1
|
Khan FA, Nsengimana B, Awan UA, Ji XY, Ji S, Dong J. Regulatory roles of N6-methyladenosine (m 6A) methylation in RNA processing and non-communicable diseases. Cancer Gene Ther 2024; 31:1439-1453. [PMID: 38839892 DOI: 10.1038/s41417-024-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Post-transcriptional RNA modification is an emerging epigenetic control mechanism in cells that is important in many different cellular and organismal processes. N6-methyladenosine (m6A) is one of the most prevalent, prolific, and ubiquitous internal transcriptional alterations in eukaryotic mRNAs, making it an important topic in the field of Epigenetics. m6A methylation acts as a dynamical regulatory process that regulates the activity of genes and participates in multiple physiological processes, by supporting multiple aspects of essential mRNA metabolic processes, including pre-mRNA splicing, nuclear export, translation, miRNA synthesis, and stability. Extensive research has linked aberrations in m6A modification and m6A-associated proteins to a wide range of human diseases. However, the impact of m6A on mRNA metabolism and its pathological connection between m6A and other non-communicable diseases, including cardiovascular disease, neurodegenerative disorders, liver diseases, and cancer remains in fragmentation. Here, we review the existing understanding of the overall role of mechanisms by which m6A exerts its activities and address new discoveries that highlight m6A's diverse involvement in gene expression regulation. We discuss m6A deposition on mRNA and its consequences on degradation, translation, and transcription, as well as m6A methylation of non-coding chromosomal-associated RNA species. This study could give new information about the molecular process, early detection, tailored treatment, and predictive evaluation of human non-communicable diseases like cancer. We also explore more about new data that suggests targeting m6A regulators in diseases may have therapeutic advantages.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan.
| | - Bernard Nsengimana
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Usman Ayub Awan
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xin-Ying Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
| | - Shaoping Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Zou Y, Bao X, Li D, Ye Z, Xiang R, Yang Y, Zhu Z, Chen Z, Zeng L, Xue C, Zhao H, Yao B, Zhang Q, Yan Z, Deng Z, Cheng J, Yue G, Hu W, Zhao J, Bai R, Zhang Z, Liu A, Zhang J, Zuo Z, Jiang X. FTO-mediated DSP m 6A demethylation promotes an aggressive subtype of growth hormone-secreting pituitary neuroendocrine tumors. Mol Cancer 2024; 23:205. [PMID: 39304899 DOI: 10.1186/s12943-024-02117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Growth hormone-secreting pituitary neuroendocrine tumors can be pathologically classified into densely granulated (DGGH) and sparsely granulated types (SGGH). SGGH is more aggressive and associated with a poorer prognosis. While epigenetic regulation is vital in tumorigenesis and progression, the role of N6-methyladenosine (m6A) in aggressive behavior has yet to be elucidated. METHODS We performed m6A-sequencing on tumor samples from 8 DGGH and 8 SGGH patients, complemented by a suite of assays including ELISA, immuno-histochemistry, -blotting and -fluorescence, qPCR, MeRIP, RIP, and RNA stability experiments, aiming to delineate the influence of m6A on tumor behavior. We further assessed the therapeutic potential of targeted drugs using cell cultures, organoid models, and animal studies. RESULTS We discovered a significant reduction of m6A levels in SGGH compared to DGGH, with an elevated expression of fat mass and obesity-associated protein (FTO), an m6A demethylase, in SGGH subtype. Series of in vivo and in vitro experiments demonstrated that FTO inhibition in tumor cells robustly diminishes hypoxia resistance, attenuates growth hormone secretion, and augments responsiveness to octreotide. Mechanically, FTO-mediated m6A demethylation destabilizes desmoplakin (DSP) mRNA, mediated by the m6A reader FMR1, leading to prohibited desmosome integrity and enhanced tumor hypoxia tolerance. Targeting the FTO-DSP-SSTR2 axis curtailed growth hormone secretion, therefor sensitizing tumors to octreotide therapy. CONCLUSION Our study reveals the critical role of FTO in the aggressive growth hormone-secreting pituitary neuroendocrine tumors subtype and suggests FTO may represent a new therapeutic target for refractory/persistent SGGH.
