1
|
Chen W, Shan Y, Wang M, Liang R, Sa R. Chicoric acid exerts therapeutic effects in DSS-induced ulcerative colitis by targeting the USP9X/IGF2BP2 axis. Br J Pharmacol 2024. [PMID: 39435543 DOI: 10.1111/bph.17354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND AND PURPOSE Chicoric acid, a hydroxycinnamic acid, exhibits anti-inflammation activities. However, the specific mechanisms underlying the effects of chicoric acid on dextran sulfate sodium (DSS)-induced colitis remain unclear. Here, we aimed to elucidate the molecular mechanisms underlying the protective effects of chicoric acid in DSS-induced colitis. EXPERIMENTAL APPROACH Mice with DSS-induced colitis (UC mice) were treated for a week with chicoric acid. Symptoms of colitis, colonic pathology, inflammation-related indicators, and intestinal mucosal barrier function were evaluated. RNA sequencing was performed on colon tissues to obtain differentially expressed genes. The deubiquitinating enzyme USP9X was selected, and the inhibitory and targeting effects of chicoric acid on USP9X were subsequently determined. In vivo and in vitro, DSS-induced colitis was treated with USP9X inhibitors WP1130 and EOAI3402143. Ubiquitination label-free quantitative proteomic analysis was performed to identify protein peptides that may undergo de-ubiquitination by USP9X. Co-immunoprecipitation (Co-IP), immunohistochemistry and western blotting were used to validate in vivo and in vitro results. KEY RESULTS Chicoric acid significantly alleviated clinical activity and histological changes, inhibited pro-inflammatory cytokine production and improved integrity of the intestinal barrier in UC mice. Moreover, chicoric acid suppressed USP9X expression in colonic tissues from UC mice. Furthermore, USP9X contributed to promoting the onset of UC and that insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) was deubiquitinated by USP9X. CONCLUSION AND IMPLICATIONS Chicoric acid ameliorated DSS-induced colitis by targeting the USP9X/IGF2BP2 axis, indicating that targeting the USP9X/IGF2BP2 axis presents a promising and innovative therapeutic approach for the treatment of UC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunan Shan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Wang
- Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui Liang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ri Sa
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Iyer K, Ivanov J, Tenchov R, Ralhan K, Rodriguez Y, Sasso JM, Scott S, Zhou QA. Emerging Targets and Therapeutics in Immuno-Oncology: Insights from Landscape Analysis. J Med Chem 2024; 67:8519-8544. [PMID: 38787632 PMCID: PMC11181335 DOI: 10.1021/acs.jmedchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In the ever-evolving landscape of cancer research, immuno-oncology stands as a beacon of hope, offering novel avenues for treatment. This study capitalizes on the vast repository of immuno-oncology-related scientific documents within the CAS Content Collection, totaling over 350,000, encompassing journals and patents. Through a pioneering approach melding natural language processing with the CAS indexing system, we unveil over 300 emerging concepts, depicted in a comprehensive "Trend Landscape Map". These concepts, spanning therapeutic targets, biomarkers, and types of cancers among others, are hierarchically organized into eight major categories. Delving deeper, our analysis furnishes detailed quantitative metrics showcasing growth trends over the past three years. Our findings not only provide valuable insights for guiding future research endeavors but also underscore the merit of tapping the vast and unparalleled breadth of existing scientific information to derive profound insights.
Collapse
Affiliation(s)
| | - Julian Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Sabina Scott
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
3
|
Lu F, Gao G, Zhang H, Zhang W. The relationship between polymorphism of IGF2BP2 gene rs4402960 and risk of pan-cancer: a meta-analysis and a bioinformatics analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-17. [PMID: 38555596 DOI: 10.1080/15257770.2024.2333036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE To conduct a meta-analysis and a bioinformatics analysis to assess the relationship between IGF2BP2 gene polymorphism and pan-cancer risk. METHODS PubMed, EMBASE, and Web of Science were conducted to literature searches. The heterogeneity test was used in five genetic models. Odds ratios (OR), 95% confidence intervals (CI), and p-values were used to evaluate the combined effects of various genetic models. Subgroup analysis and Meta-regression analysis were used to analyze the characteristics of heterogeneity. Sensitivity analysis and publication bias were also performed. Transcriptomic information on IGF2BP2 was downloaded and analyzed from the TCGA and GTEx databases. GEPIA (http://gepia.cancer-pku.cn/) was performed to analyze the relationship between IGF2BP2 expression and cancer tissue. RESULTS This meta-analysis contained 7 case-control studies, with 5,908 cases and 7,890 controls. There were significant differences in the heterozygous genetic model of IGF2BP2 gene rs4402960 polymorphism (OR = 1.080, 95% CI = 1.003-1.163, p = 0.041). In subgroup analysis based on ethnicity, There was a statistical significant association in Chinese (heterozygous: OR = 1.110, 95% CI = 1.010-1.220, p = 0.030). Bioinformatics analysis found that IGF2BP2 was over-expressed in pan-cancer (p < 0.01). In addition, the Kaplan-Meier estimate showed that there is statistical significance of OS between the low and high IGF2BP2 TPM groups in Lung adenocarcinoma (p <0.001). CONCLUSIONS To sum up, IGF2BP2 gene polymorphism may be related to cancer risk. IGF2BP2 has diagnostic value in the diagnosis and treatment of pan-cancer.
