1
|
Wen MH, Xie X, Huang PS, Yang K, Chen TY. Crossroads between membrane trafficking machinery and copper homeostasis in the nerve system. Open Biol 2021; 11:210128. [PMID: 34847776 PMCID: PMC8633785 DOI: 10.1098/rsob.210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Imbalanced copper homeostasis and perturbation of membrane trafficking are two common symptoms that have been associated with the pathogenesis of neurodegenerative and neurodevelopmental diseases. Accumulating evidence from biophysical, cellular and in vivo studies suggest that membrane trafficking orchestrates both copper homeostasis and neural functions-however, a systematic review of how copper homeostasis and membrane trafficking interplays in neurons remains lacking. Here, we summarize current knowledge of the general trafficking itineraries for copper transporters and highlight several critical membrane trafficking regulators in maintaining copper homeostasis. We discuss how membrane trafficking regulators may alter copper transporter distribution in different membrane compartments to regulate intracellular copper homeostasis. Using Parkinson's disease and MEDNIK as examples, we further elaborate how misregulated trafficking regulators may interplay parallelly or synergistically with copper dyshomeostasis in devastating pathogenesis in neurodegenerative diseases. Finally, we explore multiple unsolved questions and highlight the existing challenges to understand how copper homeostasis is modulated through membrane trafficking.
Collapse
Affiliation(s)
- Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Xihong Xie
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Karen Yang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
2
|
Santiago-Vázquez M, Michelen-Gómez EA, Ramos AJ, Barrera J, Correa MV, Rodriguez J, Cruz A. Seizures of unknown etiology associated with brittle hair: A diagnostic challenge. JAAD Case Rep 2021; 18:33-36. [PMID: 34805469 PMCID: PMC8590027 DOI: 10.1016/j.jdcr.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
| | | | - Alvaro J Ramos
- Department of Dermatology, University of Puerto Rico, San Juan, Puerto Rico
| | - Julián Barrera
- Department of Dermatology, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Janice Rodriguez
- School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Alma Cruz
- Department of Dermatology, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
3
|
Sluysmans S, Méan I, Xiao T, Boukhatemi A, Ferreira F, Jond L, Mutero A, Chang CJ, Citi S. PLEKHA5, PLEKHA6, and PLEKHA7 bind to PDZD11 to target the Menkes ATPase ATP7A to the cell periphery and regulate copper homeostasis. Mol Biol Cell 2021; 32:ar34. [PMID: 34613798 PMCID: PMC8693958 DOI: 10.1091/mbc.e21-07-0355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023] Open
Abstract
Copper homeostasis is crucial for cellular physiology and development, and its dysregulation leads to disease. The Menkes ATPase ATP7A plays a key role in copper efflux, by trafficking from the Golgi to the plasma membrane upon cell exposure to elevated copper, but the mechanisms that target ATP7A to the cell periphery are poorly understood. PDZD11 interacts with the C-terminus of ATP7A, which contains sequences involved in ATP7A trafficking, but the role of PDZD11 in ATP7A localization is unknown. Here we identify PLEKHA5 and PLEKHA6 as new interactors of PDZD11 that bind to the PDZD11 N-terminus through their WW domains similarly to the junctional protein PLEKHA7. Using CRISPR-KO kidney epithelial cells, we show by immunofluorescence microscopy that WW-PLEKHAs (PLEKHA5, PLEKHA6, PLEKHA7) recruit PDZD11 to distinct plasma membrane localizations and that they are required for the efficient anterograde targeting of ATP7A to the cell periphery in elevated copper conditions. Pull-down experiments show that WW-PLEKHAs promote PDZD11 interaction with the C-terminus of ATP7A. However, WW-PLEKHAs and PDZD11 are not necessary for ATP7A Golgi localization in basal copper, ATP7A copper-induced exit from the Golgi, and ATP7A retrograde trafficking to the Golgi. Finally, measuring bioavailable and total cellular copper, metallothionein-1 expression, and cell viability shows that WW-PLEKHAs and PDZD11 are required for maintaining low intracellular copper levels when cells are exposed to elevated copper. These data indicate that WW-PLEKHAs-PDZD11 complexes regulate the localization and function of ATP7A to promote copper extrusion in elevated copper.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Isabelle Méan
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Amina Boukhatemi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Flavio Ferreira
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Lionel Jond
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Annick Mutero
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| |
Collapse
|
4
|
The effect of copper supplementation on in vitro maturation of porcine cumulus-oocyte complexes and subsequent developmental competence after parthenogenetic activation. Theriogenology 2021; 164:84-92. [PMID: 33567360 DOI: 10.1016/j.theriogenology.2021.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/18/2020] [Accepted: 01/16/2021] [Indexed: 01/01/2023]
Abstract
Copper (Cu) ions have redox activity and act as cofactors of enzymes related to respiration, radical detoxification, and iron metabolism. In this study, we aimed to examine the effects of copper (II) chloride dihydrate (CuCl2·2H2O) on porcine oocytes during in vitro maturation (IVM) and subsequent embryonic development following parthenogenetic activation (PA). Nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, cumulus expansion, the mRNA expression levels of various genes, and developmental competence were analyzed. During IVM, the maturation medium was supplemented with various concentrations of Cu (0, 0.7, 1.4, and 2.8 μg/mL). After 42 h of IVM, Cu supplementation significantly increased the number of oocytes in the metaphase II stage. Further, the 1.4 μg/mL Cu group showed significantly higher intracellular GSH levels than the control group. However, Cu supplementation increased intracellular ROS levels regardless of their concentration. Additionally, the mRNA levels of Has-2, the cumulus cell expansion-related gene, were higher in all the Cu-treated groups than in the control group. The cumulus cell expansion index was higher in the 0.7 and 1.4 μg/mL Cu groups than in the other groups. In the 0.7 μg/mL Cu group, the mRNA expression levels of PCNA, Zar1, and NPM2, which are related to developmental competence, were significantly higher than those in the control group. Moreover, increased levels of Sod1 transcript, correlated with the antioxidative response, were observed in the 0.7 and 1.4 μg/mL Cu groups. The apoptosis rate in Cu-treated cumulus cells and oocytes was decreased compared to that in the corresponding control groups. Upon evaluation of subsequent embryonic development after PA, the 0.7 μg/mL Cu group showed significantly improved cleavage and blastocyst formation rate compared to the control group. In conclusion, our results suggest that Cu supplementation at appropriate concentrations in IVM medium improves porcine oocyte maturation and the subsequent embryonic potential of PA embryos by reducing oxidative stress and apoptosis.
Collapse
|
5
|
From economy to luxury: Copper homeostasis in Chlamydomonas and other algae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118822. [PMID: 32800924 DOI: 10.1016/j.bbamcr.2020.118822] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Plastocyanin and cytochrome c6, abundant proteins in photosynthesis, are readouts for cellular copper status in Chlamydomonas and other algae. Their accumulation is controlled by a transcription factor copper response regulator (CRR1). The replacement of copper-containing plastocyanin with heme-containing cytochrome c6 spares copper and permits preferential copper (re)-allocation to cytochrome oxidase. Under copper-replete situations, the quota depends on abundance of various cuproproteins and is tightly regulated, except under zinc-deficiency where acidocalcisomes over-accumulate Cu(I). CRR1 has a transcriptional activation domain, a Zn-dependent DNA binding SBP-domain with a nuclear localization signal, and a C-terminal Cys-rich region that represses the zinc regulon. CRR1 activates >60 genes in Chlamydomonas through GTAC-containing CuREs; transcriptome differences are recapitulated in the proteome. The differentially-expressed genes encode assimilatory copper transporters of the CTR/SLC31 family including a novel soluble molecule, redox enzymes in the tetrapyrrole pathway that promote chlorophyll biosynthesis and photosystem 1 accumulation, and other oxygen-dependent enzymes, which may influence thylakoid membrane lipids, specifically polyunsaturated galactolipids and γ-tocopherol. CRR1 also down-regulates 2 proteins in Chlamydomonas: for plastocyanin, by activation of proteolysis, while for the di‑iron subunit of the cyclase in chlorophyll biosynthesis, through activation of an upstream promoter that generates a poorly-translated 5' extended transcript containing multiple short ORFs that inhibit translation. The functions of many CRR1-target genes are unknown, and the copper protein inventory in Chlamydomonas includes several whose functions are unexplored. The comprehensive picture of cuproproteins and copper homeostasis in this system is well-suited for reverse genetic analyses of these under-investigated components in copper biology.