Collapse
Affiliation(s)
- Yunzhi Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiaoqiong Bao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Depei Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhen Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Rong Xiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yuanzhong Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhe Zhu
- Department of Pathology and Cell Biology, New York-Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY, USA
| | - Ziming Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Lingxing Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chunling Xue
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hongzhe Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Boyuan Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zeming Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zekun Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jintong Cheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Guanghao Yue
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Wanming Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jixiang Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ruihong Bai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhenhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Aiqun Liu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - Jialiang Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Xiaobing Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
3
|
Mu S, Zhao K, Zhong S, Wang Y. The Role of m6A Methylation in Tumor Immunity and Immune-Associated Disorder. Biomolecules 2024; 14:1042. [PMID: 39199429 PMCID: PMC11353047 DOI: 10.3390/biom14081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
N6-methyladenosine (m6A) represents the most prevalent and significant internal modification in mRNA, with its critical role in gene expression regulation and cell fate determination increasingly recognized in recent research. The immune system, essential for defense against infections and maintaining internal stability through interactions with other bodily systems, is significantly influenced by m6A modification. This modification acts as a key post-transcriptional regulator of immune responses, though its effects on different immune cells vary across diseases. This review delineates the impact of m6A modification across major system-related cancers-including those of the respiratory, digestive, endocrine, nervous, urinary reproductive, musculoskeletal system malignancies, as well as acute myeloid leukemia and autoimmune diseases. We explore the pathogenic roles of m6A RNA modifications within the tumor immune microenvironment and the broader immune system, highlighting how RNA modification regulators interact with immune pathways during disease progression. Furthermore, we discuss how the expression patterns of these regulators can influence disease susceptibility to immunotherapy, facilitating the development of diagnostic and prognostic models and pioneering new therapeutic approaches. Overall, this review emphasizes the challenges and prospective directions of m6A-related immune regulation in various systemic diseases throughout the body.
Collapse
Affiliation(s)
- Siyu Mu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Kaiyue Zhao
- Department of Hepatology, Beijing Tsinghua Changgeng Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Yanli Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
4
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
5
|
Zang S, Yin X, Li P. FTO-mediated m 6A demethylation regulates GnRH expression in the hypothalamus via the PLCβ3/Ca 2+/CAMK signalling pathway. Commun Biol 2023; 6:1297. [PMID: 38129517 PMCID: PMC10739951 DOI: 10.1038/s42003-023-05677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
N6-methyladenosine (m6A) plays a crucial role in the development and functional homeostasis of the central nervous system. The fat mass and obesity-associated (FTO) gene, which is highly expressed in the hypothalamus, is closely related to female pubertal development. In this study, we found that m6A methylation decreased in the hypothalamus gradually with puberty and decreased in female rats with precocious puberty. FTO expression was increased at the same time. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed that the m6A methylation of PLCβ3, a key enzyme of the Ca2+ signalling pathway, was decreased significantly in the hypothalamus in precocious rats. Upregulating FTO increased PLCβ3 expression and activated the Ca2+ signalling pathway, which promoted GnRH expression. Dual-luciferase reporter and MeRIP-qPCR assays confirmed that FTO regulated m6A demethylation of PLCβ3 and promoted PLCβ3 expression. Upon overexpressing FTO in the hypothalamic arcuate nucleus (ARC) in female rats, we observed advanced puberty onset. Meanwhile, PLCβ3 and GnRH expression in the hypothalamus increased significantly, and the Ca2+ signalling pathway was activated. Our study demonstrates that FTO enhances GnRH expression, which promotes puberty onset, by regulating m6A demethylation of PLCβ3 and activating the Ca2+ signalling pathway.
Collapse
Affiliation(s)
- Shaolian Zang
- Department of endocrinology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Xiaoqin Yin
- Department of endocrinology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China.
| | - Pin Li
- Department of endocrinology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China.