Collapse
Affiliation(s)
- Fengke Lu
- Department of Blood Transfusion, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Gan Gao
- Department of Clinical Laboratory, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Hongyu Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou Traditional Chinese Medical Hospital, The Third Clinical Faculty of Guangxi University of Chinese Medicine, Liuzhou, Guangxi, China
| | - Wei Zhang
- Department of Clinical Laboratory, Guilin TCM Hospital Affiliated to Guangxi University of Chinese Medicine, Guilin, Guangxi, China
| |
Collapse
|
4
|
Yan L, Sun J, Wang Y, Liu X, Hu J, Sun M, Suo X, Duan R, Yuan C. Lin28 affects the proliferation and osteogenic differentiation of human dental pulp stem cells by directly inhibiting let-7b maturation. BDJ Open 2024; 10:17. [PMID: 38443392 PMCID: PMC10914815 DOI: 10.1038/s41405-024-00194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVE Activation of Lin28 gene under certain conditions promotes tissue damage repair. However, it remains unknown whether conditional expression of Lin28 facilitates the recovery of damaged pulp tissue. In the study, we focus on exploring the effects and possible regulatory mechanisms of Lin28 on the proliferation and differentiation of human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS We adopted techniques such as the ethynyl-2'-deoxyuridine (EdU) incorporation assay, RNA-protein immunoprecipitation (RIP) analysis, and luciferase assays to study the regulation of hDPSCs by Lin28. Furthermore, gain-of-function and loss-of-function analyses were also used in explored factors regulating hDPSCs activation. RESULTS The results show that Lin28 inhibited osteogenic differentiation by directly targets pre-let-7b. Through bioinformatics sequencing and dual luciferase experiments we learned that let-7b directly targets the IGF2BP2 3'UTR. Silencing of IGF2BP2 showed a similar biological effect as overexpression of let-7b. Overexpression of IGF2BP2 counteracted the differentiation-promoting effects produced by let-7b overexpression. DISCUSSION/CONCLUSIONS In conclusion, the RNA-binding protein Lin28 regulates osteogenic differentiation of hDPSCs by inhibiting let-7 miRNA maturation. And mature let-7b directly regulated the expression of IGF2BP2 by targeting the 3'UTR region of IGF2BP2 mRNA thus further inhibiting the differentiation of hDPSCs.
Collapse
Affiliation(s)
- Liu Yan
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Jing Sun
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yushan Wang
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xinxin Liu
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jiayi Hu
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Mengxin Sun
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xi Suo
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Rongquan Duan
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
5
|
Zhou Y, Yan J, Huang H, Liu L, Ren L, Hu J, Jiang X, Zheng Y, Xu L, Zhong F, Li X. The m 6A reader IGF2BP2 regulates glycolytic metabolism and mediates histone lactylation to enhance hepatic stellate cell activation and liver fibrosis. Cell Death Dis 2024; 15:189. [PMID: 38443347 PMCID: PMC10914723 DOI: 10.1038/s41419-024-06509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
Evidence for the involvement of N6-Methyladenosine (m6A) modification in the etiology and progression of liver fibrosis has emerged and holds promise as a therapeutic target. Insulin-like growth factor 2 (IGF2) mRNA-binding protein 2 (IGF2BP2) is a newly identified m6A-binding protein that functions to enhance mRNA stability and translation. However, its role as an m6A-binding protein in liver fibrosis remains elusive. Here, we observed that IGF2BP2 is highly expressed in liver fibrosis and activated hepatic stellate cells (HSCs), and inhibition of IGF2BP2 protects against HSCs activation and liver fibrogenesis. Mechanistically, as an m6A-binding protein, IGF2BP2 regulates the expression of Aldolase A (ALDOA), a key target in the glycolytic metabolic pathway, which in turn regulates HSCs activation. Furthermore, we observed that active glycolytic metabolism in activated HSCs generates large amounts of lactate as a substrate for histone lactylation. Importantly, histone lactylation transforms the activation phenotype of HSCs. In conclusion, our findings reveal the essential role of IGF2BP2 in liver fibrosis by regulating glycolytic metabolism and highlight the potential of targeting IGF2BP2 as a therapeutic for liver fibrosis.