Collapse
|
6
|
Ogórek M, Herman S, Pierzchała O, Bednarz A, Rajfur Z, Baster Z, Grzmil P, Starzyński RR, Szudzik M, Jończy A, Lipiński P, Lenartowicz M. Molecular machinery providing copper bioavailability for spermatozoa along the epididymial tubule in mouse. Biol Reprod 2020; 100:1505-1520. [PMID: 30997485 DOI: 10.1093/biolre/ioz028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 01/01/2023] Open
Abstract
Progressive functional maturation of spermatozoa is completed during the transit of these cells through the epididymis, a tubule structure connecting a testicle to a vas deferens. Epididymal epithelial cells by means of their secretory and absorptive functions determine a highly specialized luminal microenvironment containing multiple organic and inorganic components. The latter include copper ions, which due to their redox properties are indispensable for critical homeostatic processes occurring in spermatozoa floating in different part of epididymis but can be potentially toxic. Main purpose of our study was to determine epididymal region-dependent expression and localization of copper transporters ensuring a tight control of copper concentration in epididymal fluid. We also aimed at identifying proteins responsible for copper uptake by spermatozoa and verifying whether this process is coordinated with copper supply to superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Our study identifies two ATPases-ATP7A, ATP7B and Slc31a1, major copper importers/exporters depending on their differential expression on epididymal polarized epithelial cells of the caput, corpus, and cauda. Next, ceruloplasmin seems to be a chief protein transporting copper in the epididymal fluid and providing this biometal to spermatozoa. The entry of copper to germ cells is mediated by Slc31a1 and is correlated with both expressions of copper chaperone for superoxide dismutase (CCS), copper chaperone directly providing copper ions to SOD1 and with the expression and activity of the latter. Our results outline a network of cooperating copper binding proteins expressed in epididymal epithelium and in spermatozoa that orchestrate bioavailability of this microelement for gametes and protect them against copper toxicity.
Collapse
Affiliation(s)
- M Ogórek
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - S Herman
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - O Pierzchała
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - A Bednarz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Z Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - Z Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - P Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - R R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - M Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - A Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - P Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - M Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Abstract
Numerous zinc ectoenzymes are folded and activated in the compartments of the early secretory pathway, such as the ER and the Golgi apparatus, before reaching their final destination. During this process, zinc must be incorporated into the active site; therefore, metalation of the nascent protein is indispensable for the expression of the active enzyme. However, to date, the molecular mechanism underlying this process has been poorly investigated. This is in sharp contrast to the physiological and pathophysiological roles of zinc ectoenzymes, which have been extensively investigated over the past decades. This manuscript concisely outlines the present understanding of zinc ectoenzyme activation through metalation by zinc and compares this with copper ectoenzyme activation, in which elaborate copper metalation mechanisms are known. Moreover, based on the comparison, several hypotheses are discussed. Approximately 80 years have passed since the first zinc enzyme was identified; therefore, it is necessary to improve our understanding of zinc ectoenzymes from a biochemical perspective, which will further our understanding of their biological roles.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies , Kyoto University , Kyoto 606-8502 , Japan
| |
Collapse
|
8
|
Petruzzelli R, Polishchuk RS. Activity and Trafficking of Copper-Transporting ATPases in Tumor Development and Defense against Platinum-Based Drugs. Cells 2019; 8:E1080. [PMID: 31540259 PMCID: PMC6769697 DOI: 10.3390/cells8091080] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking pathways emanating from the Golgi regulate a wide range of cellular processes. One of these is the maintenance of copper (Cu) homeostasis operated by the Golgi-localized Cu-transporting ATPases ATP7A and ATP7B. At the Golgi, these proteins supply Cu to newly synthesized enzymes which use this metal as a cofactor to catalyze a number of vitally important biochemical reactions. However, in response to elevated Cu, the Golgi exports ATP7A/B to post-Golgi sites where they promote sequestration and efflux of excess Cu to limit its potential toxicity. Growing tumors actively consume Cu and employ ATP7A/B to regulate the availability of this metal for oncogenic enzymes such as LOX and LOX-like proteins, which confer higher invasiveness to malignant cells. Furthermore, ATP7A/B activity and trafficking allow tumor cells to detoxify platinum (Pt)-based drugs (like cisplatin), which are used for the chemotherapy of different solid tumors. Despite these noted activities of ATP7A/B that favor oncogenic processes, the mechanisms that regulate the expression and trafficking of Cu ATPases in malignant cells are far from being completely understood. This review summarizes current data on the role of ATP7A/B in the regulation of Cu and Pt metabolism in malignant cells and outlines questions and challenges that should be addressed to understand how ATP7A and ATP7B trafficking mechanisms might be targeted to counteract tumor development.
Collapse
Affiliation(s)
- Raffaella Petruzzelli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| |
Collapse
|
9
|
Mueller GP, Lazarus RC, Driscoll WJ. α-Amidated Peptides: Approaches for Analysis. Methods Mol Biol 2019; 1934:247-264. [PMID: 31256384 DOI: 10.1007/978-1-4939-9055-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
α-Amidation is a terminal modification in peptide biosynthesis that can itself be rate limiting in the overall production of bioactive α-amidated peptides. More than half of the known neural and endocrine peptides are α-amidated and in most cases this structural feature is essential for receptor recognition, signal transduction, and thus biologic function. This chapter describes methods for developing and using analytical tools to study the biology of α-amidated peptides. The principal analytical method used to quantify α-amidated peptides is the radioimmunoassay (RIA). Detailed protocols are provided for (1) primary antibody production and characterization; (2) radiolabeling of RIA peptides; (3) sample preparation; and (4) performance of the RIA itself. Techniques are also described for the identification and verification of α-amidated peptides. Lastly, in vivo models used for studying the biology of α-amidation are discussed.
Collapse
Affiliation(s)
- Gregory P Mueller
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Rachel C Lazarus
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - William J Driscoll
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
10
|
Kline CD, Gambill BF, Mayfield M, Lutsenko S, Blackburn NJ. pH-regulated metal-ligand switching in the HM loop of ATP7A: a new paradigm for metal transfer chemistry. Metallomics 2017; 8:729-33. [PMID: 27242196 DOI: 10.1039/c6mt00062b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cuproproteins such as PHM and DBM mature in late endosomal vesicles of the mammalian secretory pathway where changes in vesicle pH are employed for sorting and post-translational processing. Colocation with the P1B-type ATPase ATP7A suggests that the latter is the source of copper and supports a mechanism where selectivity in metal transfer is achieved by spatial colocation of partner proteins in their specific organelles or vesicles. In previous work we have suggested that a lumenal loop sequence located between trans-membrane helices TM1 and TM2 of the ATPase, and containing five histidines and four methionines, acts as an organelle-specific chaperone for metallation of the cuproproteins. The hypothesis posits that the pH of the vesicle regulates copper ligation and loop conformation via a mechanism which involves His to Met ligand switching induced by histidine protonation. Here we report the effect of pH on the HM loop copper coordination using X-ray absorption spectroscopy (XAS), and show via selenium substitution of the Met residues that the HM loop undergoes similar conformational switching to that found earlier for its partner PHM. We hypothesize that in the absence of specific chaperones, HM motifs provide a template for building a flexible, pH-sensitive transfer site whose structure and function can be regulated to accommodate the different active site structural elements and pH environments of its partner proteins.
Collapse
Affiliation(s)
- Chelsey D Kline
- Institute of Environmental Health, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| | - Benjamin F Gambill
- Institute of Environmental Health, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| | - Mary Mayfield
- Institute of Environmental Health, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| | - Svetlana Lutsenko
- Department of Physiology, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Ninian J Blackburn
- Institute of Environmental Health, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| |
Collapse
|
11
|
Anchordoquy JM, Anchordoquy JP, Nikoloff N, Pascua AM, Furnus CC. High copper concentrations produce genotoxicity and cytotoxicity in bovine cumulus cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20041-20049. [PMID: 28699012 DOI: 10.1007/s11356-017-9683-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to investigate the cytotoxic and genotoxic effects of high copper (Cu) concentrations on bovine cumulus cells (CCs) cultured in vitro. We evaluated the effect of 0, 120, 240, and 360 μg/dL Cu added to in vitro maturation (IVM) medium on CC viability assessed by the trypan blue (TB)-fluorescein diacetate (FDA) and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, apoptosis, and DNA damage. Differences in cell viability assessed by TB-FDA were not significant among CC treated with 0, 120, 240, and 360 μg/dL Cu. However, mitochondrial activity assessed by MTT was lower in CC cultured with 120, 240, and 360 μg/dL Cu as compared with the control (p < 0.01). Percentages of apoptotic cells were higher when CCs were treated with 120, 240, and 360 μg/dL Cu (p < 0.05) due to higher frequencies of late apoptotic cells (p < 0.05). The frequency of live cells diminished in a dose-dependent manner when Cu was added to the culture medium. Whereas genetic damage index (GDI) increased significantly in CC cultured in the presence of 240 and 360 μg/dL Cu (p ˂ 0.05), DNA damage increased at all Cu concentrations tested (p ˂ 0.05). These results indicate that Cu induces cytotoxic and genotoxic effects in bovine CC.
