1
|
Alinda MD, Christopher PM, Listiawan MY, Endaryanto A, Suroto H, Rantam FA, Hendradi E, Notobroto HB, Prakoeswa CRS. The efficacy of topical adipose mesenchymal stem cell-conditioned medium versus framycetin gauze dressing in chronic plantar ulcer of leprosy: A randomized controlled trial. Indian J Dermatol Venereol Leprol 2023; 89:656-664. [PMID: 36688887 DOI: 10.25259/ijdvl_784_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 07/01/2022] [Indexed: 12/13/2022]
Abstract
Background Wound healing shows a unique interaction of several cells, growth factors and cytokines. The healing of chronic plantar ulcer of leprosy is influenced by various factors, one of which is the concentration of growth factors and cytokines related to the pathogenesis of impaired wound healing. Growth factors and cytokines can be found in the secretome of adipose mesenchymal stem cells. Aim To compare the effectiveness of topical adipose mesenchymal stem cell-conditioned medium and framycetin gauze dressing only on the healing of chronic plantar ulcer of leprosy. Methods In this randomised controlled trial, 32 patients with chronic plantar ulcer of leprosy were recruited. After detailed clinical and initial debridement, patients were randomised to two groups to receive either topical adipose mesenchymal stem cell-conditioned medium (n = 16) or framycetin gauze dressing only (n = 16) applied every three days for up to eight weeks, following which the ulcer size, adverse reactions and complications if any were monitored weekly. Results Healing percentage increased each week in all groups. Statistical differences between groups (P < 0.05) were observed from week 2 onwards for ulcer mean size reduction and from week 3 onwards for ulcer mean depth reduction. There were no adverse reactions or complications. Limitations Off-loading on subjects were not performed. Conclusion Adipose mesenchymal stem cell-conditioned medium is a potential therapeutic agent in the management of chronic plantar ulcer of leprosy.
Collapse
Affiliation(s)
- Medhi Denisa Alinda
- Post Graduate Doctoral Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Jawa Timur, Indonesia
| | | | | | | | - Heri Suroto
- Department of Cell and Tissue Bank, Faculty of Medicine Universitas Airlangga-Dr. Soetomo General Academic Hospital, Surabaya, Jawa Timur, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Jawa Timur, Indonesia
| | - Esti Hendradi
- Faculty of Pharmacy Universitas Airlangga, Surabaya, Jawa Timur, Indonesia
| | | | | |
Collapse
|
2
|
Zhou Y, Zha L, Wu J, Wang M, Zhou M, Wu G, Cheng X, Huang Z, Xie Q, Tu X. MED12 Regulates Smooth Muscle Cell Functions and Participates in the Development of Aortic Dissection. Genes (Basel) 2022; 13:genes13040692. [PMID: 35456498 PMCID: PMC9027749 DOI: 10.3390/genes13040692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Aortic dissection (AD) is a life-threatening disease with high morbidity and mortality, and effective pharmacotherapeutic remedies for it are lacking. Therefore, AD’s molecular pathogenesis and etiology must be elucidated. The aim of this study was to investigate the possible mechanism of mediator complex subunit 12 (human: MED12, mouse: Med12)involvement in AD. Firstly, we examined the expression of MED12 protein (human: MED12, mouse: Med12) in the aortic tissues of AD patients and AD mice. Subsequently, Med12 gene silencing was accomplished with RNA interference (siRNA). The effects of Med12 on AD and the possible biological mechanisms were investigated based on the proliferation, senescence, phenotypic transformation, and its involved signal pathway of mouse aortic smooth muscle cells (MOVAS), s. The results show that the expression of MED12 in the aortae of AD patients and AD mice was decreased. Moreover, the downregulation of Med12 inhibited the proliferation of MOVAS and promoted senescence. Further research found that Med12, as an inhibitor of the TGFβ1 signaling pathway, reduced the expression of Med12 and enhanced the activity of the TGFβ1 nonclassical signaling pathway, while TGFβ1 inhibited the phenotype transformation and proliferation of MOVAS by inhibiting Med12 synthesis. In conclusion, Med12 affected the phenotype, proliferation, and senescence of MOVAS through the TGFβ signaling pathway. This study provides a potential new target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yingchao Zhou
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao 266034, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.W.); (M.W.)