Collapse
Affiliation(s)
- Yongqiang Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jiexi Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Precision Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - He Huang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lu Liu
- Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longfei Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jinjing Hu
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Xiaoxu Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yan Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lingcong Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Fupeng Zhong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- Precision Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
6
|
Lin CW, Yang WE, Su CW, Lu HJ, Su SC, Yang SF. IGF2BP2 promotes cell invasion and epithelial-mesenchymal transition through Src-mediated upregulation of EREG in oral cancer. Int J Biol Sci 2024; 20:818-830. [PMID: 38250159 PMCID: PMC10797698 DOI: 10.7150/ijbs.91786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), with high affinity to a myriad of RNA transcripts, has been shown to elicit promotive effects on tumorigenesis and metastasis. Yet, the functional involvement of IGF2BP2 in the progression of oral squamous cell carcinoma (OSCC) remains poorly understood. In this study, we showed that IGF2BP2 was upregulated in head and neck cancer, and high levels of IGF2BP2 were associated with poor survival. In in vitro experiments, IGF2BP2 promoted migration and invasion responses of OSCC cells. Moreover, we identified an IGF2BP2-regulated gene, EREG, which functioned as a modulator of OSCC invasion downstream of IGF2BP2. In addition, EREG expression triggered the epithelia-mesenchymal transition (EMT) in OSCC, as evidenced by the observation that knockdown of EREG weakened the induction of EMT mediated by IFG2BP2, and replenishment of EREG favored the EMT in IGF2BP2-depleted cells. Such IGF2BP2-regulated EREG expression, EMT, and cell invasion were dependent on the activation of FAK/Src signaling pathway. Collectively, these findings suggest that EREG, serving as a functional mediator of IGF2BP2-regulated EMT and cell invasion in oral cancer, may be implicated as a potential target for antimetastatic therapies.
Collapse
Affiliation(s)
- Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Ju Lu
- Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Yang L, Zhang L, Du Q, Gong X, Tian J. Exploring the molecular mechanism underlying the psoriasis and T2D by using microarray data analysis. Sci Rep 2023; 13:19313. [PMID: 37935955 PMCID: PMC10630520 DOI: 10.1038/s41598-023-46795-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023] Open
Abstract
Although a large number of evidence has identified that psoriasis is significantly correlated with type 2 diabetes (T2D), the common molecular mechanism of its occurrence remains unclear. Our study aims to further elucidate the mechanism of the occurrence of this complication. We obtained the gene expression data of psoriasis (GSE30999) and T2D (GSE28829) from the Gene Expression Omnibus (GEO) dataset. Then the common differentially expressed genes (DEGs) of T2D and psoriasis were identified. After that, we performed three types of analyses about these DEGs, including functional enrichment analysis, protein-protein interaction (PPI) network and module manufacture, hub genes identification and co-expression analysis. 132 common DEGs (14 upregulated genes and 118 downregulated genes) were identified for subsequent a series of analyses. Function enrichment analysis demonstrated that Rap1 signaling pathway, PI3K-Akt signaling pathway, and cGMP-PKG signaling pathway may play a significant role in pathogenesis of psoriasis and T2D. Finally, 3 important hub genes were selected by utilizing cytoHubba, including SNRPN, GNAS, IGF2. Our work reveals the potential common signaling pathways of psoriasis and T2D. These Hub genes and common signaling pathways provide insights for further investigation of molecular mechanism about psoriasis and T2D.
Collapse
Affiliation(s)
- Li Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Lei Zhang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qingfang Du
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyu Gong
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jun Tian
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, China.
| |
Collapse
|
8
|
Varesi A, Campagnoli LIM, Barbieri A, Rossi L, Ricevuti G, Esposito C, Chirumbolo S, Marchesi N, Pascale A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res Rev 2023; 88:101958. [PMID: 37211318 DOI: 10.1016/j.arr.2023.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | | | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
9
|
Lu Y, Qie D, Yang F, Wu J. LncRNA MEG3 aggravates adipocyte inflammation and insulin resistance by targeting IGF2BP2 to activate TLR4/NF-κB signaling pathway. Int Immunopharmacol 2023; 121:110467. [PMID: 37348228 DOI: 10.1016/j.intimp.2023.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Recently, emerging evidence has shown that LncRNA MEG3 is involved in adipocyte inflammation and insulin resistance progression, however, the specific mechanism of action remains unclear. In this study, we found that LncRNA MEG3 expression was increased in TNF-α stimulated 3T3-L1 mature adipocytes, and inflammatory factors IL-6 and MCP-1 secretion levels were increased, cell apoptosis and caspase3 activity was enhanced, ROS content was increased, and iNOS protein expression was increased. Moreover, TNF-α treatment attenuated glucose uptake, promoted triglyceride accumulation, inhibited GLUT4 protein expression at the plasma membrane, and reduced the phosphorylation levels of AMPK and ACC in the cells. Interestingly, we found that transfection of si-MEG3 reversed TNF-α caused inflammatory injury and insulin resistance of 3T3-L1 mature adipocytes. Next, we found that IGF2BP2 is an RNA binding protein of LncRNA MGE3 and transfection of si-IGF2BP2 reversed TNF-α caused inflammatory injury and insulin resistance in 3T3-L1 mature adipocytes, the same effects as transfection of si-MEG3. Mechanistically, LncRNA MGE3 was able to aggravate adipocyte inflammatory injury and dysregulation of insulin sensitivity by activating TLR4 pathway through upregulating the protein expression of IGF2BP2. In vivo findings showed that HFD mice with knockdown of MEG3 had reduced body weight, lower glucose concentrations and insulin levels in plasma, decreased inflammatory factors secretion, and reduced MEG3 and IGF2BP2 expression in epididymal adipose tissues and reduced fat accumulation in mice compared with HFD mice. Our results indicate that LncRNA MEG3 can aggravate chronic inflammation and insulin resistance in adipocytes by activating TLR4/NF-κB signaling pathway via targeting IGF2BP2.