Collapse
Affiliation(s)
- Juan Mateo Anchordoquy
- IGEVET-Instituto de Genética Veterinaria "Prof. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, 1900, La Plata, Buenos Aires, Argentina
- Cátedra de Fisiología, Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, 1900, La Plata, Buenos Aires, Argentina
| | - Juan Patricio Anchordoquy
- IGEVET-Instituto de Genética Veterinaria "Prof. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, 1900, La Plata, Buenos Aires, Argentina
- Cátedra de Fisiología, Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, 1900, La Plata, Buenos Aires, Argentina
| | - Noelia Nikoloff
- IGEVET-Instituto de Genética Veterinaria "Prof. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, 1900, La Plata, Buenos Aires, Argentina
| | - Ana M Pascua
- IGEVET-Instituto de Genética Veterinaria "Prof. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, 1900, La Plata, Buenos Aires, Argentina
| | - Cecilia C Furnus
- IGEVET-Instituto de Genética Veterinaria "Prof. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, 1900, La Plata, Buenos Aires, Argentina.
- Cátedra de Citología, Histología y Embriología "A," Facultad de Ciencias Médicas, Universidad Nacional de La Plata, calle 60 y 120 s/n, 1900, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Analyses of apoptosis and DNA damage in bovine cumulus cells after in vitro maturation with different copper concentrations: consequences on early embryo development. ZYGOTE 2017; 24:869-879. [PMID: 27805544 DOI: 10.1017/s0967199416000204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the influence of copper (Cu) during in vitro maturation (IVM) on apoptosis and DNA integrity of cumulus cells (CC); and oocyte viability. Also, the role of CC in the transport of Cu during IVM was evaluated on oocyte developmental capacity. Damage of DNA was higher in CC matured without Cu (0 µg/dl Cu, P < 0.01) with respect to cells treated with Cu for cumulus-oocyte complexes (COCs) exposed to 0, 20, 40, or 60 µg/dl Cu). The percentage of apoptotic cells was higher in CC matured without Cu than in CC matured with Cu. Cumulus expansion and viability of CC did not show differences in COC treated with 0, 20, 40, or 60 µg/dl Cu during IVM. After in vitro fertilization (IVF), cleavage rates were higher in COC and DO + CC (denuded oocytes + CC) with or without Cu than in DO. Independently of CC presence (COC, DO + CC or DO) the blastocyst rates were higher when 60 µg/dl Cu was added to IVM medium compared to medium alone. These results indicate that Cu supplementation to IVM medium: (i) decreased DNA damage and apoptosis in CC; (ii) did not modify oocyte viability and cumulus expansion; and (iii) improved subsequent embryo development up to blastocyst stage regardless of CC presence during IVM.
Collapse
|
13
|
Abstract
Copper (Cu) is indispensible for growth and development of human organisms. It is required for such fundamental and ubiquitous processes as respiration and protection against reactive oxygen species. Cu also enables catalytic activity of enzymes that critically contribute to the functional identity of many cells and tissues. Pigmentation, production of norepinephrine by the adrenal gland, the key steps in the formation of connective tissue, neuroendocrine signaling, wound healing - all these processes require Cu and depend on Cu entering the secretory pathway. To reach the Cu-dependent enzymes in a lumen of the trans-Golgi network and various vesicular compartments, Cu undertakes a complex journey crossing the extracellular and intracellular membranes and staying firmly on course while traveling in a cytosol. The proteins that assist Cu in this journey by mediating its entry, distribution, and export, have been identified. The accumulating data also indicate that the current model of cellular Cu homeostasis is still a "skeleton" that has to be fleshed out with many new details. This review summarizes recent data on the mechanisms responsible for Cu transfer to the secretory pathway. The emerging new concepts and gaps in our knowledge are discussed.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe street, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Polishchuk EV, Polishchuk RS. The emerging role of lysosomes in copper homeostasis. Metallomics 2016; 8:853-62. [PMID: 27339113 DOI: 10.1039/c6mt00058d] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lysosomal system operates as a focal point where a number of important physiological processes such as endocytosis, autophagy and nutrient sensing converge. One of the key functions of lysosomes consists of regulating the metabolism/homeostasis of metals. Metal-containing components are carried to the lysosome through incoming membrane flows, while numerous transporters allow metal ions to move across the lysosome membrane. These properties enable lysosomes to direct metal fluxes to the sites where metal ions are either used by cellular components or sequestered. Copper belongs to a group of metals that are essential for the activity of vitally important enzymes, although it is toxic when in excess. Thus, copper uptake, supply and intracellular compartmentalization have to be tightly regulated. An increasing number of publications have indicated that these processes involve lysosomes. Here we review studies that reveal the expanding role of the lysosomal system as a hub for the control of Cu homeostasis and for the regulation of key Cu-dependent processes in health and disease.
Collapse
Affiliation(s)
- Elena V Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli (NA), 80078, Italy.
| | | |
Collapse
|
15
|
Perez-Siles G, Grant A, Ellis M, Ly C, Kidambi A, Khalil M, Llanos RM, Fontaine SL, Strickland AV, Züchner S, Bermeo S, Neist E, Brennan-Speranza TC, Takata RI, Speck-Martins CE, Mercer JFB, Nicholson GA, Kennerson ML. Characterizing the molecular phenotype of an Atp7a(T985I) conditional knock in mouse model for X-linked distal hereditary motor neuropathy (dHMNX). Metallomics 2016; 8:981-92. [PMID: 27293072 DOI: 10.1039/c6mt00082g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
ATP7A is a P-type ATPase essential for cellular copper (Cu) transport and homeostasis. Loss-of-function ATP7A mutations causing systemic Cu deficiency are associated with severe Menkes disease or its milder allelic variant, occipital horn syndrome. We previously identified two rare ATP7A missense mutations (P1386S and T994I) leading to a non-fatal form of motor neuron disorder, X-linked distal hereditary motor neuropathy (dHMNX), without overt signs of systemic Cu deficiency. Recent investigations using a tissue specific Atp7a knock out model have demonstrated that Cu plays an essential role in motor neuron maintenance and function, however the underlying pathogenic mechanisms of ATP7A mutations causing axonal degeneration remain unknown. We have generated an Atp7a conditional knock in mouse model of dHMNX expressing Atp7a(T985I), the orthologue of the human ATP7A(T994I) identified in dHMNX patients. Although a degenerative motor phenotype is not observed, the knock in Atp7a(T985I/Y) mice show altered Cu levels within the peripheral and central nervous systems, an increased diameter of the muscle fibres and altered myogenin and myostatin gene expression. Atp7a(T985I/Y) mice have reduced Atp7a protein levels and recapitulate the defective trafficking and altered post-translational regulatory mechanisms observed in the human ATP7A(T994I) patient fibroblasts. Our model provides a unique opportunity to characterise the molecular phenotype of dHMNX and the time course of cellular events leading to the process of axonal degeneration in this disease.
Collapse
Affiliation(s)
- Gonzalo Perez-Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kumar D, Mains RE, Eipper BA. 60 YEARS OF POMC: From POMC and α-MSH to PAM, molecular oxygen, copper, and vitamin C. J Mol Endocrinol 2016; 56:T63-76. [PMID: 26667899 PMCID: PMC4899100 DOI: 10.1530/jme-15-0266] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022]
Abstract
A critical role for peptide C-terminal amidation was apparent when the first bioactive peptides were identified. The conversion of POMC into adrenocorticotropic hormone and then into α-melanocyte-stimulating hormone, an amidated peptide, provided a model system for identifying the amidating enzyme. Peptidylglycine α-amidating monooxygenase (PAM), the only enzyme that catalyzes this modification, is essential; mice lacking PAM survive only until mid-gestation. Purification and cloning led to the discovery that the amidation of peptidylglycine substrates proceeds in two steps: peptidylglycine α-hydroxylating monooxygenase catalyzes the copper- and ascorbate-dependent α-hydroxylation of the peptidylglycine substrate; peptidyl-α-hydroxyglycine α-amidating lyase cleaves the N-C bond, producing amidated product and glyoxylate. Both enzymes are contained in the luminal domain of PAM, a type 1 integral membrane protein. The structures of both catalytic cores have been determined, revealing how they interact with metals, molecular oxygen, and substrate to catalyze both reactions. Although not essential for activity, the intrinsically disordered cytosolic domain is essential for PAM trafficking. A phylogenetic survey led to the identification of bifunctional membrane PAM in Chlamydomonas, a unicellular eukaryote. Accumulating evidence points to a role for PAM in copper homeostasis and in retrograde signaling from the lumen of the secretory pathway to the nucleus. The discovery of PAM in cilia, cellular antennae that sense and respond to environmental stimuli, suggests that much remains to be learned about this ancient protein.
