1
|
Chen L, Yang C, Zhang X, Chen B, Zheng P, Li T, Song W, Gao H, Yue X, Yang J. STX16 exon 5-7 deletion in a patient with pseudohypoparathyroidism type 1B. J Pediatr Endocrinol Metab 2024; 37:734-740. [PMID: 39026465 DOI: 10.1515/jpem-2023-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES Pseudohypoparathyroidism (PHP) comprises a cluster of heterogeneous diseases characterized by hypocalcemia and hyperphosphatemia due to parathyroid hormone (PTH) resistance. PHP type 1B (PHP1B) is caused by heterozygous maternal deletions within GNAS or STX16. STX16 exon 2-6 deletion is commonly observed in autosomal dominant (AD)-PHP1B, while sporadic PHP1B commonly results from methylation abnormalities of maternal differentially methylated regions and remains unclear at the molecular level. CASE PRESENTATION A 39-year-old male patient with PHP1B, who had his first seizure at 15 years of age, presented to our hospital. The methylation-specific multiplex ligation-dependent probe amplification results showed a half-reduced copy number of STX16 exon 5-7 and loss of methylation at GNAS exon A/B. His mother also had a half-reduced copy number of STX16 exon 5-7 but with normal methylation of GNAS. His father has a normal copy number of STX16 and normal methylation of GNAS. CONCLUSIONS For the recognition and early diagnosis of this kind of disease, here we report the clinical symptoms, auxiliary examinations, genetic testing characteristics, and treatment of the patient.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Chuanbin Yang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xiaoxiao Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Beibei Chen
- Department of Endocrinology, The First Affiliated Hospital of Henan University, Henan Province, China
| | - Peibing Zheng
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Tingting Li
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Wenjing Song
- Department of Endocrinology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Gao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xiaofang Yue
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Jiajun Yang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
2
|
Liu J, Lu L, Wei Y, Li Y, Wang Q, Yu L, Zhuang L, Jin G, Pei X. Pseudohypoparathyroidism Type IB with Subclinical Hypothyroidism: a Pedigree Investigation and Literature Review. Diabetes Metab Syndr Obes 2024; 17:2021-2026. [PMID: 38765469 PMCID: PMC11100510 DOI: 10.2147/dmso.s458405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Pseudohypoparathyroidism (PHP) is a rare genetic disease characterized by hypocalcemia, hyperphosphatemia, and elevated parathyroid hormone (PTH) in serum. Here, we report a case of a patient with pseudohypoparathyroidism type IB (PHPIB) and subclinical hypothyroidism, analyze the clinical and genetic data of his family members, review the relevant literature, and classify and discuss the pathogenesis and clinical characteristics of each subtype. Finally, we discuss the treatment approach to improve clinicians' understanding of the disease.
Collapse
Affiliation(s)
- Jie Liu
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui Province, People’s Republic of China
| | - Lijuan Lu
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui Province, People’s Republic of China
| | - Yu Wei
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui Province, People’s Republic of China
| | - Yu Li
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui Province, People’s Republic of China
| | - Qiong Wang
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui Province, People’s Republic of China
| | - Lei Yu
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui Province, People’s Republic of China
| | - Langen Zhuang
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui Province, People’s Republic of China
| | - Guoxi Jin
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui Province, People’s Republic of China
| | - Xiaoyan Pei
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui Province, People’s Republic of China
| |
Collapse
|
3
|
Odom J, Bacino CA, Karaviti LP, Bi W, Hoyos-Martinez A. Intrafamilial phenotypic heterogeneity in siblings with pseudohypoparathyroidism 1B due to maternal STX16 deletion. J Pediatr Endocrinol Metab 2024; 37:84-89. [PMID: 38095637 DOI: 10.1515/jpem-2023-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVES Pseudohypoparathyroidism (PHP1B) is most commonly caused by epigenetic defects resulting in loss of methylation at the GNAS locus, although deletions of STX16 leading to GNAS methylation abnormalities have been previously reported. The phenotype of this disorder is variable and can include hormonal resistances and severe infantile obesity with hyperphagia. A possible time relationship between the onset of obesity and endocrinopathies has been previously reported but remains unclear. Understanding of the condition's natural history is limited, partly due to a scarcity of literature, especially in children. CASE PRESENTATION We report three siblings with autosomal dominant PHP1B caused by a deletion in STX16 who presented with early childhood onset PTH-resistance with normocalcemia with a progressive nature, accompanied by TSH-resistance and severe infantile obesity with hyperphagia in some, not all of the affected individuals. CONCLUSIONS PHP1B from a STX16 deletion displays intrafamilial phenotypic variation. It is a novel cause of severe infantile obesity, which is not typically included in commercially available gene panels but must be considered in the genetic work-up. Finally, it does not seem to have a clear time relationship between the onset of obesity and hormonal resistance.