Collapse
Affiliation(s)
- You Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.; Key Laboratory of Birth Defects and Related Diseases of Women and children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China
| | - Di Qie
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.; Key Laboratory of Birth Defects and Related Diseases of Women and children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China
| | - Fan Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.; Key Laboratory of Birth Defects and Related Diseases of Women and children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China..
| | - Jinhui Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China.; Department of Child Healthcare nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, Sichuan, China..
| |
Collapse
|
10
|
Levine JA. The Fidget Factor and the obesity paradox. How small movements have big impact. Front Sports Act Living 2023; 5:1122938. [PMID: 37077429 PMCID: PMC10106700 DOI: 10.3389/fspor.2023.1122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Abstract
The hypothesis is that the Fidget Factor is the innate neurological pulse that propels humans and other species to move to support their health. Fidgets, previously thought to be spontaneous, are neurologically regulated and highly ordered (non-random). Modern societies being chair-based overwhelm Fidget Factor pulses and consequently inflict chair-based living for transportation, labor, and leisure. Despite impulses firing through the nervous system, people sit because environmental design overwhelms the biology. Urbanization and chair-based societies were designed after the industrial revolution to promote productivity; however, the consequence has been opposite. Crushing the natural urge to move—the Fidget Factor—is a public health calamity. Excess sitting is associated with a myriad of detrimental health consequences and impairs productivity. Fidgeting may reduce all-cause mortality associated with excessive sitting. The Fidget Factor offers hope; data demonstrate that workplaces and schools can be designed to promote activity and free people's Fidget Factors. Evidence shows that people are happier, healthier, wealthier, and more successful if their Fidget Factors are freed.
Collapse
|
11
|
Almawi WY, Zidi S, Sghaier I, El-Ghali RM, Daldoul A, Midlenko A. Novel Association of IGF2BP2 Gene Variants With Altered Risk of Breast Cancer and as Potential Molecular Biomarker of Triple Negative Breast Cancer. Clin Breast Cancer 2023; 23:272-280. [PMID: 36653207 DOI: 10.1016/j.clbc.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Several studies documented that insulin-like growth factor-2 mRNA-binding protein 2 (IGF2BP2) contributes to carcinogenesis, and 1 report documented the association of IGF2BP2 rs4402960 with increased risk of breast cancer (BC). This study investigated the association of rs4402960 and rs1470579 IGF2BP2 variants with BC and triple negative BC (TNBC). MATERIALS AND METHODS This case-control study included 488 BC patients comprising 130 TNBC and 358 non-TNBC patients, and 476 cancer-free controls. Genomic DNA was obtained from peripheral venous blood, and genotyping was done by allelic exclusion method on real-time PCR. RESULTS The rs440960, but not rs1470579, minor allele was significantly associated with BC, and significantly higher rs4402960 T/T genotype frequency was noted in BC patients than controls; the distribution of rs1470579 genotypes were comparable between BC patients and controls. In contrast, significantly lower rs1470579 minor allele frequency, and reduced rs1470579 A/C and C/C, and rs4402960 T/T genotype frequencies were seen in TNBC cases. Among TNBC cases, rs4402960 and rs1470579 correlated with menses pattern, histological type, breastfeeding, oral contraceptive use and hormonotherapy. Among non-TNBC patients, and rs1470579 correlated significantly with breast feeding, oral contraceptive use, hormonotherapy, and nodal status; rs4402960 also correlated with menses pattern. Two-locus (rs440960-rs1470579) haplotype analysis confirmed the positive association of TC, and negative association of GC and TA haplotypes with BC, while TC and GC haplotypes were negatively associated with TNBC. CONCLUSION Whereas rs440960 was positively associated with BC, both rs4402960 and rs1470579 were negatively associated with TNBC, suggesting potential diagnostic/prognostic role in BC and its complications.