| |
Collapse
|
6
|
Yuan F, Cai X, Wang Y, Du C, Cong Z, Zeng X, Tang C, Ma C. Comprehensive analysis of m 6A subtype classification for immune microenvironment of pituitary adenomas. Int Immunopharmacol 2023; 124:110784. [PMID: 37607464 DOI: 10.1016/j.intimp.2023.110784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA methylation and tumor immune microenvironment (IME) have an essential role in tumor development. However, their relationships in pituitary adenomas (PAs) remains unclear. METHODS PA datasets from the Gene Expression Omnibus (GEO) and European Bioinformatics Institute (EMBL-EBI) were used. We utilized hierarchical clustering algorithms based on the m6A regulator gene set to identify m6A subtypes. ESTIMATE and CIBERSORT algorithms were applied to explore the compositions of stromal and immune cells. A nomogram model was constructed for the prediction of m6A subtypes in PAs. Immunohistochemistry and multiplex immunofluorescence staining were used to analyze the expression level of m6A regulator YTHDF2 in relation to M2 macrophages and immune checkpoints in PAs. RESULTS We concluded the IME landscape of m6A subtype classification and characterized two emerging m6A subtypes. Different IME between these two m6A subtypes were identified. Simultaneously, a polygenic nomogram model was constructed for predicting m6A subtype classification, with excellent predictive performance (training set, AUC = 0.984; validation set, AUC = 0.986). YTHDF2 was highly expressed in PAs and accompanied by upregulated M2 macrophages and expression of PD-L1. CONCLUSIONS We proposed two novel m6A subtypes in PAs for the first time and constructed a reliable and clinically accessible nomogram model for them. Meanwhile, YTHDF2 was first identified as a promising biomarker for immunotherapy and potential molecular target in PAs.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiangming Cai
- School of Medicine, Southeast University, Nanjing, Jiangsu, China; Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yingshuai Wang
- Department of Internal Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich, Germany
| | - Chaonan Du
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xinrui Zeng
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chiyuan Ma
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; School of Medicine, Southeast University, Nanjing, Jiangsu, China; Jinling Hospital of Southern Medical University, Nanjing, Jiangsu, China; School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Liu Z, Zhou L, Li D, Lu H, Liu L, Mao W, Yu X, Fan Y, Huang Q, Wang F, Wan Y. N6-methyladenosine methyltransferase METTL3 modulates the cell cycle of granulosa cells via CCND1 and AURKB in Haimen goats. FASEB J 2023; 37:e23273. [PMID: 37874265 DOI: 10.1096/fj.202301232r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
N6-methyladenosine (m6A) plays a crucial role in many bioprocesses across species, but its function in granulosa cells during oocyte maturation is not well understood in animals, especially domestic animals. We observed an increase in m6A methyltransferase-like 3 (METTL3) in granulosa cells during oocyte maturation in Haimen goats. Our results showed that knockdown of METTL3 disrupted the cell cycle in goat granulosa cells, leading to aggravated cell apoptosis and inhibition of cell proliferation and hormone secretion. Mechanistically, METTL3 may regulate the cell cycle in goat granulosa cells by mediating Aurora kinase B (AURKB) mRNA degradation in an m6A-YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) manner and participating in AURKB transcription via the Cyclin D1 (CCND1)-Retinoblastoma protein (RB)-E2F transcription factor 1 (E2F1) pathway. Overall, our study highlights the essential role of METTL3 in granulosa cells during oocyte maturation in Haimen goats. These findings provide a theoretical basis and technical means for understanding how RNA methylation participates in oocyte maturation through granulosa cells.
Collapse
Affiliation(s)
- Zifei Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lei Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dongxu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honghui Lu
- Animal Husbandry and Veterinary Station of Haimen District, Nantong, China
| | - Liang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weijia Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoqing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Fan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qunhao Huang
- Animal Husbandry and Veterinary Station of Haimen District, Nantong, China
| | - Feng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Chen Y, Han Y, Liu L, Liu M, Lin J, Tang Y, Guo S, He R, Wu Q. N 6-Methyladenosine methylase METTL3 contributes to neuropathic pain by epigenetic silencing of mu opioid receptor. Behav Brain Res 2023; 452:114592. [PMID: 37482304 DOI: 10.1016/j.bbr.2023.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
We aimed at exploring the role and mechanism of METTL3-mediated m6A modification in neuropathic pain. Male Sprague-Dawley rats were randomly divided into four groups: Sham operation group (Sham group), chronic constriction injury (CCI) of the sciatic nerve model group (NPP group), intrathecal injection of virus down-regulated METTL3 + CCI model group (M3 + NPP group) and intrathecal injection of negative control virus + CCI model group (Scr + NPP group). The M3 + NPP group and the Scr + NPP group were intrathecally injected with virus nineteen days before operation. The paw withdrawal mechanical thresholds and paw withdrawal latency were respectively recorded one day before operation, three days, five days and seven days after operation. The rats were sacrificed on the seventh day after operation, and their spinal cord tissues were taken. The frozen sections of rats were performed to observe the expression of green fluorescent protein of the virus. The methylation level of RNA, the protein expression of m6A-related enzyme (METTL3) and mu opioid receptor (MOR) in spinal cord tissues of the four groups were measured. Downregulation of METTL3 had no effect on the overall methylation level of the spinal cord, but it could regulate the methylation level of the OPRM1 gene RNA encoding MOR, partially restore the expression of MOR, and relieve pain in rats. In the process of NPP, METTL3 may inhibit the expression of MOR by regulating the methylation level of OPRM1 gene RNA encoding MOR, and ultimately promote the occurrence and development of NPP.
