCOME MEASUREMENTS Molecular pathology of PHP1b. RESULTS Healthy subjects, unaffected family members and obligate carriers of paternal PHP1b alleles, and subjects with PHP1a showed normal methylation of all DMRs. All PHP1b subjects showed loss of methylation (LOM) at the exon A/B DMR. Affected members of 9 PHP1b kindreds showed LOM only at the exon A/B DMR, which was associated with a 3-kb deletion of STX16 exons 4 through 6 in 7 families and a novel deletion of STX16 and adjacent NEPEPL1 in 1 family. A novel NESP deletion was found in 1 of 2 other families with more extensive methylation defects. One sporadic PHP1b had UPD of 20q, 2 had 3-kb STX16 deletions, and 5 had apparent epigenetic mosaicism. CONCLUSIONS We found diverse patterns of defective methylation and identified novel or previously known mutations in 9 of 12 PHP1b families.
Collapse
Affiliation(s)
- Jennifer Danzig
- Division of Endocrinology and Diabetes, and The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Suzanne Jan de Beur
- Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael A Levine
- Division of Endocrinology and Diabetes, and The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|