Collapse
Affiliation(s)
- Wassim Y Almawi
- Faculty of Sciences, El Manar University, Tunis, Tunisia; Nazarbayev University School of Medicine, Astana, Kazakhstan.
| | - Sabrina Zidi
- Faculty of Sciences, El Manar University, Tunis, Tunisia
| | - Ikram Sghaier
- Faculty of Sciences, El Manar University, Tunis, Tunisia
| | - Rabeb M El-Ghali
- Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Amira Daldoul
- Department of Medical Oncology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Anna Midlenko
- Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
12
|
Huang X, Guo L. Circular RNA SESN2 aggravates gestational trophoblast cell damage induced by high glucose by binding to IGF2BP2. Mol Reprod Dev 2023; 90:73-86. [PMID: 36623264 DOI: 10.1002/mrd.23667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common disease in pregnant women that threatens maternal and fetal health. Circular RNAs (circRNAs) have been considered potential diagnostic markers for GDM and affect trophoblast cell phenotypes. This study aimed to explore the effect of circSESN2 on high glucose (HG)-treated trophoblast cells. Peripheral blood and placental tissues were taken from patients with GDM, in which circSESN2 and IGF2BP2 levels were detected by quantitative reverse transcription polymerase chain reaction and/or western blot. HTR-8/SVneo cells were treated with 25 mM glucose and transduced with circSESN2 or IGF2BP2 knockdown vectors. HTR-8/SVneo cell viability was evaluated by MTT assay, cell migration by scratch test, and cell invasion by transwell assay, IL-1β, IL-6, TNF-α, malondialdehyde, and superoxide dismutase levels by ELISA or kits, and reactive oxygen species levels by DCFH-DA probes. The binding between circSESN2 and IGF2BP2 was verified by RNA pulldown and RIP assays. CircSESN2 and IGF2BP2 were overexpressed in GDM patients. Suppressing circSESN2 or IGF2BP2 increased HTR-8/SVneo cell invasion and migration, decreased cell apoptosis, and reduced pro-inflammatory cytokine release and oxidative stress injury. CircSESN2 bound IGF2BP2 and IGF2BP2 overexpression accelerated HG-induced HTR-8/SVneo cell damage despite circSESN2 knockdown. Collectively, circSESN2 exacerbated HG-induced trophoblast cell damage by binding IGF2BP2 and upregulating its protein expression.
Collapse
Affiliation(s)
- Xin Huang
- Department of Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Linlin Guo
- Department of Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
13
|
Acute Pancreatitis Increases the Risk of Gastrointestinal Cancer in Type 2 Diabetic Patients: A Korean Nationwide Cohort Study. Cancers (Basel) 2022; 14:cancers14225696. [PMID: 36428788 PMCID: PMC9688877 DOI: 10.3390/cancers14225696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
The association between acute pancreatitis (AP) and gastrointestinal cancers in diabetic patients is currently not well understood. The study aim was to investigate the association between AP and gastrointestinal cancers in diabetic patients. Data from the Korean National Health Insurance Service database were analyzed. Participants with diabetes who underwent a health examination between 2009 and 2012 were followed up till December 2018. The primary outcome was the occurrence of gastrointestinal cancer. A total of 2,263,184 patients were included in the final analysis. Patients with a history of AP (n = 2390) were found to have a significantly higher risk of gastrointestinal cancer, except for esophageal cancer, as follows: gastric cancer (aHR = 1.637, 95% CI: 1.323-2.025), colorectal cancer (aHR = 2.183, 95% CI: 1.899-2.51), liver cancer (aHR = 2.216, 95% CI: 1.874-2.621), pancreatic cancer (aHR = 4.558, 95% CI: 4.078-5.095), bile duct cancer (aHR = 3.996, 95% CI: 3.091-5.269), and gallbladder cancer (aHR = 2.445, 95% CI: 1.459-4.099). The history of AP is associated with the increased risk of gastrointestinal cancer in diabetic patients. It is necessary to investigate the history of AP and more actively recommend screening for gastrointestinal cancers in such patients.
Collapse
|
14
|
Mohammed NI, Alzubaidi ZF, Khudhair M. THE RELEVANCE OF RS6777038 AND RS6444082 OF IGF2BP2 GENE POLYMORPHISM AND TYPE 2 DIABETES MELLITUS: A CASE CONTROL STUDY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2811-2816. [PMID: 36591772 DOI: 10.36740/wlek202211215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim: We investigate IGF2BP2 gene polymorphisms (rs6777038 and rs6444082) association with T2DM of Iraqi sample. PATIENTS AND METHODS Materials and methods: The study involves 800 participants that divided to a healthy control group (400) and T2DM patients (400). Fasting blood sugar (FBS), triglycerides (Tgs), high-density lipoprotein cholesterol (HDL-Ch), total cholesterol (T-Ch), low-density lipoprotein cholesterol (LDL-Ch), and fasting insulin measured for both participant groups. IGF2BP2 gene has been genotyped for polymorphisms, rs6777038 and rs6444082 using the PCR-RFLP technique. RESULTS Results: Logistic regression analysis testing for rs6777038 revealed that the genotype and allele frequency differ significantly (p=0.009) between T2DM and control group. In codominant model, TT genotype carriers had higher risks for diabetes than control also in the recessive model TT genotype significantly had higher risk for diabetes than control group. The other models of rs6777038 failed to reveal significant differences. The rs6777038 genotypes as codominant model showed significant differences with phenotypic characters of BMI, insulin and HOMA-IR. As well as, this SNP as dominant model showed significant differences with fasting insulin and HOMA-IR. However, rs6444082 genotypes only as dominant model reveal significant variation with HOMA-IR. CONCLUSION Conclusions: This study confirmed the variant rs6777038 of IGF2BP2 possibly associated with T2DM risks and some anthropometric parameters such as lower fasting insulin, HOMA-IR and BMI in Iraqi T2DM participants.