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Z.); (M.Z.); (X.C.)
| | - Jianfei Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.W.); (M.W.)
| | - Mengru Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.W.); (M.W.)
| | - Mengchen Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Z.); (M.Z.); (X.C.)
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Z.); (M.Z.); (X.C.)
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China;
| | - Qiang Xie
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China;
- Correspondence: (Q.X.); (X.T.)
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.W.); (M.W.)
- Correspondence: (Q.X.); (X.T.)
| |
Collapse
|
3
|
Carrillo‐Gálvez AB, Gálvez‐Peisl S, González‐Correa JE, de Haro‐Carrillo M, Ayllón V, Carmona‐Sáez P, Ramos‐Mejía V, Galindo‐Moreno P, Cara FE, Granados‐Principal S, Muñoz P, Martin F, Anderson P. GARP is a key molecule for mesenchymal stromal cell responses to TGF-β and fundamental to control mitochondrial ROS levels. Stem Cells Transl Med 2020; 9:636-650. [PMID: 32073751 PMCID: PMC7180295 DOI: 10.1002/sctm.19-0372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising cell therapy in regenerative medicine and for autoimmune/inflammatory diseases. However, a main hurdle for MSCs-based therapies is the loss of their proliferative potential in vitro. Here we report that glycoprotein A repetitions predominant (GARP) is required for the proliferation and survival of adipose-derived MSCs (ASCs) via its regulation of transforming growth factor-β (TGF-β) activation. Silencing of GARP in human ASCs increased their activation of TGF-β which augmented the levels of mitochondrial reactive oxygen species (mtROS), resulting in DNA damage, a block in proliferation and apoptosis. Inhibition of TGF-β signaling reduced the levels of mtROS and DNA damage and restored the ability of GARP-/low ASCs to proliferate. In contrast, overexpression of GARP in ASCs increased their proliferative capacity and rendered them more resistant to etoposide-induced DNA damage and apoptosis, in a TGF-β-dependent manner. In summary, our data show that the presence or absence of GARP on ASCs gives rise to distinct TGF-β responses with diametrically opposing effects on ASC proliferation and survival.
Collapse
Affiliation(s)
- Ana Belén Carrillo‐Gálvez
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Sheyla Gálvez‐Peisl
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Juan Elías González‐Correa
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Marina de Haro‐Carrillo
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Verónica Ayllón
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Pedro Carmona‐Sáez
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Verónica Ramos‐Mejía
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Pablo Galindo‐Moreno
- Department of Oral Surgery and Implant DentistrySchool of Dentistry, University of GranadaGranadaSpain
| | - Francisca E. Cara
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
- UGC de Oncología Médica, Hospital Universitario de JaénJaénSpain
| | - Sergio Granados‐Principal
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
- UGC de Oncología Médica, Hospital Universitario de JaénJaénSpain
| | - Pilar Muñoz
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Francisco Martin
- Centre for Genomics and Oncological Research (GENYO), Pfizer/University of Granada/Andalucian Regional GovernmentGranadaSpain
| | - Per Anderson
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio ClínicoHospital Universitario Virgen de las NievesGranadaSpain
- Biosanitary Institute of Granada (ibs.Granada), University of GranadaSpain
| |
Collapse
|
4
|
TGF-ß1 Induces Changes in the Energy Metabolism of White Adipose Tissue-Derived Human Adult Mesenchymal Stem/Stromal Cells In Vitro. Metabolites 2020; 10:metabo10020059. [PMID: 32046088 PMCID: PMC7074410 DOI: 10.3390/metabo10020059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue plays an active role in the regulation of the body’s energy balance. Mesenchymal stem/stromal cells from adipose tissue (adMSC) are the precursor cells for repair and adipogenesis. Since the balance of the differentiation state of adipose tissue-resident cells is associated with the development of various diseases, the examination of the regulation of proliferation and differentiation of adMSC might provide new therapeutic targets. Transforming growth factor-β1 (TGF-ß1) is synthetized by many cell types and is involved in various biological processes. Here, we investigated the effects of different concentrations of TGF-ß1 (1–10 ng/mL) on adMSC proliferation, metabolic activity, and analyzed the gene expression data obtained from DNA microarrays by bioinformatics. TGF-ß1 induced the concentration- and time-dependent increase in the cell number of adMSC with simultaneously unchanged cell cycle distributions. The basal oxygen consumption rates did not change significantly after TGF-ß1 exposure. However, glycolytic activity was significantly increased. The gene expression analysis identified 3275 differentially expressed genes upon exposure to TGF-ß1. According to the pathway enrichment analyses, they also included genes associated with energy metabolism. Thus, it was shown that TGF-ß1 induces changes in the energy metabolism of adMSC. Whether these effects are of relevance in vivo and whether they contribute to pathogenesis should be addressed in further examinations.