Collapse
Affiliation(s)
- Dhivya Kumar
- Departments of Molecular Biology and BiophysicsUniversity of Connecticut Health Center, Farmington, Connecticut, USA
| | - Richard E Mains
- Department of NeuroscienceUniversity of Connecticut Health Center, Farmington, Connecticut, USA
| | - Betty A Eipper
- Departments of Molecular Biology and BiophysicsUniversity of Connecticut Health Center, Farmington, Connecticut, USA Department of NeuroscienceUniversity of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
17
|
Lenartowicz M, Krzeptowski W, Lipiński P, Grzmil P, Starzyński R, Pierzchała O, Møller LB. Mottled Mice and Non-Mammalian Models of Menkes Disease. Front Mol Neurosci 2015; 8:72. [PMID: 26732058 PMCID: PMC4684000 DOI: 10.3389/fnmol.2015.00072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/06/2015] [Indexed: 12/27/2022] Open
Abstract
Menkes disease is a multi-systemic copper metabolism disorder caused by mutations in the X-linked ATP7A gene and characterized by progressive neurodegeneration and severe connective tissue defects. The ATP7A protein is a copper (Cu)-transporting ATPase expressed in all tissues and plays a critical role in the maintenance of copper homeostasis in cells of the whole body. ATP7A participates in copper absorption in the small intestine and in copper transport to the central nervous system (CNS) across the blood-brain-barrier (BBB) and blood–cerebrospinal fluid barrier (BCSFB). Cu is essential for synaptogenesis and axonal development. In cells, ATP7A participates in the incorporation of copper into Cu-dependent enzymes during the course of its maturation in the secretory pathway. There is a high degree of homology (>80%) between the human ATP7A and murine Atp7a genes. Mice with mutations in the Atp7a gene, called mottled mutants, are well-established and excellent models of Menkes disease. Mottled mutants closely recapitulate the Menkes phenotype and are invaluable for studying Cu-metabolism. They provide useful models for exploring and testing new forms of therapy in Menkes disease. Recently, non-mammalian models of Menkes disease, Drosophila melanogaster and Danio rerio mutants were used in experiments which would be technically difficult to carry out in mammals.
Collapse
Affiliation(s)
- Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences Wólka Kosowska, Poland
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Rafał Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences Wólka Kosowska, Poland
| | - Olga Pierzchała
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Lisbeth Birk Møller
- Applied Human Molecular Genetics, Kennedy Center, Rigshospitalet, Copenhagen University Hospital Glostrup, Denmark
| |
Collapse
|
18
|
Denoyer D, Masaldan S, La Fontaine S, Cater MA. Targeting copper in cancer therapy: 'Copper That Cancer'. Metallomics 2015; 7:1459-76. [PMID: 26313539 DOI: 10.1039/c5mt00149h] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.
Collapse
Affiliation(s)
- Delphine Denoyer
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | | | |
Collapse
|
19
|
Bonnemaison ML, Bäck N, Duffy ME, Ralle M, Mains RE, Eipper BA. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme. J Biol Chem 2015; 290:21264-79. [PMID: 26170456 DOI: 10.1074/jbc.m115.641027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 11/06/2022] Open
Abstract
The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised.
Collapse
Affiliation(s)
| | - Nils Bäck
- the Department of Anatomy, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland, and
| | - Megan E Duffy
- the Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Martina Ralle
- the Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Richard E Mains
- Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Betty A Eipper
- From the Departments of Molecular Biology and Biophysics and Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030,
| |
Collapse
|
20
|
Kim JH, Lee BH, Kim YM, Choi JH, Kim GH, Cheon CK, Yoo HW. Novel mutations and clinical outcomes of copper-histidine therapy in Menkes disease patients. Metab Brain Dis 2015; 30:75-81. [PMID: 24919650 DOI: 10.1007/s11011-014-9569-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
Menkes disease is a very rare X-linked copper metabolism disorder that results from an ATP7A gene mutation. With the advent of subcutaneous copper-histidine therapy, the early diagnosis of Menkes disease becomes of utmost importance for patients' prognosis. In the present study, the clinical characteristics of 12 Korean patients with Menkes disease (11 males and 1 female from 11 unrelated families) were described along with the mutation spectrum. Only 2 male patients were diagnosed in the neonatal period, and the other male patients were diagnosed at age 4.3 ± 1.9 months. The presenting signs included depigmented kinky hair, neurologic deficits, and hypotonia. Serum copper and ceruloplasmin levels were markedly decreased. Intracranial vessels were dilated with tortuosity and accompanied by regional cerebral infarctions, even at an early age. Of note, the female patient was diagnosed at age 18 months, during the evaluation for developmental delay, by characteristic MRA findings, biochemical profiles, and genetic evaluation. A total of 11 ATP7A mutations were identified, including five previously unreported mutations. Most mutations were truncated (except 1 missense mutation), including 3 frameshift, 2 nonsense, 3 large deletion, and 2 splice-site variants. The age at commencement of copper-histidine treatment was variable among patients age 7.3 ± 7.5 (0.5-27) months. Despite the treatment, seven patients died before age 5 years, and the remaining patients were severely retarded in neurodevelopment. The poor outcomes of our patients might be related to delayed therapy, but severe ATP7A mutations should be noted as well.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Blackburn NJ, Yan N, Lutsenko S. Copper in Eukaryotes. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Copper is essential for normal growth and development of eukaryotic organisms. Numerous physiological processes rely on sufficient availability of copper: from indispensable reactions such as mitochondrial respiration to more highly specialized processes such as pigment development in a skin. Copper misbalance has been linked to a variety of metabolic and neurodegenerative disorders in humans. Complex cellular machinery has evolved to mediate copper uptake, compartmentalization and incorporation into target proteins. Extensive studies revealed a predominant utilization of methionines and histidines by copper handling molecules for copper capture at the extracellular surface and delivery to cuproenzymes in the lumen of cellular compartments, respectively. Cu(I) is a predominant form within the cell, and copper binding and distribution inside the cell at the cytosolic sites relies heavily on cysteines. The selectivity and directionality of copper transfer reactions is determined by thermodynamic and kinetic factors as well as spatial distribution of copper donors and acceptors. In this chapter, we review current structural and mechanistic data on copper transport and distribution in yeast and mammalian cells and highlight important issues and questions for future studies.
Collapse
Affiliation(s)
- Ninian J. Blackburn
- Institute of Environmental Health, Oregon Health and Sciences University Portland, OR 97239 USA
| | - Nan Yan
- Department of Physiology, The Johns Hopkins University School of Medicine Baltimore, MD 21205 USA
| | - Svetlana Lutsenko
- Department of Physiology, The Johns Hopkins University School of Medicine Baltimore, MD 21205 USA
| |
Collapse
|
22
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
23
|
Gaier ED, Eipper BA, Mains RE. Pam heterozygous mice reveal essential role for Cu in amygdalar behavioral and synaptic function. Ann N Y Acad Sci 2014; 1314:15-23. [PMID: 24593825 DOI: 10.1111/nyas.12378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper (Cu) is an essential element with many biological roles, but its roles in the mammalian nervous system are poorly understood. Mice deficient in the cuproenzyme peptidylglycine α-amidating monooxygenase (Pam(+/-) mice) were initially generated to study neuropeptide amidation. Pam(+/-) mice exhibit profound deficits in a few behavioral tasks, including enhancements in innate fear along with deficits in acquired fear. Interestingly, several Pam(+/-) phenotypes were recapitulated in Cu-restricted wild-type mice and rescued in Cu-supplemented Pam(+/-) mice. These behaviors correspond to enhanced excitability and deficient synaptic plasticity in the amygdala of Pam(+/-) mice, which are also rescued by Cu supplementation. Cu and ATP7A are present at synapses, in key positions to respond to and influence synaptic activity. Further study demonstrated that extracellular Cu is necessary for wild-type synaptic plasticity and sufficient to induce long-term potentiation. These experiments support roles for PAM in Cu homeostasis and for synaptic Cu in amygdalar function.
Collapse
Affiliation(s)
- Eric D Gaier
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | | | | |
Collapse
|
24
|
Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, Ostan R, Cevenini E, Gonos ES, Monti D. Micronutrient-gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review. Mech Ageing Dev 2014; 136-137:29-49. [PMID: 24388876 DOI: 10.1016/j.mad.2013.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023]
Abstract
Recent longitudinal studies in dietary daily intake in human centenarians have shown that a satisfactory content of some micronutrients within the cells maintain several immune functions, a low grade of inflammation and preserve antioxidant activity. Micronutrients (zinc, copper, selenium) play a pivotal role in maintaining and reinforcing the performances of the immune and antioxidant systems as well as in affecting the complex network of the genes (nutrigenomic) with anti- and pro-inflammatory tasks. Genes of pro- and anti-inflammatory cytokines and some key regulators of trace elements homeostasis, such as Metallothioneins (MT), are involved in the susceptibility to major geriatric disease/disorders. Moreover, the genetic inter-individual variability may affect the nutrients' absorption (nutrigenetic) with altered effects on inflammatory/immune response and antioxidant activity. The interaction between genetic factors and micronutrients (nutrigenomic and nutrigenetic approaches) may influence ageing and longevity because the micronutrients may become also toxic. This review reports the micronutrient-gene interactions in ageing and their impact on the healthy state with a focus on the method of protein-metal speciation analysis. The association between micronutrient-gene interactions and the protein-metal speciation analysis can give a complete picture for a personalized nutrient supplementation or chelation in order to reach healthy ageing and longevity.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy.
| | - Laura Costarelli
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Robertina Giacconi
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Marco Malavolta
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Andrea Basso
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Francesco Piacenza
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Rita Ostan
- Department of Experimental Diagnostic and Specialty Medicine (DIMES) and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Via San Giacomo, 12, 40126 Bologna, Italy
| | - Elisa Cevenini
- Department of Experimental Diagnostic and Specialty Medicine (DIMES) and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Via San Giacomo, 12, 40126 Bologna, Italy
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Daniela Monti
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Viale Morgagni, 50, 50134 Florence, Italy
| |
Collapse
|
25
|
Hwang JEC, de Bruyne M, Warr CG, Burke R. Copper overload and deficiency both adversely affect the central nervous system of Drosophila. Metallomics 2014; 6:2223-9. [DOI: 10.1039/c4mt00140k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ectopic neuronal copper efflux causes a functional copper deficiency leading to developmental lethality in Drosophila.