Collapse
Affiliation(s)
- Noaman Ibadi Mohammed
- DEPARTMENT OF PHYSIOLOGY, BIOCHEMISTRY AND PHARMACOLOGY, FACULTY OF VETERINARY MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Zubaida Falih Alzubaidi
- DEPARTMENT OF CLINICAL AND LABORATORY SCIENCES, FACULTY OF PHARMACY, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Muneer Khudhair
- DEPARTMENT OF LAB INVESTIGATIONS, FACULTY OF SCIENCES, UNIVERSITY OF KUFA, NAJAF, IRAQ
| |
Collapse
|
15
|
Zhang S, Yang X, Jiang M, Ma L, Hu J, Zhang HH. Post-transcriptional control by RNA-binding proteins in diabetes and its related complications. Front Physiol 2022; 13:953880. [PMID: 36277184 PMCID: PMC9582753 DOI: 10.3389/fphys.2022.953880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Diabetes mellitus (DM) is a fast-growing chronic metabolic disorder that leads to significant health, social, and economic problems worldwide. Chronic hyperglycemia caused by DM leads to multiple devastating complications, including macrovascular complications and microvascular complications, such as diabetic cardiovascular disease, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. Numerous studies provide growing evidence that aberrant expression of and mutations in RNA-binding proteins (RBPs) genes are linked to the pathogenesis of diabetes and associated complications. RBPs are involved in RNA processing and metabolism by directing a variety of post-transcriptional events, such as alternative splicing, stability, localization, and translation, all of which have a significant impact on RNA fate, altering their function. Here, we purposed to summarize the current progression and underlying regulatory mechanisms of RBPs in the progression of diabetes and its complications. We expected that this review will open the door for RBPs and their RNA networks as novel therapeutic targets for diabetes and its related complications.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiaohua Yang
- The Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Miao Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Lianhua Ma
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Falih Z, Khodair BAW, Mohammed NI, Mohammed TK. Insulin-like Growth Factor-2 Binding Protein-2 Gene Polymorphisms in Iraqi Patients with Type 2 Diabetes Mellitus. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Diabetes mellitus type2 (T2DM) represent a hyperglycemia causing metabolic disease which exists in the peripheral tissues due to incomplete pancreatic insulin secretion or insulin resistance. IGF2BP2 is a protein that is involved in embryogenesis and pancreatic development. Genetic association researches had suggested that the single nucleotide polymorphisms (SNP) spanning IGF2BP2 gene are associated with the progression as well as development of the T2DM.
Aim: This study aims to evaluate the association of IGF2BP2 gene polymorphisms (rs4402960 & rs1470579) with T2DM in a sample of Iraqi individuals.
Methods: A case-control study has been conducted on 800 participants, they were divided to two equal groups, which are a healthy control group (400) and type 2 diabetic patients (400). Fast blood sugar (FBS), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and HbA1c] measured suitable for both participant groups. IGF2BP2 gene has been genotyped for polymorphisms; rs4402960 and rs1470579 by using the PCR-RFLP technique.
Results: There is significant changes in the biochemical parameters in patients group when compared to the control group.The SNP rs4402960 show minor allele frequency of T allele considerably different between the two participating groups (p 0.0013) with 33.6 % in T2DM group. Homo-variant TT shows a significant p <0.0001) odd ratio (4.5) as codominant type. Similarly, dominant and recessive models exert significant (0.02 & <0.0001 respectively) adjusted odd ratio (1.45 & 4.14 respectively). The rs1470579 SNP show a significant (0.024) risk (1.28) of C allele in the patients group than in A allele. The CC genotype in codominant and recessive models show significant (0.03) odd ratio differences (2.03 & 1.96 respectively. The rs1470579 SNP exerts significant differences as codominant model in biochemical features of BMI, FBG, Tgs, VLDL-C, insulin and HOMA-IR. The study power of rs4402960 is 69.5% and rs1470579 is 34.1%.
Conclusion: This study confirmed the association of rs4402960 as codominant, dominant and recessive with T2DM significantly. However, rs1470579 is associate as recessive model with T2DM in Iraqi population.
