1
|
Li D, Jan de Beur S, Hou C, Ruzhnikov MR, Seeley H, Cutting GR, Sheridan MB, Levine MA. Recurrent small variants in NESP55/NESPAS associated with broad GNAS methylation defects and pseudohypoparathyroidism type 1B. JCI Insight 2024; 9:e185874. [PMID: 39541438 DOI: 10.1172/jci.insight.185874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Pseudohypoparathyroidism type 1B (PHP1B) is associated with epigenetic changes in the maternal allele of the imprinted GNAS gene that inhibit expression of the α subunit of Gs (Gsα), thereby leading to parathyroid hormone resistance in renal proximal tubule cells where expression of Gsα from the paternal GNAS allele is normally silent. Although all patients with PHP1B show loss of methylation for the exon A/B differentially methylated region (DMR), some patients with autosomal dominant PHP1B (AD-PHP1B) and most patients with sporadic PHP1B have additional methylation defects that affect the DMRs corresponding to exons XL, AS1, and NESP. Because the genetic defect is unknown in most of these patients, we sought to identify the underlying genetic basis for AD-PHP1B in 2 multigenerational families with broad GNAS methylation defects and negative clinical exomes. Genome sequencing identified small GNAS variants in each family that were also present in unrelated individuals with PHP1B in a replication cohort. Maternal transmission of one GNAS microdeletion showed reduced penetrance in some unaffected patients. Expression of AS transcripts was increased, and NESP was decreased, in cells from affected patients. These results suggest that the small deletion activated AS transcription, leading to methylation of the NESP DMR with consequent inhibition of NESP transcription, and thereby provide a potential mechanism for PHP1B.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, and
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Suzanne Jan de Beur
- Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Maura Rz Ruzhnikov
- Neurology and Neurological Sciences, Pediatrics, Division of Medical Genetics, and
| | - Hilary Seeley
- Division of Pediatric Endocrinology, Stanford University and Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Molly B Sheridan
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael A Levine
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Endocrinology and Diabetes and The Center for Bone Health, The Children's Hospital of Philadelphia, and Department of Pediatrics University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Chen L, Yang C, Zhang X, Chen B, Zheng P, Li T, Song W, Gao H, Yue X, Yang J. STX16 exon 5-7 deletion in a patient with pseudohypoparathyroidism type 1B. J Pediatr Endocrinol Metab 2024; 37:734-740. [PMID: 39026465 DOI: 10.1515/jpem-2023-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES Pseudohypoparathyroidism (PHP) comprises a cluster of heterogeneous diseases characterized by hypocalcemia and hyperphosphatemia due to parathyroid hormone (PTH) resistance. PHP type 1B (PHP1B) is caused by heterozygous maternal deletions within GNAS or STX16. STX16 exon 2-6 deletion is commonly observed in autosomal dominant (AD)-PHP1B, while sporadic PHP1B commonly results from methylation abnormalities of maternal differentially methylated regions and remains unclear at the molecular level. CASE PRESENTATION A 39-year-old male patient with PHP1B, who had his first seizure at 15 years of age, presented to our hospital. The methylation-specific multiplex ligation-dependent probe amplification results showed a half-reduced copy number of STX16 exon 5-7 and loss of methylation at GNAS exon A/B. His mother also had a half-reduced copy number of STX16 exon 5-7 but with normal methylation of GNAS. His father has a normal copy number of STX16 and normal methylation of GNAS. CONCLUSIONS For the recognition and early diagnosis of this kind of disease, here we report the clinical symptoms, auxiliary examinations, genetic testing characteristics, and treatment of the patient.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Chuanbin Yang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xiaoxiao Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Beibei Chen
- Department of Endocrinology, The First Affiliated Hospital of Henan University, Henan Province, China
| | - Peibing Zheng
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Tingting Li
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Wenjing Song
- Department of Endocrinology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Gao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xiaofang Yue
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Jiajun Yang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
3
|
Jüppner H. Pseudohypoparathyroidism: complex disease variants with unfortunate names. J Mol Endocrinol 2024; 72:e230104. [PMID: 37965945 PMCID: PMC10843601 DOI: 10.1530/jme-23-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Several human disorders are caused by genetic or epigenetic changes involving the GNAS locus on chromosome 20q13.3 that encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. Thus, pseudohypoparathyroidism type Ia (PHP1A) is caused by heterozygous inactivating mutations involving the maternal GNAS exons 1-13 resulting in characteristic abnormalities referred to as Albright's hereditary osteodystrophy (AHO) that are associated with resistance to several agonist ligands, particularly to parathyroid hormone (PTH), thereby leading to hypocalcemia and hyperphosphatemia. GNAS mutations involving the paternal Gsα exons also cause most of these AHO features, but without evidence for hormonal resistance, hence the term pseudopseudohypoparathyroidism (PPHP). Autosomal dominant pseudohypoparathyroidism type Ib (PHP1B) due to maternal GNAS or STX16 mutations (deletions, duplications, insertions, and inversions) is associated with epigenetic changes at one or several differentially methylated regions (DMRs) within GNAS. Unlike the inactivating Gsα mutations that cause PHP1A and PPHP, hormonal resistance is caused in all PHP1B variants by impaired Gsα expression due to loss of methylation at GNAS exon A/B, which can be associated in some familial cases with epigenetic changes at the other maternal GNAS DMRs. The genetic defect(s) responsible for sporadic PHP1B, the most frequent variant of this disorder, remain(s) unknown for the majority of patients. However, characteristic epigenetic GNAS changes can be readily detected that include a gain of methylation at the neuroendocrine secretory protein (NESP) DMR. Multiple genetic or epigenetic GNAS abnormalities can thus impair Gsα function or expression, consequently leading to inadequate cAMP-dependent signaling events downstream of various Gsα-coupled receptors.