Collapse
Affiliation(s)
| | | | - Coral G. Warr
- School of Biological Sciences
- Monash University
- Australia
| | - Richard Burke
- School of Biological Sciences
- Monash University
- Australia
| |
Collapse
|
26
|
Gaier ED, Miller MB, Ralle M, Aryal D, Wetsel WC, Mains RE, Eipper BA. Peptidylglycine α-amidating monooxygenase heterozygosity alters brain copper handling with region specificity. J Neurochem 2013; 127:605-19. [PMID: 24032518 DOI: 10.1111/jnc.12438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/19/2022]
Abstract
Copper (Cu), an essential trace element present throughout the mammalian nervous system, is crucial for normal synaptic function. Neuronal handling of Cu is poorly understood. We studied the localization and expression of Atp7a, the major intracellular Cu transporter in the brain, and its relation to peptidylglycine α-amidating monooxygenase (PAM), an essential cuproenzyme and regulator of Cu homeostasis in neuroendocrine cells. Based on biochemical fractionation and immunostaining of dissociated neurons, Atp7a was enriched in post-synaptic vesicular fractions. Cu followed a similar pattern, with ~ 20% of total Cu in synaptosomes. A mouse model heterozygous for the Pam gene (PAM+/−) was selectively Cu deficient in the amygdala. As in cortex and hippocampus, Atp7a and PAM expression overlap in the amygdala, with highest expression in interneurons. Messenger RNA levels of Atox-1 and Atp7a, which deliver Cu to the secretory pathway, were reduced in the amygdala but not in the hippocampus in PAM+/− mice, GABAB receptor mRNA levels were similarly affected. Consistent with Cu deficiency, dopamine β-monooxygenase function was impaired as evidenced by elevated dopamine metabolites in the amygdala, but not in the hippocampus, of PAM+/− mice. These alterations in Cu delivery to the secretory pathway in the PAM+/− amygdala may contribute to the physiological and behavioral deficits observed. Atp7a, a Cu-transporting P-type ATPase, is localized to the trans-Golgi network and to vesicles distributed throughout the dendritic arbor. Tissue-specific alterations in Atp7a expression were found in mice heterozygous for peptidylglycine α-amidating monooxygenase (PAM), an essential neuropeptide-synthesizing cuproenzyme. Atp7a and PAM are highly expressed in amygdalar interneurons. Reduced amygdalar expression of Atox-1 and Atp7a in PAM heterozygous mice may lead to reduced synaptic Cu levels, contributing to the behavioral and neurochemical alterations seen in these mice.
Collapse
Affiliation(s)
- Eric D Gaier
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Carmona F, Palacios Ò, Gálvez N, Cuesta R, Atrian S, Capdevila M, Domínguez-Vera JM. Ferritin iron uptake and release in the presence of metals and metalloproteins: Chemical implications in the brain. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.03.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Telianidis J, Hung YH, Materia S, Fontaine SL. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front Aging Neurosci 2013; 5:44. [PMID: 23986700 PMCID: PMC3750203 DOI: 10.3389/fnagi.2013.00044] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.
Collapse
Affiliation(s)
- Jonathon Telianidis
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Ya Hui Hung
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience Research, The University of MelbourneParkville, VIC, Australia
| | - Stephanie Materia
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Sharon La Fontaine
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| |
Collapse
|
29
|
Holloway ZG, Velayos-Baeza A, Howell GJ, Levecque C, Ponnambalam S, Sztul E, Monaco AP. Trafficking of the Menkes copper transporter ATP7A is regulated by clathrin-, AP-2-, AP-1-, and Rab22-dependent steps. Mol Biol Cell 2013; 24:1735-48, S1-8. [PMID: 23596324 PMCID: PMC3667726 DOI: 10.1091/mbc.e12-08-0625] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
ATP7A mediates copper absorption and feeds cuproenzymes in the trans-Golgi network. To regulate copper homeostasis, ATP7A cycles between the TGN and plasma membrane. The roles of clathrin, adaptor complexes, lipid rafts, and Rab22a are assessed in an attempt to decipher the regulatory proteins involved in ATP7A cycling. The transporter ATP7A mediates systemic copper absorption and provides cuproenzymes in the trans-Golgi network (TGN) with copper. To regulate metal homeostasis, ATP7A constitutively cycles between the TGN and plasma membrane (PM). ATP7A trafficking to the PM is elevated in response to increased copper load and is reversed when copper concentrations are lowered. Molecular mechanisms underlying this trafficking are poorly understood. We assess the role of clathrin, adaptor complexes, lipid rafts, and Rab22a in an attempt to decipher the regulatory proteins involved in ATP7A cycling. While RNA interference (RNAi)–mediated depletion of caveolin 1/2 or flotillin had no effect on ATP7A localization, clathrin heavy chain depletion or expression of AP180 dominant-negative mutant not only disrupted clathrin-regulated pathways, but also blocked PM-to-TGN internalization of ATP7A. Depletion of the μ subunits of either adaptor protein-2 (AP-2) or AP-1 using RNAi further provides evidence that both clathrin adaptors are important for trafficking of ATP7A from the PM to the TGN. Expression of the GTP-locked Rab22aQ64L mutant caused fragmentation of TGN membrane domains enriched for ATP7A. These appear to be a subdomain of the mammalian TGN, showing only partial overlap with the TGN marker golgin-97. Of importance, ATP7A remained in the Rab22aQ64L-generated structures after copper treatment and washout, suggesting that forward trafficking out of this compartment was blocked. This study provides evidence that multiple membrane-associated factors, including clathrin, AP-2, AP-1, and Rab22, are regulators of ATP7A trafficking.
Collapse
Affiliation(s)
- Zoe G Holloway
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Kline CD, Mayfield M, Blackburn NJ. HHM motif at the CuH-site of peptidylglycine monooxygenase is a pH-dependent conformational switch. Biochemistry 2013; 52:2586-96. [PMID: 23530865 DOI: 10.1021/bi4002248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptidylglycine monooxygenase is a copper-containing enzyme that catalyzes the amidation of neuropeptides hormones, the first step of which is the conversion of a glycine-extended pro-peptide to its α-hydroxyglcine intermediate. The enzyme contains two mononuclear Cu centers termed CuM (ligated to imidazole nitrogens of H242, H244 and the thioether S of M314) and CuH (ligated to imidazole nitrogens of H107, H108, and H172) with a Cu-Cu separation of 11 Å. During catalysis, the M site binds oxygen and substrate, and the H site donates the second electron required for hydroxylation. The WT enzyme shows maximum catalytic activity at pH 5.8 and undergoes loss of activity at lower pHs due to a protonation event with a pKA of 4.6. Low pH also causes a unique structural transition in which a new S ligand coordinates to copper with an identical pKA, manifest by a large increase in Cu-S intensity in the X- ray absorption spectroscopy. In previous work (Bauman, A. T., Broers, B. A., Kline, C. D., and Blackburn, N. J. (2011) Biochemistry 50, 10819-10828), we tentatively assigned the new Cu-S interaction to binding of M109 to the H-site (part of an HHM conserved motif common to all but one member of the family). Here we follow up on these findings via studies on the catalytic activity, pH-activity profiles, and spectroscopic (electron paramagnetic resonance, XAS, and Fourier transform infrared) properties of a number of H-site variants, including H107A, H108A, H172A, and M109I. Our results establish that M109 is indeed the coordinating ligand and confirm the prediction that the low pH structural transition with associated loss of activity is abrogated when the M109 thioether is absent. The histidine mutants show more complex behavior, but the almost complete lack of activity in all three variants coupled with only minor differences in their spectroscopic properties suggests that unique structural elements at H are critical for functionality. The data suggest a more general utility for the HHM motif as a copper- and pH-dependent conformational switch.