Collapse
|
17
|
Chen X, Wu J, Li Z, Han J, Xia P, Shen Y, Ma J, Liu X, Zhang J, Yu P. Advances in The Study of RNA-binding Proteins in Diabetic Complications. Mol Metab 2022; 62:101515. [PMID: 35597446 PMCID: PMC9168169 DOI: 10.1016/j.molmet.2022.101515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Background It has been reported that diabetes mellitus affects 435 million people globally as a primary health care problem. Despite many therapies available, many diabetes remains uncontrolled, giving rise to irreversible diabetic complications that pose significant risks to patients’ wellbeing and survival. Scope of Review In recent years, as much effort is put into elucidating the posttranscriptional gene regulation network of diabetes and diabetic complications; RNA binding proteins (RBPs) are found to be vital. RBPs regulate gene expression through various post-transcriptional mechanisms, including alternative splicing, RNA export, messenger RNA translation, RNA degradation, and RNA stabilization. Major Conclusions Here, we summarized recent studies on the roles and mechanisms of RBPs in mediating abnormal gene expression in diabetes and its complications. Moreover, we discussed the potential and theoretical basis of RBPs to treat diabetes and its complications. • Mechanisms of action of RBPs involved in diabetic complications are summarized and elucidated. • We discuss the theoretical basis and potential of RBPs for the treatment of diabetes and its complications. • We summarize the possible effective drugs for diabetes based on RBPs promoting the development of future therapeutic drugs.
Collapse
Affiliation(s)
- Xinyue Chen
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiashu Han
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, USA
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
18
|
Kerr CE, Ferrell J, Kitano M, Koek W, Dahia PLM, Velez J, Francis G. Thyroid nodules of indeterminate cytology in Hispanic/Latinx patients. Head Neck 2022; 44:1842-1848. [PMID: 35583054 DOI: 10.1002/hed.27100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Behavior of differentiated thyroid cancer (DTC) varies among ethnic groups. Recommended management of thyroid nodules with indeterminate cytology (TN-IC) is based on molecular analysis from predominantly non-Hispanic white patients. We hypothesized that TN-IC in Hispanic/Latinx patients would have different features, management, and outcomes and that molecular testing might perform differently in Hispanic/Latinx patients. METHODS Retrospective chart review was performed on 127 TN-IC analyzed with Afirma. Patient characteristics were compared using linear model ANOVA and Fisher's exact test. RESULTS Out of 127 TN-IC, 71 (56%) were Hispanic/Latinx. Hispanic/Latinx had a greater prevalence of diabetes, but Afirma results (benign or suspicious) were similar between ethnic groups. Fourteen patients had malignant pathology. Their management and outcomes were similar across groups. The negative predictive value for our cohort (97.9%) was similar to published data. CONCLUSIONS Data from our predominantly-Hispanic/Latinx cohort suggest that Afirma performs similarly in Hispanic/Latinx and non-Hispanic white patients with TN-IC.
Collapse
Affiliation(s)
- Catherine E Kerr
- Department of Pediatric Endocrinology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Jay Ferrell
- Department of Otolaryngology, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Mio Kitano
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Wouter Koek
- Department of Cell Systems and Anatomy, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Patricia L M Dahia
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Jorge Velez
- Department of Endocrinology, University Health System, San Antonio, Texas, USA
| | - Gary Francis
- Department of Pediatric Endocrinology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| |
Collapse
|
19
|
Zhang Z, Xing Y, Gao W, Yang L, Shi J, Song W, Li T. N 6-methyladenosine (m 6A) reader IGF2BP2 promotes gastric cancer progression via targeting SIRT1. Bioengineered 2022; 13:11541-11550. [PMID: 35502827 PMCID: PMC9275927 DOI: 10.1080/21655979.2022.2068920] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
N6-methyladenosine (m6A) modification acts as the most prevalent internal modification in eukaryotic mRNA. Emerging evidence shows the critical biological roles of m6A key enzymes in human cancers. However, the roles of m6A binding protein IGF2BP2 in gastric cancer (GC) progression are still unclear. In this study, we confirmed that IGF2BP2 was highly expressed in GC cell lines and tumor tissues. Knocking down of IGF2BP2 suppressed cell proliferation and migration, and repressed xenograft tumor growth in vivo, while IGF2BP2 overexpression promoted the proliferation and migration. Mechanistically, we identified that IGF2BP2 regulated GC the proliferation/migration through recognizing the m6A modification sites of SIRT1 mRNA. In general, our findings demonstrated a novel regulatory mechanism that IGF2BP2/SIRT1 axis modulated GC progression in an m6A-dependent manner, suggesting that m6A may be a therapeutic target for GC.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Gastrointestinal Surgery, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yu Xing
- Department of Gastrointestinal Surgery, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Wenqing Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Department of Cardiac Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Liping Yang
- Department of Gastrointestinal Surgery, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Junzhong Shi
- Department of Gastrointestinal Surgery, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Weiliang Song
- Department of Gastrointestinal Surgery, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Tong Li
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Department of Cardiac Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Fa-Kung Lee