Collapse
|
5
|
Da Silva MHA, De Souza DB. Current evidence for the involvement of sex steroid receptors and sex hormones in benign prostatic hyperplasia. Res Rep Urol 2019; 11:1-8. [PMID: 30662879 PMCID: PMC6327899 DOI: 10.2147/rru.s155609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a pathology that affects 50% of men over 50 years of age and 90% of men develop BPH in their eighth decade of life. In 2018, more than 1 billion men will be affected by this disease worldwide. However, the progression of BPH is highly complex and has been debated and studied for approximately four decades. Recent studies indicate that BPH can originate from the alteration of different hormone synthesis pathways, and that it is also linked to the function of hormone receptors. There is a close relationship between the progression of BPH and sexual hormones, such as progesterone, testosterone, dihydrotestosterone, and estrogen. The focus of this study was to characterize the interactions of these hormones and investigate the direct or indirect role of each sex hormone receptor in the progression of BPH. Although several studies have described the effects of these hormones on BPH, no conclusions have been drawn regarding their role in disease progression. Here, we present a literature review on the sexual receptors possibly involved in the progression of BPH.
Collapse
|
6
|
Li P, Liu P, Peng Y, Zhang ZH, Li XM, Xiong RP, Chen X, Zhao Y, Ning YL, Yang N, Zhang B, Zhou YG. The ERK/CREB pathway is involved in the c-Ski expression induced by low TGF-β1 concentrations during primary fibroblast proliferation. Cell Cycle 2018; 17:1319-1328. [PMID: 29950153 DOI: 10.1080/15384101.2018.1480221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Increasing evidence has suggested that bidirectional regulation of cell proliferation is one important effect of TGF-β1 in wound healing. Increased c-Ski expression plays a role in promoting fibroblast proliferation at low TGF-β1 concentrations, but the mechanism by which low TGF-β1 concentrations regulate c-Ski levels remains unclear. In this study, the proliferation of rat primary fibroblasts was assessed with an ELISA BrdU kit. The mRNA and protein expression and phosphorylation levels of corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting. We first found that low TGF-β1 concentrations not only promoted c-ski mRNA and protein expression in rat primary fibroblasts but also increased the phosphorylation levels of Extracellular Signal-Regulated Kinases (ERK) and cAMP response element binding (CREB) protein. An ERK kinase (mitogen-activated protein kinase kinase, MEK) inhibitor significantly inhibited ERK1/2 phosphorylation levels, markedly reducing c-Ski expression and CREB phosphorylation levels and abrogating the growth-promoting effect of low TGF-β1 concentrations. At the same time, Smad2/3 phosphorylation levels were not significantly changed. Taken together, these results suggest that the increased cell proliferation induced by low TGF-β1 concentrations mediates c-Ski expression potentially through the ERK/CREB pathway rather than through the classic TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Ping Li
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Ping Liu
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China.,b Department 4, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Yan Peng
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Zhuo-Hang Zhang
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Xiao-Ming Li
- b Department 4, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Ren-Ping Xiong
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Xing Chen
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Yan Zhao
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Ya-Lei Ning
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Nan Yang
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Bo Zhang
- b Department 4, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| | - Yuan-Guo Zhou
- a The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital , Third Military Medical University , Chongqing , People's Republic of China
| |
Collapse
|
7
|
de Araújo Farias V, Carrillo-Gálvez AB, Martín F, Anderson P. TGF-β and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev 2018; 43:25-37. [PMID: 29954665 DOI: 10.1016/j.cytogfr.2018.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/30/2022]
Abstract
Multipotent mesenchymal stromal cells (MSCs) represent a promising cell-based therapy in regenerative medicine and for the treatment of inflammatory/autoimmune diseases. Importantly, MSCs have emerged as an important contributor to the tumor stroma with both pro- and anti-tumorigenic effects. However, the successful translation of MSCs to the clinic and the prevention of their tumorigenic and metastatic effect require a greater understanding of factors controlling their proliferation, differentiation, migration and immunomodulation in vitro and in vivo. The transforming growth factor(TGF)-β1, 2 and 3 are involved in almost every aspect of MSC function. The aim of this review is to highlight the roles that TGF-β play in the biology and therapeutic applications of MSCs. We will discuss the how TGF-β modulate MSC function as well as the paracrine effects of MSC-derived TGF-β on other cell types in the context of tissue regeneration, immune responses and cancer. Finally, taking all these aspects into consideration we discuss how modulation of TGF-β signaling/production in MSCs could be of clinical interest.