Collapse
Affiliation(s)
- Chelsey D Kline
- Institute of Environmental, Health, Oregon Health and Sciences University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
31
|
Arumugam K, Crouzy S. Dynamics and Stability of the Metal Binding Domains of the Menkes ATPase and Their Interaction with Metallochaperone HAH1. Biochemistry 2012; 51:8885-906. [DOI: 10.1021/bi300669e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Karthik Arumugam
- Commissariat
à l’Energie Atomique/CNRS/Université Joseph Fourier,
CEA, iRTSV, LCBM, 38054 Grenoble, France
| | - Serge Crouzy
- Laboratoire de Chimie et Biologie des Métaux,
CEA, iRTSV, LCBM, Commissariat à l’Energie Atomique/CNRS/Université
Joseph Fourier, UMR 5249, 17 rue des martyrs, 38054 Grenoble Cedex
09, France
| |
Collapse
|
32
|
Sellami A, Wegener C, Veenstra JA. Functional significance of the copper transporter ATP7 in peptidergic neurons and endocrine cells inDrosophila melanogaster. FEBS Lett 2012; 586:3633-8. [DOI: 10.1016/j.febslet.2012.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
|
33
|
Otoikhian A, Barry AN, Mayfield M, Nilges M, Huang Y, Lutsenko S, Blackburn NJ. Lumenal loop M672-P707 of the Menkes protein (ATP7A) transfers copper to peptidylglycine monooxygenase. J Am Chem Soc 2012; 134:10458-68. [PMID: 22577880 DOI: 10.1021/ja301221s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Copper transfer to cuproproteins located in vesicular compartments of the secretory pathway depends on activity of the copper-translocating ATPase (ATP7A), but the mechanism of transfer is largely unexplored. Copper-ATPase ATP7A is unique in having a sequence rich in histidine and methionine residues located on the lumenal side of the membrane. The corresponding fragment binds Cu(I) when expressed as a chimera with a scaffold protein, and mutations or deletions of His and/or Met residues in its sequence inhibit dephosphorylation of the ATPase, a catalytic step associated with copper release. Here we present evidence for a potential role of this lumenal region of ATP7A in copper transfer to cuproenzymes. Both Cu(II) and Cu(I) forms were investigated since the form in which copper is transferred to acceptor proteins is currently unknown. Analysis of Cu(II) using EPR demonstrated that at Cu:P ratios below 1:1 (15)N-substituted protein had Cu(II) bound by 4 His residues, but this coordination changed as the Cu(II) to protein ratio increased toward 2:1. XAS confirmed this coordination via analysis of the intensity of outer-shell scattering from imidazole residues. The Cu(II) complexes could be reduced to their Cu(I) counterparts by ascorbate, but here again, as shown by EXAFS and XANES spectroscopy, the coordination was dependent on copper loading. At low copper Cu(I) was bound by a mixed ligand set of His + Met, whereas at higher ratios His coordination predominated. The copper-loaded loop was able to transfer either Cu(II) or Cu(I) to peptidylglycine monooxygenase in the presence of chelating resin, generating catalytically active enzyme in a process that appeared to involve direct interaction between the two partners. The variation of coordination with copper loading suggests copper-dependent conformational change which in turn could act as a signal for regulating copper release by the ATPase pump.
Collapse
Affiliation(s)
- Adenike Otoikhian
- Institute of Environmental Health, Oregon Health & Sciences University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Hatori Y, Clasen S, Hasan NM, Barry AN, Lutsenko S. Functional partnership of the copper export machinery and glutathione balance in human cells. J Biol Chem 2012; 287:26678-87. [PMID: 22648419 DOI: 10.1074/jbc.m112.381178] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells use the redox properties of copper in numerous physiologic processes, including antioxidant defense, neurotransmitter biosynthesis, and angiogenesis. Copper delivery to the secretory pathway is an essential step in copper utilization and homeostatic maintenance. We demonstrate that the glutathione/glutathione disulfide (GSH/GSSG) pair controls the copper transport pathway by regulating the redox state of a copper chaperone Atox1. GSSG oxidizes copper-coordinating cysteines of Atox1 with the formation of an intramolecular disulfide. GSH alone is sufficient to reduce the disulfide, restoring the ability of Atox1 to bind copper; glutaredoxin 1 facilitates this reaction when GSH is low. In cells, high GSH both reduces Atox1 and is required for cell viability in the absence of Atox1. In turn, Atox1, which has a redox potential similar to that of glutaredoxin, becomes essential for cell survival when GSH levels decrease. Atox1(+/+) cells resist short term glutathione depletion, whereas Atox1(-/-) cells under the same conditions are not viable. We conclude that GSH balance and copper homeostasis are functionally linked and jointly maintain conditions for copper secretion and cell proliferation.
Collapse
Affiliation(s)
- Yuta Hatori
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
35
|
Barry AN, Otoikhian A, Bhatt S, Shinde U, Tsivkovskii R, Blackburn NJ, Lutsenko S. The lumenal loop Met672-Pro707 of copper-transporting ATPase ATP7A binds metals and facilitates copper release from the intramembrane sites. J Biol Chem 2011; 286:26585-94. [PMID: 21646353 DOI: 10.1074/jbc.m111.229039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The copper-transporting ATPase ATP7A has an essential role in human physiology. ATP7A transfers the copper cofactor to metalloenzymes within the secretory pathway; inactivation of ATP7A results in an untreatable neurodegenerative disorder, Menkes disease. Presently, the mechanism of ATP7A-mediated copper release into the secretory pathway is not understood. We demonstrate that the characteristic His/Met-rich segment Met(672)-Pro(707) (HM-loop) that connects the first two transmembrane segments of ATP7A is important for copper release. Mutations within this loop do not prevent the ability of ATP7A to form a phosphorylated intermediate during ATP hydrolysis but inhibit subsequent dephosphorylation, a step associated with copper release. The HM-loop inserted into a scaffold protein forms two structurally distinct binding sites and coordinates copper in a mixed His-Met environment with an ∼2:1 stoichiometry. Binding of either copper or silver, a Cu(I) analog, induces structural changes in the loop. Mutations of 4 Met residues to Ile or two His-His pairs to Ala-Gly decrease affinity for copper. Altogether, the data suggest a two-step process, where copper released from the transport sites binds to the first His(Met)(2) site, triggering a structural change and binding to a second 2-coordinate His-His or His-Met site. We also show that copper binding within the HM-loop stabilizes Cu(I) and protects it from oxidation, which may further aid the transfer of copper from ATP7A to acceptor proteins. The mechanism of copper entry into the secretory pathway is discussed.
Collapse
Affiliation(s)
- Amanda N Barry
- From the Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Bousquet-Moore D, Mains RE, Eipper BA. Peptidylgycine α-amidating monooxygenase and copper: a gene-nutrient interaction critical to nervous system function. J Neurosci Res 2011; 88:2535-45. [PMID: 20648645 DOI: 10.1002/jnr.22404] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peptidylgycine alpha-amidating monooxygenase (PAM), a highly conserved copper-dependent enzyme, is essential for the synthesis of all amidated neuropeptides. Biophysical studies revealed that the binding of copper to PAM affects its structure, and cell biological studies demonstrated that the endocytic trafficking of PAM was sensitive to copper. We review data indicating that genetic reduction of PAM expression and mild copper deficiency in mice cause similar alterations in several physiological functions known to be regulated by neuropeptides: thermal regulation, seizure sensitivity, and anxiety-like behavior.
Collapse
|
37
|
Desai V, Donsante A, Swoboda KJ, Martensen M, Thompson J, Kaler SG. Favorably skewed X-inactivation accounts for neurological sparing in female carriers of Menkes disease. Clin Genet 2011; 79:176-82. [PMID: 20497190 DOI: 10.1111/j.1399-0004.2010.01451.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Classical Menkes disease is an X-linked recessive neurodegenerative disorder caused by mutations in ATP7A, which is located at Xq13.1-q21. ATP7A encodes a copper-transporting P-type ATPase and plays a critical role in development of the central nervous system. With rare exceptions involving sex chromosome aneuploidy or X-autosome translocations, female carriers of ATP7A mutations are asymptomatic except for subtle hair and skin abnormalities, although the mechanism for this neurological sparing has not been reported. We studied a three-generation family in which a severe ATP7A mutation, a 5.5-kb genomic deletion spanning exons 13 and 14, segregated. The deletion junction fragment was amplified from the proband by long-range polymerase chain reaction and sequenced to characterize the breakpoints. We screened at-risk females in the family for this junction fragment and analyzed their X-inactivation patterns using the human androgen-receptor (HUMARA) gene methylation assay. We detected the junction fragment in the proband, two obligate heterozygotes, and four of six at-risk females. Skewed inactivation of the X chromosome harboring the deletion was noted in all female carriers of the deletion (n = 6), whereas random X-inactivation was observed in all non-carriers (n = 2). Our results formally document one mechanism for neurological sparing in female carriers of ATP7A mutations. Based on review of X-inactivation patterns in female carriers of other X-linked recessive diseases, our findings imply that substantial expression of a mutant ATP7A at the expense of the normal allele could be associated with neurologic symptoms in female carriers of Menkes disease and its allelic variants, occipital horn syndrome, and ATP7A-related distal motor neuropathy.