- Department of Obstetrics and Gynecology, Cathy General Hospital, Taipei, Taiwan, ROC
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Female Cancer Foundation, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
21
|
Wang Y, Chen X, Yao N, Gong J, Cao Y, Su X, Feng X, Tao M. MiR-448 suppresses cell proliferation and glycolysis of hepatocellular carcinoma through inhibiting IGF-1R expression. J Gastrointest Oncol 2022; 13:355-367. [PMID: 35284123 PMCID: PMC8899737 DOI: 10.21037/jgo-22-90] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/18/2022] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Microribonucleic acids (miRNAs) have been shown to play important roles in hepatocellular carcinoma (HCC) progression. MiR-448 has frequently been shown to be a tumor suppressor, and is abnormally expressed in HCC tumor tissues. However, little is known about the role of miR-448 in HCC development. In this article, the regulatory role of miR-448 on insulin-like growth factor 1 receptor (IGF-1R) in modulating hepatoma cell viability and glycolysis was investigated. METHODS The expression of miR-448 profiles in clinical tumor tissues and cell lines was examined using quantitative real-time polymerase chain reaction (qRT-PCR). HepG2 and Huh7 cells were transfected with miR-448 mimics, inhibitors, and scramble sequences. Cell viability and apoptosis were determined by a Cell Counting Kit-8 assay and a flow cytometry analysis. IGF-1R, a potential target of miR-448, was selected following a bioinformatic analysis, and the regulatory effects of miR-448 on IGF-1R expression was confirmed by luciferase reporter assay, qRT-PCR, and western blot. Glucose uptake, lactate production, and adenosine triphosphate (ATP) generation were detected by corresponding kits. RESULTS Decreased miR-448 expression was observed in both HCC patients' tumor tissues and hepatoma cells in vitro. The overexpression of miR-448 in HepG2 and Huh7 cells decreased cell viability and increased apoptosis. Additionally, the overexpression of miR-448 or the knockdown of IGF-1R lowered the level of glucose uptake, lactate production, and ATP generation, while the knockdown of miR-448 increased glycolysis. Further, aberrantly expressed miR-448 downregulated IGF-1R levels, while the inhibition of miR-448 resulted in the upregulation of IGF-1R in both HepG2 and Huh7 cells. In addition, miR-448 interacted with the wild-type 3'untranslated regions (3'UTRs) of IGF-1R, but had no effect on the mutant 3'UTRs. The expression of IGF-1R was increased in HCC patients' tumor tissues and serum, and was inversely correlated with miR-448 expression. CONCLUSIONS The increased expression of miR-448 appears to downregulate the expression of IGF-1R by interacting with the 3'UTR in HCC progression. These findings highlight its role as a potential target for HCC therapy.
Collapse
Affiliation(s)
- Yilang Wang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Medical Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xiaohong Chen
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jun Gong
- Department of Medical Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yongfeng Cao
- Department of Medical Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xiaoqing Su
- Department of Medical Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xiu Feng
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
22
|
Zhang P, Xu K, Wang J, Zhang J, Quan H. Identification of N6-methylandenosine related LncRNAs biomarkers associated with the overall survival of osteosarcoma. BMC Cancer 2021; 21:1285. [PMID: 34852770 PMCID: PMC8638368 DOI: 10.1186/s12885-021-09011-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Osteosarcoma (OS) is a differentiation disease caused by the genetic and epigenetic differentiation of mesenchymal stem cells into osteoblasts. OS is a common, highly malignant tumor in children and adolescents. Fifteen to 20 % of the patients find distant metastases at their first visit. The purpose of our study was to identify biomarkers for tracking the prognosis and treatment of OS to improve the survival rate of patients. MATERIALS AND METHODS In this study, which was based on Therapeutically Applicable Research to Generate Effective Treatments (TARGET), we searched for m6A related lncRNAs in OS. We constructed a network between lncRNA and m6A, and built an OS prognostic risk model. RESULTS We identified 14,581 lncRNAs by using the dataset from TARGET. We obtained 111 m6A-related lncRNAs through a Pearson correlation analysis. A network was built between lncRNA and m6A genes. Eight m6A-related lncRNAs associated with survival were identified through a univariate Cox analysis. A selection operator (LASSO) Cox regression was used to construct a prognostic risk model with six genes (RP11-286E11.1, LINC01426, AC010127.3, DLGAP1-AS2, RP4-657D16.3, AC002398.11) obtained through least absolute shrinkage. We also discovered upregulated levels of DLGAP1-AS2 and m6A methylation in osteosarcoma tissues/cells compared with normal tissues/osteoblasts cells. CONCLUSION We constructed a risk score prognosis model of m6A-related lncRNAs (RP11-286E11.1, LINC01426, AC010127.3, DLGAP1-AS2, RP4-657D16.3, AC002398.11) using the dataset downloaded from TRAGET. We verified the value of the model by dividing all samples into test groups and training groups. However, the role of m6A-related lncRNAs in osteosarcoma needs to be further researched by cell and in vivo studies.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Keteng Xu
- Department of Joint surgery, Huangshan City People's Hospital, Huangshan, Anhui, China.
| | - Jingcheng Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Department of Orthopedics, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China.
| | - Jiale Zhang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Huahong Quan
- Department of Graduate, Dalian Medical University, Dalian, 116044, Liaoning, China
| |
Collapse
|