Collapse
Affiliation(s)
- Virgínea de Araújo Farias
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain; Facultad de Odontología, Universidad de Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Ana Belén Carrillo-Gálvez
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Francisco Martín
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Per Anderson
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain.
| |
Collapse
|
8
|
Millena AC, Vo BT, Khan SA. JunD Is Required for Proliferation of Prostate Cancer Cells and Plays a Role in Transforming Growth Factor-β (TGF-β)-induced Inhibition of Cell Proliferation. J Biol Chem 2016; 291:17964-76. [PMID: 27358408 DOI: 10.1074/jbc.m116.714899] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 12/16/2022] Open
Abstract
TGF-β inhibits proliferation of prostate epithelial cells. However, prostate cancer cells in advanced stages become resistant to inhibitory effects of TGF-β. The intracellular signaling mechanisms involved in differential effects of TGF-β during different stages are largely unknown. Using cell line models, we have shown that TGF-β inhibits proliferation in normal (RWPE-1) and prostate cancer (DU145) cells but does not have any effect on proliferation of prostate cancer (PC3) cells. We have investigated the role of Jun family proteins (c-Jun, JunB, and JunD) in TGF-β effects on cell proliferation. Jun family members were expressed at different levels and responded differentially to TGF-β treatment. TGF-β effects on JunD protein levels, but not mRNA levels, correlated with its effects on cell proliferation. TGF-β induced significant reduction in JunD protein in RWPE-1 and DU145 cells but not in PC3 cells. Selective knockdown of JunD expression using siRNA in DU145 and PC3 cells resulted in significant reduction in cell proliferation, and forced overexpression of JunD increased the proliferation rate. On the other hand, knockdown of c-Jun or JunB had little, if any, effect on cell proliferation; overexpression of c-Jun and JunB decreased the proliferation rate in DU145 cells. Further studies showed that down-regulation of JunD in response to TGF-β treatment is mediated via the proteasomal degradation pathway. In conclusion, we show that specific Jun family members exert differential effects on proliferation in prostate cancer cells in response to TGF-β, and inhibition of cell proliferation by TGF-β requires degradation of JunD protein.
Collapse
Affiliation(s)
- Ana Cecilia Millena
- From the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia 30314
| | - BaoHan T Vo
- From the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia 30314
| | - Shafiq A Khan
- From the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia 30314
| |
Collapse
|
9
|
Zhang Q, Yu N, Lee C. Vicious cycle of TGF-β signaling in tumor progression and metastasis. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:149-155. [PMID: 25374917 PMCID: PMC4219298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/25/2014] [Indexed: 06/04/2023]
Abstract
TGF-β is an important biological mediator. It regulates a wide range of functions including embryonic development, wound healing, organ development, immuno-modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells, a phenomenon known as TGF-β paradox. TGF-β stimulation in cancer cells leads to a differential Erk activation, which srves as the basis of TGF-β paradox between benign and cancer cells. The critical events of TGF-β mediated Erk activation are suppressed TBRs and elevated TGF-β in tumor cells but not in benign cells. These events form the basis of the "vicious cycle of TGF-β signaling". The term "vicious cycle", implies that, with each advancing cycle of TGF-β signaling, the tumor will accumulate more TGF-β and will be more "aggressive" than that of the previous cycle. Understanding this vicious cycle of TGF-β signaling in tumor progression and metastasis will help us to predict indolent from aggressive cancers and will help us to develop novel anti-cancer strategies.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Urology, Northwestern University School of MedicineChicago, IL 60611, USA
| | - Nengwang Yu
- Department of Urology, General Hospital of Jinan Military CommandJinan 250031, Shandong Province, China
| | - Chung Lee
- Department of Urology, Northwestern University School of MedicineChicago, IL 60611, USA
- Department of Surgery, North Shore University Health System, Evanston HospitalEvanston, IL 60201, USA