Collapse
Affiliation(s)
- V Desai
- Unit on Human Copper Metabolism, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1832, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ip V, Liu JJ, Mercer JFB, McKeage MJ. Differential expression of ATP7A, ATP7B and CTR1 in adult rat dorsal root ganglion tissue. Mol Pain 2010; 6:53. [PMID: 20836889 PMCID: PMC2949721 DOI: 10.1186/1744-8069-6-53] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/13/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of copper and platinum drugs, but their expression in dorsal root ganglion (DRG) tissue and their role in platinum-induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG and reference tissues were collected for real time quantitative PCR, RT-PCR, immunohistochemistry and Western blot analysis from healthy control adult rats or from animals treated with intraperitoneal oxaliplatin (1.85 mg/kg) or drug vehicle twice weekly for 8 weeks. RESULTS In DRG tissue from healthy control animals, ATP7A mRNA was clearly detectable at levels similar to those found in the brain and spinal cord, and intense ATP7A immunoreactivity was localised to the cytoplasm of cell bodies of smaller DRG neurons without staining of satellite cells, nerve fibres or co-localisation with phosphorylated heavy neurofilament subunit (pNF-H). High levels of CTR1 mRNA were detected in all tissues from healthy control animals, and strong CTR1 immunoreactivity was associated with plasma membranes and vesicular cytoplasmic structures of the cell bodies of larger-sized DRG neurons without co-localization with ATP7A. DRG neurons with strong expression of ATP7A or CTR1 had distinct cell body size profiles with minimal overlap between them. Oxaliplatin treatment did not alter the size profile of strongly ATP7A-immunoreactive neurons but significantly reduced the size profile of strongly CTR1-immunoreactive neurons. ATP7B mRNA was barely detectable, and no specific immunoreactivity for ATP7B was found, in DRG tissue from healthy control animals. CONCLUSIONS In conclusion, adult rat DRG tissue exhibits a specific pattern of expression of copper transporters with distinct subsets of peripheral sensory neurons intensely expressing either ATP7A or CTR1, but not both or ATP7B. The neuron subtype-specific and largely non-overlapping distribution of ATP7A and CTR1 within rat DRG tissue may be required to support the potentially differing cuproenzyme requirements of distinct subsets of sensory neurons, and could influence the transport and neurotoxicity of oxaliplatin.
Collapse
Affiliation(s)
- Virginia Ip
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Johnson J Liu
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Julian FB Mercer
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Melbourne, Australia
| | - Mark J McKeage
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
39
|
Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 2009; 15:61-76. [DOI: 10.1007/s00775-009-0600-y] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
|
40
|
Bousquet-Moore D, Prohaska JR, Nillni EA, Czyzyk T, Wetsel WC, Mains RE, Eipper BA. Interactions of peptide amidation and copper: novel biomarkers and mechanisms of neural dysfunction. Neurobiol Dis 2009; 37:130-40. [PMID: 19815072 DOI: 10.1016/j.nbd.2009.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/10/2009] [Accepted: 09/27/2009] [Indexed: 01/14/2023] Open
Abstract
Mammalian genomes encode only a small number of cuproenzymes. The many genes involved in coordinating copper uptake, distribution, storage and efflux make gene/nutrient interactions especially important for these cuproenzymes. Copper deficiency and copper excess both disrupt neural function. Using mice heterozygous for peptidylglycine alpha-amidating monooxygenase (PAM), a cuproenzyme essential for the synthesis of many neuropeptides, we identified alterations in anxiety-like behavior, thermoregulation and seizure sensitivity. Dietary copper supplementation reversed a subset of these deficits. Wildtype mice maintained on a marginally copper-deficient diet exhibited some of the same deficits observed in PAM(+/-) mice and displayed alterations in PAM metabolism. Altered copper homeostasis in PAM(+/-) mice suggested a role for PAM in the cell type specific regulation of copper metabolism. Physiological functions sensitive to genetic limitations of PAM that are reversed by supplemental copper and mimicked by copper deficiency may serve as indicators of marginal copper deficiency.
Collapse
Affiliation(s)
- Danielle Bousquet-Moore
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Gajewska A, Gajkowska B, Pajak B, Styrna J, Kochman K. Impaired growth hormone-releasing hormone neurons ultrastructure and peptide accumulation in the arcuate nucleus of mosaic mice with altered copper metabolism. Brain Res Bull 2009; 80:128-32. [DOI: 10.1016/j.brainresbull.2009.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 04/07/2009] [Indexed: 01/31/2023]
|
42
|
White C, Kambe T, Fulcher YG, Sachdev SW, Bush AI, Fritsche K, Lee J, Quinn TP, Petris MJ. Copper transport into the secretory pathway is regulated by oxygen in macrophages. J Cell Sci 2009; 122:1315-21. [PMID: 19351718 PMCID: PMC2671928 DOI: 10.1242/jcs.043216] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Copper is an essential nutrient for a variety of biochemical processes; however, the redox properties of copper also make it potentially toxic in the free form. Consequently, the uptake and intracellular distribution of this metal is strictly regulated. This raises the issue of whether specific pathophysiological conditions can promote adaptive changes in intracellular copper distribution. In this study, we demonstrate that oxygen limitation promotes a series of striking alterations in copper homeostasis in RAW264.7 macrophage cells. Hypoxia was found to stimulate copper uptake and to increase the expression of the copper importer, CTR1. This resulted in increased copper delivery to the ATP7A copper transporter and copper-dependent trafficking of ATP7A to cytoplasmic vesicles. Significantly, the ATP7A protein was required to deliver copper into the secretory pathway to ceruloplasmin, a secreted copperdependent enzyme, the expression and activity of which were stimulated by hypoxia. However, the activities of the alternative targets of intracellular copper delivery, superoxide dismutase and cytochrome c oxidase, were markedly reduced in response to hypoxia. Collectively, these findings demonstrate that copper delivery into the biosynthetic secretory pathway is regulated by oxygen availability in macrophages by a selective increase in copper transport involving ATP7A.
Collapse
Affiliation(s)
- Carine White
- Department of Nutritional Sciences, University of Missouri, Columbia, MO
65211, USA
| | - Taiho Kambe
- Department of Biochemistry, University of Missouri, Columbia, MO 65211,
USA
| | - Yan G. Fulcher
- Department of Nutritional Sciences, University of Missouri, Columbia, MO
65211, USA
| | - Sherri W. Sachdev
- Department of Biochemistry, University of Missouri, Columbia, MO 65211,
USA
| | - Ashley I. Bush
- Oxidation Biology Laboratory, Mental Health Research Institute of Victoria,
Melbourne, Victoria 3052, Australia
| | - Kevin Fritsche
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211,
USA
| | - Jaekwon Lee
- The Redox Biology Center, Department of Biochemistry, University of Nebraska,
Lincoln, NE 68588, USA
| | - Thomas P. Quinn
- Department of Biochemistry, University of Missouri, Columbia, MO 65211,
USA
| | - Michael J. Petris
- Department of Nutritional Sciences, University of Missouri, Columbia, MO
65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211,
USA
- Author for correspondence (e-mail:
)
| |
Collapse
|
43
|
Bousquet-Moore D, Ma XM, Nillni EA, Czyzyk TA, Pintar JE, Eipper BA, Mains RE. Reversal of physiological deficits caused by diminished levels of peptidylglycine alpha-amidating monooxygenase by dietary copper. Endocrinology 2009; 150:1739-47. [PMID: 19022883 PMCID: PMC2659272 DOI: 10.1210/en.2008-1202] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Amidated peptides are critically involved in many physiological functions. Genetic deletion of peptidylglycine alpha-amidating monooxygenase (PAM), the only enzyme that can synthesize these peptides, is embryonically lethal. The goal of the present study was the identification of physiological functions impaired by haploinsufficiency of PAM. Regulation of the hypothalamic-pituitary-thyroid axis and body temperature, functions requiring contributions from multiple amidated peptides, were selected for evaluation. Based on serum T(4) and pituitary TSH-beta mRNA levels, mice heterozygous for PAM (PAM(+/-)) were euthyroid at baseline. Feedback within the hypothalamic-pituitary-thyroid axis was impaired in PAM(+/-) mice made hypothyroid using a low iodine/propylthiouracil diet. Despite their normal endocrine response to cold, PAM(+/-) mice were unable to maintain body temperature as well as wild-type littermates when kept in a 4 C environment. When provided with additional dietary copper, PAM(+/-) mice maintained body temperature as well as wild-type mice. Pharmacological activation of vasoconstriction or shivering also allowed PAM(+/-) mice to maintain body temperature. Cold-induced vasoconstriction was deficient in PAM(+/-) mice. This deficit was eliminated in PAM(+/-) mice receiving a diet with supplemental copper. These results suggest that dietary deficiency of copper, coupled with genetic deficits in PAM, could result in physiological deficits in humans.