Collapse
Affiliation(s)
- Harald Jüppner
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Root AW, Levine MA. One half-century of advances in the evaluation and management of disorders of bone and mineral metabolism in children and adolescents. J Pediatr Endocrinol Metab 2023; 36:105-118. [PMID: 36636022 PMCID: PMC10406614 DOI: 10.1515/jpem-2022-0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
The past 50 years of research in pediatric bone and mineral metabolism have led to remarkable progress in the identification and characterization of disorders that affect the developing skeleton. Progress has been facilitated through advances in both technology and biology and this paper provides a brief description of some but not all of the key findings, including identification of the calcium sensing receptor and the polypeptides parathyroid hormone and parathyroid hormone-related protein as well as their shared receptor and signal generating pathways; the elucidation of vitamin D metabolism and actions; discovery of fibroblast growth factor 23 (FGF23), the sodium-phosphate co-transporters and the other components that regulate phosphate metabolism. Moreover, the past half-century of research has led to the delineation of the molecular bases for genetic forms of hypoparathyroidism, pseudohypoparathyroidism, and primary hyperparathyroidism as well as the determination of the genetic causes of osteogenesis imperfecta, osteopetrosis, hypophosphatasia, and other disorders of mineral/bone homeostasis. During the next decade we expect that many of these fundamental discoveries will lead to the development of innovative treatments that will improve the lives of children with these disorders.
Collapse
Affiliation(s)
- Allen W. Root
- Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Michael A. Levine
- Corresponding author: Michael A. Levine, MD, The Center for Bone Health at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA,
| |
Collapse
|
5
|
Miller DE, Hanna P, Galey M, Reyes M, Linglart A, Eichler EE, Jüppner H. Targeted Long-Read Sequencing Identifies a Retrotransposon Insertion as a Cause of Altered GNAS Exon A/B Methylation in a Family With Autosomal Dominant Pseudohypoparathyroidism Type 1b (PHP1B). J Bone Miner Res 2022; 37:1711-1719. [PMID: 35811283 PMCID: PMC9474630 DOI: 10.1002/jbmr.4647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Pseudohypoparathyroidism type Ib (PHP1B) is characterized predominantly by resistance to parathyroid hormone (PTH) leading to hypocalcemia and hyperphosphatemia. These laboratory abnormalities are caused by maternal loss-of-methylation (LOM) at GNAS exon A/B, which reduces in cis expression of the stimulatory G protein α-subunit (Gsα). Paternal Gsα expression in proximal renal tubules is silenced through unknown mechanisms, hence LOM at exon A/B reduces further Gsα protein in this kidney portion, leading to PTH resistance. In a previously reported PHP1B family, affected members showed variable LOM at exon A/B, yet no genetic defect was found by whole-genome sequencing despite linkage to GNAS. Using targeted long-read sequencing (T-LRS), we discovered an approximately 2800-bp maternally inherited retrotransposon insertion nearly 1200 bp downstream of exon XL not found in public databases or in 13,675 DNA samples analyzed by short-read whole-genome sequencing. T-LRS data furthermore confirmed normal methylation at exons XL, AS, and NESP and showed that LOM comprising exon A/B is broader than previously thought. The retrotransposon most likely causes the observed epigenetic defect by impairing function of a maternally derived NESP transcript, consistent with findings in mice lacking full-length NESP mRNA and in PHP1B patients with deletion of exon NESP and adjacent intronic sequences. In addition to demonstrating that T-LRS is an effective strategy for identifying a small disease-causing variant that abolishes or severely reduces exon A/B methylation, our data demonstrate that this sequencing technology has major advantages for simultaneously identifying structural defects and altered methylation. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Danny E. Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Patrick Hanna
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Miranda Galey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Agnès Linglart
- Université Paris-Saclay, Inserm, Physiologie et physiopathologie endocrinienne; AP-HP, Department of molecular genetics, Bicêtre Paris-Saclay hospital, Le Kremlin Bicêtre, France
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Kottler ML. Pseudo-hypoparathyroïdie et ses variants. Med Sci (Paris) 2022; 38:655-662. [DOI: 10.1051/medsci/2022103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Les pseudohypoparathyroïdies (PHP) sont des maladies rares, caractérisées par une résistance à l’action rénale de la parathormone. Le défaut génétique est localisé au locus GNAS, qui code la sous-unité alpha stimulatrice des protéines G (Gαs). Ce locus est le siège de régulations complexes, épissage alternatif et empreinte parentale éteigant de façon tissu-spécifique l’expression de l’allèle paternel. Des mutations hétérozygotes perte de fonction, des épimutations responsables d’une perte d’expression sont associées à un large spectre pathologique : PHP1A, PHP1B, ossification hétérotopique, ostéodystophie, obésité, retard de croissance in utero, etc., dont les mécanismes restent encore incomplètement connus.
Collapse
|