- Department of Pathology and Laboratory Medicine and Department of Urology, University of California at IrvineIrvine, CA 92697, USA
| |
Collapse
|
10
|
Role of the adjacent stroma cells in prostate cancer development and progression: synergy between TGF-β and IGF signaling. BIOMED RESEARCH INTERNATIONAL 2014; 2014:502093. [PMID: 25089270 PMCID: PMC4095744 DOI: 10.1155/2014/502093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/28/2014] [Indexed: 02/04/2023]
Abstract
This review postulates the role of transforming growth factor-beta (TGF-β) and insulin-like growth factor (IGF-I/IGF-II) signaling in stromal cells during prostate carcinogenesis and progression. It is known that stromal cells have a reciprocal relationship to the adjacent epithelial cells in the maintenance of structural and functional integrity of the prostate. An interaction between TGF-β and IGF signaling occupies a central part in this stromal-epithelial interaction. An increase in TGF-β and IGF signaling will set off the imbalance of this relationship and will lead to cancer development. A continuous input from TGF-β and IGF in the tumor microenvironment will result in cancer progression. Understanding of these events can help prevention, diagnosis, and therapy of prostate cancer.
Collapse
|
11
|
Zhang Q, Yu N, Lee C. Mysteries of TGF-β Paradox in Benign and Malignant Cells. Front Oncol 2014; 4:94. [PMID: 24860782 PMCID: PMC4026682 DOI: 10.3389/fonc.2014.00094] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/16/2014] [Indexed: 11/17/2022] Open
Abstract
TGF-β regulates a wide range of biological functions including embryonic development, wound healing, organogenesis, immune modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells; this phenomenon is known as TGF-β paradox. To date, the mechanism of this paradox still remains a scientific mystery. In this review, we present our experience, along with the literature, in an attempt to answer this mystery. First, we observed that, on TGF-β engagement, there is a differential activation of Erk between benign and cancer cells. Since activated Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk represents the answer to this mystery. Second, we identified a key player, PP2A-B56α, which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to suppressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The above three events explain the mysteries of TGF-β paradox. Understanding the mechanism of TGF-β paradox will help us to predict indolent from aggressive cancers and develop novel anti-cancer strategies.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Urology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Nengwang Yu
- Department of Urology, General Hospital of Jinan Military Command, Jinan, China
| | - Chung Lee
- Department of Urology, Northwestern University School of Medicine, Chicago, IL, USA
- Department of Surgery, NorthShore University HealthSystem, Evanston Hospital, Evanston, IL, USA
- Department of Pathology and Laboratory Medicine, University of California at Irvine, Irvine, CA, USA
- Department of Urology, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
12
|
Zhang Q, Chen L, Helfand BT, Jang TL, Sharma V, Kozlowski J, Kuzel TM, Zhu LJ, Yang XJ, Javonovic B, Guo Y, Lonning S, Harper J, Teicher BA, Brendler C, Yu N, Catalona WJ, Lee C. TGF-β regulates DNA methyltransferase expression in prostate cancer, correlates with aggressive capabilities, and predicts disease recurrence. PLoS One 2011; 6:e25168. [PMID: 21980391 PMCID: PMC3184137 DOI: 10.1371/journal.pone.0025168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/26/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND DNA methyltransferase (DNMT) is one of the major factors mediating the methylation of cancer related genes such as TGF-β receptors (TβRs). This in turn may result in a loss of sensitivity to physiologic levels of TGF-β in aggressive prostate cancer (CaP). The specific mechanisms of DNMT's role in CaP remain undetermined. In this study, we describe the mechanism of TGF-β-mediated DNMT in CaP and its association with clinical outcomes following radical prostatectomy. METHODOLOGY/PRINCIPAL FINDINGS We used human CaP cell lines with varying degrees of invasive capability to describe how TGF-β mediates the expression of DNMT in CaP, and its effects on methylation status of TGF-β receptors and the invasive capability of CaP in