1
|
Sosenko JM, Cuthbertson D, Jacobsen LM, Redondo MJ, Sims EK, Ismail HM, Herold KC, Skyler JS, Nathan BM. A Glucose Fraction Independent of Insulin Secretion: Implications for Type 1 Diabetes Progression in Autoantibody-Positive Cohorts. Diabetes Technol Ther 2025. [PMID: 39757867 DOI: 10.1089/dia.2024.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Objective: We assessed whether there is an impactful glucose fraction independent of insulin secretion in autoantibody-positive individuals. Research Design and Methods: Baseline 2-h oral glucose tolerance test data from the TrialNet Pathway to Prevention (TNPTP; n = 6190) and Diabetes Prevention Trial-Type 1 (DPT-1; n = 705) studies were used. Linear regression of area under the curve (AUC) glucose versus Index60 was performed to identify two fractions: dependent (dAUCGLU) or independent (iAUCGLU) of insulin secretion. Results: The lack of correlation (r = 0.06) of iAUCGLU and the inverse correlation of dAUCGLU (r = -0.59) with the first-phase insulin response from DPT-1 were consistent with the independent and dependent designations of the glucose fractions. Correlations of AUC C-peptide were inverse with dAUCGLU and positive with iAUCGLU (TNPTP: r = -0.72, r = 0.57; DPT-1: r = -0.56, r = 0.60). The explained variance of AUC C-peptide increased markedly after separating AUC glucose into its fractions (from 4% to 85% in TNPTP; from 1% to 67% in DPT-1). The independent fraction contributed more to the increased glycemia of impaired glucose tolerance (IGT) than did the dependent fraction. Both dAUCGLU and iAUCGLU predicted IGT and type 1 diabetes (T1D) (P < 0.0001 for all). However, whereas dAUCGLU was more predictive of T1D (chi-square: 849 vs. 249), iAUCGLU was more predictive of IGT (chi-square: 451 vs. 176). Conclusions: A glucose fraction independent of insulin secretion was identified that was appreciable in autoantibody-positive individuals. It provides insight into the relation between glucose and C-peptide, contributes substantially to the glycemia of IGT, and predicts both T1D and IGT, particularly the latter.
Collapse
Affiliation(s)
- Jay M Sosenko
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David Cuthbertson
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Laura M Jacobsen
- University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Emily K Sims
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Heba M Ismail
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Jay S Skyler
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brandon M Nathan
- University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Martino M, Galderisi A, Evans-Molina C, Dayan C. Revisiting the Pattern of Loss of β-Cell Function in Preclinical Type 1 Diabetes. Diabetes 2024; 73:1769-1779. [PMID: 39106185 DOI: 10.2337/db24-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Type 1 diabetes (T1D) results from β-cell destruction due to autoimmunity. It has been proposed that β-cell loss is relatively quiescent in the early years after seroconversion to islet antibody positivity (stage 1), with accelerated β-cell loss only developing around 6-18 months prior to clinical diagnosis. This construct implies that immunointervention in this early stage will be of little benefit, since there is little disease activity to modulate. Here, we argue that the apparent lack of progression in early-stage disease may be an artifact of the modality of assessment used. When substantial β-cell function remains, the standard assessment, the oral glucose tolerance test, represents a submaximal stimulus and underestimates the residual function. In contrast, around the time of diagnosis, glucotoxicity exerts a deleterious effect on insulin secretion, giving the impression of disease acceleration. Once glucotoxicity is relieved by insulin therapy, β-cell function partially recovers (the honeymoon effect). However, evidence from recent trials suggests that glucose control has little effect on the underlying disease process. We therefore hypothesize that the autoimmune destruction of β-cells actually progresses at a more or less constant rate through all phases of T1D and that early-stage immunointervention will be both beneficial and desirable. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Mariangela Martino
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
- PhD Program in Immunology, Molecular Medicine, and Applied Biotechnologies, University of Rome "Tor Vergata," Rome, Italy
| | | | - Carmella Evans-Molina
- Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Colin Dayan
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
| |
Collapse
|
3
|
Galderisi A, Carr ALJ, Martino M, Taylor P, Senior P, Dayan C. Quantifying beta cell function in the preclinical stages of type 1 diabetes. Diabetologia 2023; 66:2189-2199. [PMID: 37712956 PMCID: PMC10627950 DOI: 10.1007/s00125-023-06011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Clinically symptomatic type 1 diabetes (stage 3 type 1 diabetes) is preceded by a pre-symptomatic phase, characterised by progressive loss of functional beta cell mass after the onset of islet autoimmunity, with (stage 2) or without (stage 1) measurable changes in glucose profile during an OGTT. Identifying metabolic tests that can longitudinally track changes in beta cell function is of pivotal importance to track disease progression and measure the effect of disease-modifying interventions. In this review we describe the metabolic changes that occur in the early pre-symptomatic stages of type 1 diabetes with respect to both insulin secretion and insulin sensitivity, as well as the measurable outcomes that can be derived from the available tests. We also discuss the use of metabolic modelling to identify insulin secretion and sensitivity, and the measurable changes during dynamic tests such as the OGTT. Finally, we review the role of risk indices and minimally invasive measures such as those derived from the use of continuous glucose monitoring.