Collapse
Affiliation(s)
- John Odom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Lefkothea P Karaviti
- Department of Pediatrics, Division of Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Alfonso Hoyos-Martinez
- Department of Pediatrics, Division of Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Jüppner H. Pseudohypoparathyroidism: complex disease variants with unfortunate names. J Mol Endocrinol 2024; 72:e230104. [PMID: 37965945 PMCID: PMC10843601 DOI: 10.1530/jme-23-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Several human disorders are caused by genetic or epigenetic changes involving the GNAS locus on chromosome 20q13.3 that encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. Thus, pseudohypoparathyroidism type Ia (PHP1A) is caused by heterozygous inactivating mutations involving the maternal GNAS exons 1-13 resulting in characteristic abnormalities referred to as Albright's hereditary osteodystrophy (AHO) that are associated with resistance to several agonist ligands, particularly to parathyroid hormone (PTH), thereby leading to hypocalcemia and hyperphosphatemia. GNAS mutations involving the paternal Gsα exons also cause most of these AHO features, but without evidence for hormonal resistance, hence the term pseudopseudohypoparathyroidism (PPHP). Autosomal dominant pseudohypoparathyroidism type Ib (PHP1B) due to maternal GNAS or STX16 mutations (deletions, duplications, insertions, and inversions) is associated with epigenetic changes at one or several differentially methylated regions (DMRs) within GNAS. Unlike the inactivating Gsα mutations that cause PHP1A and PPHP, hormonal resistance is caused in all PHP1B variants by impaired Gsα expression due to loss of methylation at GNAS exon A/B, which can be associated in some familial cases with epigenetic changes at the other maternal GNAS DMRs. The genetic defect(s) responsible for sporadic PHP1B, the most frequent variant of this disorder, remain(s) unknown for the majority of patients. However, characteristic epigenetic GNAS changes can be readily detected that include a gain of methylation at the neuroendocrine secretory protein (NESP) DMR. Multiple genetic or epigenetic GNAS abnormalities can thus impair Gsα function or expression, consequently leading to inadequate cAMP-dependent signaling events downstream of various Gsα-coupled receptors.
Collapse
Affiliation(s)
- Harald Jüppner
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Dai LZ, Lin C, Lei R, Zhang Y, Ma H. A Case of Pseudohypoparathyroidism Misdiagnosed as Idiopathic Epilepsy for 5 Years: Clinical Analysis and Follow-up Outcomes. J Int Med Res 2023; 51:3000605231215202. [PMID: 38017366 PMCID: PMC10686026 DOI: 10.1177/03000605231215202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
We report a 15-year-old Chinese girl who presented with intermittent seizure episodes and had been misdiagnosed as having idiopathic epilepsy 5 years previously. Laboratory testing revealed hypocalcemia, hyperphosphatemia, and a high parathyroid hormone (PTH) concentration. She was subsequently shown to have pseudohypoparathyroidism type Ib (PHPIb) based on the results of methylation analysis of the GNAS gene, which showed a loss of methylation of the differentially methylated regions (DMR) of GNAS-AS1, GNAS-XL, and GNAS-A/B; and a gain of methylation of the DMR of the GNAS-NESP55 region. We adjusted the patient's medication by prescribing calcium and calcitriol supplements, and gradually reduced the doses of antiepileptic drugs, until they had been completely discontinued. As a result, the patient did not experience any further seizures or epileptiform symptoms; and had normal plasma calcium, phosphorus, and 25-hydroxyvitamin D concentrations and 24-hour urinary calcium excretion. In addition, her PTH concentration gradually normalized over 12 months, and no urinary stones were found on ultrasonographic examination. In conclusion, the clinical presentation of PHP is complex, and the condition is often misdiagnosed. The diagnosis and follow-up of the present patient have provide valuable insights that should contribute to informed clinical decision-making and the implementation of appropriate treatment strategies.
Collapse
Affiliation(s)
- Li-Zhen Dai
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Chenshi Lin
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Rui Lei
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yan Zhang
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Hong Ma
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Portales-Castillo I, Simic P. PTH, FGF-23, Klotho and Vitamin D as regulators of calcium and phosphorus: Genetics, epigenetics and beyond. Front Endocrinol (Lausanne) 2022; 13:992666. [PMID: 36246903 PMCID: PMC9558279 DOI: 10.3389/fendo.2022.992666] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
The actions of several bone-mineral ion regulators, namely PTH, FGF23, Klotho and 1,25(OH)2 vitamin D (1,25(OH)2D), control calcium and phosphate metabolism, and each of these molecules has additional biological effects related to cell signaling, metabolism and ultimately survival. Therefore, these factors are tightly regulated at various levels - genetic, epigenetic, protein secretion and cleavage. We review the main determinants of mineral homeostasis including well-established genetic and post-translational regulators and bring attention to the epigenetic mechanisms that affect the function of PTH, FGF23/Klotho and 1,25(OH)2D. Clinically relevant epigenetic mechanisms include methylation of cytosine at CpG-rich islands, histone deacetylation and micro-RNA interference. For example, sporadic pseudohypoparathyroidism type 1B (PHP1B), a disease characterized by resistance to PTH actions due to blunted intracellular cAMP signaling at the PTH/PTHrP receptor, is associated with abnormal methylation at the GNAS locus, thereby leading to reduced expression of the stimulatory G protein α-subunit (Gsα). Post-translational regulation is critical for the function of FGF-23 and such modifications include glycosylation and phosphorylation, which regulate the cleavage of FGF-23 and hence the proportion of available FGF-23 that is biologically active. While there is extensive data on how 1,25(OH)2D and the vitamin D receptor (VDR) regulate other genes, much more needs to be learned about their regulation. Reduced VDR expression or VDR mutations are the cause of rickets and are thought to contribute to different disorders. Epigenetic changes, such as increased methylation of the VDR resulting in decreased expression are associated with several cancers and infections. Genetic and epigenetic determinants play crucial roles in the function of mineral factors and their disorders lead to different diseases related to bone and beyond.
Collapse
Affiliation(s)
- Ignacio Portales-Castillo
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Petra Simic
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|