Collapse
Affiliation(s)
- D Bousquet-Moore
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Vašák M, Meloni G. Metallothionein-3, Zinc, and Copper in the Central Nervous System. METALLOTHIONEINS AND RELATED CHELATORS 2009. [DOI: 10.1039/9781847559531-00319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metallothionein-3 (MT-3), also known as the neuronal growth inhibitory factor, has been discovered by Uchida and coworkers in 1991 in their search for a cellular component responsible for antagonizing aberrant neuritic sprouting and increased survival of cultured neurons stimulated by Alzheimer's disease (AD) brain extract. Since this initial discovery further studies showed that MT-3 possesses peculiar structural and functional properties not shared by other members of the mammalian MT family. Several lines of evidence suggest that the metal-binding protein MT-3 plays a vital role in zinc and copper homeostasis in the brain. Although far from being understood, the unusual structural properties of MT-3 are responsible for its neuronal growth inhibitory activity, involvement in trafficking of zinc vesicles in the central nervous system, protection against copper-mediated toxicity in AD and in controlling abnormal metal-protein interactions in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Milan Vašák
- Institute of Biochemistry, University of Zürich Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| | - Gabriele Meloni
- Institute of Biochemistry, University of Zürich Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| |
Collapse
|
45
|
The multi-layered regulation of copper translocating P-type ATPases. Biometals 2009; 22:177-90. [PMID: 19130269 DOI: 10.1007/s10534-008-9183-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/07/2008] [Indexed: 12/21/2022]
Abstract
The copper-translocating Menkes (ATP7A, MNK protein) and Wilson (ATP7B, WND protein) P-type ATPases are pivotal for copper (Cu) homeostasis, functioning in the biosynthetic incorporation of Cu into copper-dependent enzymes of the secretory pathway, Cu detoxification via Cu efflux, and specialized roles such as systemic Cu absorption (MNK) and Cu excretion (WND). Essential to these functions is their Cu and hormone-responsive distribution between the trans-Golgi network (TGN) and exocytic vesicles located at or proximal to the apical (WND) or basolateral (MNK) cell surface. Intriguingly, MNK and WND Cu-ATPases expressed in the same tissues perform distinct yet complementary roles. While intramolecular differences may specify their distinct roles, cellular signaling components are predicted to be critical for both differences and synergy between these enzymes. This review focuses on these mechanisms, including the cell signaling pathways that influence trafficking and bi-functionality of Cu-ATPases. Phosphorylation events are hypothesized to play a central role in Cu homeostasis, promoting multi-layered regulation and cross-talk between cuproenzymes and Cu-independent mechanisms.
Collapse
|
46
|
Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Arch Biochem Biophys 2008; 476:22-32. [PMID: 18534184 DOI: 10.1016/j.abb.2008.05.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/06/2008] [Accepted: 05/13/2008] [Indexed: 11/23/2022]
Abstract
The human copper-transporting ATPases (Cu-ATPases) are essential for dietary copper uptake, normal development and function of the CNS, and regulation of copper homeostasis in the body. In a cell, Cu-ATPases maintain the intracellular concentration of copper by transporting copper into intracellular exocytic vesicles. In addition, these P-type ATPases mediate delivery of copper to copper-dependent enzymes in the secretory pathway and in specialized cell compartments such as secretory granules or melanosomes. The multiple functions of human Cu-ATPase necessitate complex regulation of these transporters that is mediated through the presence of regulatory domains in their structure, posttranslational modification and intracellular trafficking, as well as interactions with the copper chaperone Atox1 and other regulatory molecules. In this review, we summarize the current information on the function and regulatory mechanisms acting on human Cu-ATPases ATP7A and ATP7B. Brief comparison with the Cu-ATPase orthologs from other species is included.
Collapse
|
47
|
Linz R, Barnes NL, Zimnicka AM, Kaplan JH, Eipper B, Lutsenko S. Intracellular targeting of copper-transporting ATPase ATP7A in a normal andAtp7b−/−kidney. Am J Physiol Renal Physiol 2008; 294:F53-61. [DOI: 10.1152/ajprenal.00314.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidneys regulate their copper content more effectively than many other organs in diseases of copper deficiency or excess. We demonstrate that two copper-transporting ATPases, ATP7A and ATP7B, contribute to this regulation. ATP7A is expressed, to a variable degree, throughout the kidney and shows age-dependent intracellular localization. In 2-wk-old mice, ATP7A is located in the vicinity of the basolateral membrane, whereas in 20-wk-old mice, ATP7A is predominantly in intracellular vesicles. Acute elevation of serum copper, via intraperitoneal injection, results in the in vivo redistribution of ATP7A from intracellular compartments toward the basolateral membrane, illustrating a role for ATP7A in renal response to changes in copper load. Renal copper homeostasis also requires functional ATP7B, which is coexpressed with ATP7A in renal cells of proximal and distal origin. The kidneys of Atp7b−/−mice, an animal model of Wilson disease, show metabolic alterations manifested by the appearance of highly fluorescent deposits; however, in marked contrast to the liver, renal copper is not significantly elevated. The lack of notable copper accumulation in the Atp7b−/−kidney is likely due to the compensatory export of copper by ATP7A. This interpretation is supported by the predominant localization of ATP7A at the basolateral membrane of Atp7b−/−cortical tubules. Our results suggest that both Cu-ATPases regulate renal copper, with ATP7A playing a major role in exporting copper via basolateral membranes and protecting renal tissue against copper overload.
Collapse
|
48
|
Abstract
alpha-Amidation is a terminal modification in peptide biosynthesis that can itself be rate-limiting in the overall production of bioactive alpha-amidated peptides. More than half of the known neural and endocrine peptides are alpha-amidated and in most cases, this structural feature is essential for receptor recognition, signal transduction, and thus, biologic function. This chapter describes methods for developing and using analytical tools to study the biology of alpha-amidated peptides. The principle analytical method used to quantify alpha-amidated peptides is the radioimmunoassay (RIA). Detailed protocols are provided for 1) primary antibody production and characterization; 2) radiolabeling of RIA peptides; 3) sample preparation; and 4) the performance of the RIA itself. Techniques are also described for the identification and verification of alpha-amidated peptides. Lastly, in vivo models used for studying the biology of alpha-amidation are discussed.
Collapse
Affiliation(s)
- Gregory P Mueller
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
49
|
Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev 2007; 87:1011-46. [PMID: 17615395 DOI: 10.1152/physrev.00004.2006] [Citation(s) in RCA: 569] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B are evolutionarily conserved polytopic membrane proteins with essential roles in human physiology. The Cu-ATPases are expressed in most tissues, and their transport activity is crucial for central nervous system development, liver function, connective tissue formation, and many other physiological processes. The loss of ATP7A or ATP7B function is associated with severe metabolic disorders, Menkes disease, and Wilson disease. In cells, the Cu-ATPases maintain intracellular copper concentration by transporting copper from the cytosol across cellular membranes. They also contribute to protein biosynthesis by delivering copper into the lumen of the secretory pathway where metal ion is incorporated into copper-dependent enzymes. The biosynthetic and homeostatic functions of Cu-ATPases are performed in different cell compartments; targeting to these compartments and the functional activity of Cu-ATPase are both regulated by copper. In recent years, significant progress has been made in understanding the structure, function, and regulation of these essential transporters. These studies raised many new questions related to specific physiological roles of Cu-ATPases in various tissues and complex mechanisms that control the Cu-ATPase function. This review summarizes current data on the structural organization and functional properties of ATP7A and ATP7B as well as their localization and functions in various tissues, and discusses the current models of regulated trafficking of human Cu-ATPases.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
50
|
Turski ML, Thiele DJ. Drosophila Ctr1A Functions as a Copper Transporter Essential for Development. J Biol Chem 2007; 282:24017-26. [PMID: 17573340 DOI: 10.1074/jbc.m703792200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper is an essential trace element required by all aerobic organisms as a cofactor for enzymes involved in normal growth, development, and physiology. Ctr1 proteins are members of a highly conserved family of copper importers responsible for copper uptake across the plasma membrane. Mice lacking Ctr1 die during embryogenesis from widespread developmental defects, demonstrating the need for adequate copper acquisition in the development of metazoan organisms via as yet uncharacterized mechanisms. Whereas the fruit fly, Drosophila melanogaster, expresses three Ctr1 genes, ctr1A, ctr1B, and ctr1C, little is known about their protein isoform-specific roles. Previous studies demonstrated that Ctr1B localizes to the plasma membrane and is not essential for development unless flies are severely copper-deficient or are subjected to copper toxicity. Here we demonstrate that Ctr1A also resides on the plasma membrane and is the primary Drosophila copper transporter. Loss of Ctr1A results in copper-remedial developmental arrest at early larval stages. Ctr1A mutants are deficient in the activity of copper-dependent enzymes, including cytochrome c oxidase and tyrosinase. Amidation of Phe-Met-Arg-Phe-amides, a group of cardiomodulatory neuropeptide hormones that are matured via the action of peptidylglycine alpha-hydroxylating monooxygenase, is defective in neuroendocrine cells of Ctr1A mutant larvae. Moreover, both the Phe-Met-Arg-Phe-amide maturation and heart beat rate defects observed in Ctr1A mutant larvae can be partially rescued by exogenous copper. These studies establish clear physiological distinctions between two Drosophila plasma membrane copper transport proteins and demonstrate that copper import by Ctr1A is required to drive neuropeptide maturation during normal growth and development.
Collapse
Affiliation(s)
- Michelle L Turski
- Department of Pharmacology and Cancer Biology, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|