Collapse
Affiliation(s)
| | - Alice L J Carr
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Mariangela Martino
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Taylor
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Senior
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Colin Dayan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
4
|
Mao R, Wang J, Xu Y, Wang Y, Wu M, Mao L, Chen Y, Li D, Zhang T, Diao E, Chi Z, Wang Y, Chang X. Oral delivery of bi-autoantigens by bacterium-like particles (BLPs) against autoimmune diabetes in NOD mice. Drug Deliv 2023; 30:2173339. [PMID: 36719009 PMCID: PMC9891168 DOI: 10.1080/10717544.2023.2173339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023] Open
Abstract
Induction of oral tolerance by vaccination with type 1 diabetes mellitus (T1DM)-associated autoantigens exhibits great potential in preventing and treating this autoimmune disease. However, antigen degradation in the gastrointestinal tract (GIT) limits the delivery efficiency of oral antigens. Previously, bacterium-like particles (BLPs) have been used to deliver a single-chain insulin (SCI-59) analog (BLPs-SCI-59) or the intracellular domain of insulinoma-associated protein 2 (IA-2ic) (BLPs-IA-2ic). Both monovalent BLPs vaccines can suppress T1DM in NOD mice by stimulating the corresponding antigen-specific oral tolerance, respectively. Here, we constructed two bivalent BLPs vaccines which simultaneously deliver SCI-59 and IA-2ic (Bivalent vaccine-mix or Bivalent vaccine-SA), and evaluated whether there is an additive beneficial effect on tolerance induction and suppression of T1DM by treatment with BLPs-delivered bi-autoantigens. Compared to the monovalent BLPs vaccines, oral administration of the Bivalent vaccine-mix could significantly reduce morbidity and mortality in T1DM. Treatment with the bivalent BLPs vaccines (especially Bivalent vaccine-mix) endowed the mice with a stronger ability to regulate blood glucose and protect the integrity and function of pancreatic islets than the monovalent BLPs vaccines treatment. This additive effect of BLPs-delivered bi-autoantigens on T1DM prevention may be related to that SCI-59- and IA-2-specific Th2-like immune responses could be induced, which was more beneficial for the correction of Th1/Th2 imbalance. In addition, more CD4+CD25+Foxp3+ regulatory T cells (Tregs) were induced by treatment with the bivalent BLPs vaccines than did the monovalent BLPs vaccines. Therefore, multiple autoantigens delivered by BLPs maybe a promising strategy to prevent T1DM by efficiently inducing antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Ruifeng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Jin Wang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing211200, China
| | - Ying Xu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Yuqi Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Mengmeng Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Lixia Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Yingying Chen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Dengchao Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Tong Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an223300, China
| | - Zhenjing Chi
- Huai’an First People’s Hospital, Nanjing Medical University, Huai’an223300, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Xin Chang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing211200, China
| |
Collapse
|
5
|
Galderisi A, Evans-Molina C, Martino M, Caprio S, Cobelli C, Moran A. β-Cell Function and Insulin Sensitivity in Youth With Early Type 1 Diabetes From a 2-Hour 7-Sample OGTT. J Clin Endocrinol Metab 2023; 108:1376-1386. [PMID: 36546354 PMCID: PMC10188312 DOI: 10.1210/clinem/dgac740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
CONTEXT The oral minimal model is a widely accepted noninvasive tool to quantify both β-cell responsiveness and insulin sensitivity (SI) from glucose, C-peptide, and insulin concentrations during a 3-hour 9-point oral glucose tolerance test (OGTT). OBJECTIVE Here, we aimed to validate a 2-hour 7-point protocol against the 3-hour OGTT and to test how variation in early sampling frequency impacts estimates of β-cell responsiveness and SI. METHODS We conducted a secondary analysis on 15 lean youth with stage 1 type 1 diabetes (T1D; ≥ 2 islet autoantibodies with no dysglycemia) who underwent a 3-hour 9-point OGTT. The oral minimal model was used to quantitate β-cell responsiveness (φtotal) and insulin sensitivity (SI), allowing assessment of β-cell function by the disposition index (DI = φtotal × SI). Seven- and 5-point 2-hour OGTT protocols were tested against the 3-hour 9-point gold standard to determine agreement between estimates of φtotal and its dynamic and static components, SI, and DI across different sampling strategies. RESULTS The 2-hour estimates for the disposition index exhibited a strong correlation with 3-hour measures (r = 0.975; P < .001) with similar results for β-cell responsiveness and SI (r = 0.997 and r = 0.982; P < .001, respectively). The agreement of the 3 estimates between the 7-point 2-hour and 9-point 3-hour protocols fell within the 95% CI on the Bland-Altman grid with a median difference of 16.9% (-35.3 to 32.5), 0.2% (-0.6 to 1.3), and 14.9% (-1.4 to 28.3) for DI, φtotal, and SI. Conversely, the 5-point protocol did not provide reliable estimates of φ dynamic and static components. CONCLUSION The 2-hour 7-point OGTT is reliable in individuals with stage 1 T1D for assessment of β-cell responsiveness, SI, and DI. Incorporation of these analyses into current 2-hour diabetes staging and monitoring OGTTs offers the potential to more accurately quantify risk of progression in the early stages of T1D.
Collapse
Affiliation(s)
- Alfonso Galderisi
- Department of Woman and Child's Health, University of Padova,
35128 Padua, Italy
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana
University, Indianapolis, Indiana 46202, USA
| | - Mariangela Martino
- Department of Woman and Child's Health, University of Padova,
35128 Padua, Italy
| | - Sonia Caprio
- Department of Pediatrics, Yale University, New
Haven, Connecticut 06520, USA
| | - Claudio Cobelli
- Department of Woman and Child's Health, University of Padova,
35128 Padua, Italy
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota,
Minneapolis, Minnesota 55454, USA
| |
Collapse
|