Collapse
Affiliation(s)
- Yao Chen
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Yakun Han
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Li Liu
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Minqiang Liu
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Jing Lin
- Central Sterile Supply Department, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Yi Tang
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Shanshan Guo
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China
| | - Renliang He
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China.
| | - Qiang Wu
- Department of Anesthsiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China.
| |
Collapse
|
9
|
The Emerging Role of m6A Modification in Endocrine Cancer. Cancers (Basel) 2023; 15:cancers15041033. [PMID: 36831377 PMCID: PMC9954123 DOI: 10.3390/cancers15041033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
With the development of RNA modification research, N6-methyladenosine (m6A) is regarded as one of the most important internal epigenetic modifications of eukaryotic mRNA. It is also regulated by methylase, demethylase, and protein preferentially recognizing the m6A modification. This dynamic and reversible post-transcriptional RNA alteration has steadily become the focus of cancer research. It can increase tumor stem cell self-renewal and cell proliferation. The m6A-modified genes may be the primary focus for cancer breakthroughs. Although some endocrine cancers are rare, they may have a high mortality rate. As a result, it is critical to recognize the significance of endocrine cancers and identify new therapeutic targets that will aid in improving disease treatment and prognosis. We summarized the latest experimental progress in the m6A modification in endocrine cancers and proposed the m6A alteration as a potential diagnostic marker for endocrine malignancies.
Collapse
|
10
|
Zheng X, Zhang Y, Wang Y, He Z, Zhang Q, Ren D, Yan X, Yuan X. Effect of N6-methyladenosine methylation-related gene signature for predicting the prognosis of hepatocellular carcinoma patients. Front Surg 2023; 10:1052100. [PMID: 36936652 PMCID: PMC10022825 DOI: 10.3389/fsurg.2023.1052100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Background and aims Hepatocellular carcinoma (HCC) is a common cause of cancer-related death in humans. Increasing evidence indicates that an imbalance in N6-methyladenosine (m6A) methylation is linked to the occurrence and development of cancer. We then developed a prognostic model as an independent risk factor with which predict the prognosis of HCC. Methods We obtained the gene expression and clinical data of HCC patients from the TCGA databases. The prognostic value of m6A methylation-related genes in patients who had HCC were subjected to comprehensive bioinformatics analysis. We use Risk Score = ∑ i = 1 n Coe f i × X i to construct the risk scoring formula. We collected pathological specimens from 68 patients who had HCC, and conducted immunohistochemical staining experiments on the specimens. Results There was a significant correlation between candidate m6A methylation-related genes (YTHDF2, METTL14 and ZC3H13) overall survival of HCC patients. Among the 68 HCC patient specimens that underwent immunohistochemical staining, all cancer tissues were positive for METTL14, YTHDF2, and ZC3H13 staining in contrast to the adjacent tissues. We conducted a Kaplan-Meier survival analysis. The results showed that patients who had low METTL14 expression had a longer survival time than those of patients who had high METTL14 expression. Also, patients with low YTHDF2 expression had a longer survival time than patients with high YTHDF2 expression. Finally, patients with high ZC3H13 expression lived longer than those with low ZC3H13 expression. This result is consistent with the bioinformatics analysis conclusion above. Conclusions Generally, the prognostic model that was based on m6A methylation-related genes in this study can effectively predict the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyu Zheng
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yingyue Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yun Wang
- QiLu Hospital of Shandong University, Qingdao, China
| | - Zijing He
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
- Correspondence: Xiao Yuan
| |
Collapse
|
11
|
The Potential Role of m6A in the Regulation of TBI-Induced BGA Dysfunction. Antioxidants (Basel) 2022; 11:antiox11081521. [PMID: 36009239 PMCID: PMC9405408 DOI: 10.3390/antiox11081521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The brain–gut axis (BGA) is an important bidirectional communication pathway for the development, progress and interaction of many diseases between the brain and gut, but the mechanisms remain unclear, especially the post-transcriptional regulation of BGA after traumatic brain injury (TBI). RNA methylation is one of the most important modifications in post-transcriptional regulation. N6-methyladenosine (m6A), as the most abundant post-transcriptional modification of mRNA in eukaryotes, has recently been identified and characterized in both the brain and gut. The purpose of this review is to describe the pathophysiological changes in BGA after TBI, and then investigate the post-transcriptional bidirectional regulation mechanisms of TBI-induced BGA dysfunction. Here, we mainly focus on the characteristics of m6A RNA methylation in the post-TBI BGA, highlight the possible regulatory mechanisms of m6A modification in TBI-induced BGA dysfunction, and finally discuss the outcome of considering m6A as a therapeutic target to improve the recovery of the brain and gut dysfunction caused by TBI.
Collapse
|