vitro and in vivo. Furthermore, we determined the association between DNMT expression and clinical outcome after radical prostatectomy. We found that more aggressive CaP cells had significantly higher TGF-β levels, increased expression of DNMT, but reduced TβRs when compared to benign prostate cells and less aggressive prostate cancer cells. Blockade of TGF-β signaling or ERK activation (p-ERK) was associated with a dramatic decrease in the expression of DNMT, which results in a coincident increase in the expression of TβRs. Blockade of either TGF-β signaling or DNMT dramatically decreased the invasive capabilities of CaP. Inhibition of TGF-β in an TRAMP-C2 CaP model in C57BL/6 mice using 1D11 was associated with downregulation of DNMTs and p-ERK and impairment in tumor growth. Finally, independent of Gleason grade, increased DNMT1 expression was associated with biochemical recurrence following surgical treatment for prostate cancer. CONCLUSIONS AND SIGNIFICANCE Our findings demonstrate that CaP derived TGF-β may induce the expression of DNMTs in CaP which is associated with methylation of its receptors and the aggressive potential of CaP. In addition, DNMTs is an independent predictor for disease recurrence after prostatectomy, and may have clinical implications for CaP prognostication and therapy.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Transforming growth factor-β regulates the growth of valve interstitial cells in vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1746-55. [PMID: 21851806 DOI: 10.1016/j.ajpath.2011.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 05/21/2011] [Accepted: 06/15/2011] [Indexed: 12/23/2022]
Abstract
Although valve interstitial cell (VIC) growth is an essential feature of injured and diseased valves, the regulation of VIC growth is poorly understood. Transforming growth factor (TGF)-β promotes VIC proliferation in early-stage wound repair; thus, herein, we tested the hypothesis that TGF-β regulates VIC proliferation under normal nonwound conditions using low-density porcine VIC monolayers. Cell numbers were counted during a 10-day period, whereas proliferation and apoptosis were quantified by bromodeoxyuridine staining and TUNEL, respectively. The extent of retinoblastoma protein phosphorylation and expression of cyclin D1, CDK 4, and p27 were compared using Western blot analysis. Adhesion was quantified using a trypsin adhesion assay, and morphological change was demonstrated by immunofluorescence localization of α-smooth muscle actin and vinculin. TGF-β-treated VICs were rhomboid; significantly decreased in number, proliferation, and retinoblastoma protein phosphorylation; and concomitantly had decreased expression of cyclin D1/CDK4 and increased expression of p27. TGF-β-treated VICs adhered better to substratum and had more vinculin plaques and α-smooth muscle actin stress fibers than did controls. Thus, the regulation of VIC growth by TGF-β is context dependent. TGF-β prevents excessive heart valve growth under normal physiological conditions while it promotes cell proliferation in the early stages of repair, when increased VICs are required.
Collapse
|
14
|
Yu L, Wang CY, Shi J, Miao L, Du X, Mayer D, Zhang J. Estrogens promote invasion of prostate cancer cells in a paracrine manner through up-regulation of matrix metalloproteinase 2 in prostatic stromal cells. Endocrinology 2011; 152:773-81. [PMID: 21248144 DOI: 10.1210/en.2010-1239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulating evidence suggests an enhancing effect of estrogens on prostate cancer (PCa) progression. Matrix metalloproteinase 2 (MMP2), which plays an important role in prostate cancer invasion, is mainly expressed in prostatic stromal cells (PrSC). Here we show that estradiol (E(2)) treatment up-regulates MMP2 production in PrSC, which promotes PCa cell invasion in a paracrine manner. Conditioned medium (CM) was collected from E(2)-treated prostatic stromal cell line WPMY-1 and primary PrSC. The CM of E(2)-treated WPMY-1 and PrSC promoted invasion of PCa cells, as measured by Matrigel transwell assays. Treatment with E(2) and 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, an estrogen receptor-alpha (ERα) specific agonist, significantly up-regulated MMP2 expression in WPMY-1 and PrSC cells at both mRNA and protein levels. The CM treated with an anti-MMP2 antibody lost the stimulatory effect on invasion of PCa cells. The ER inhibitor ICI 182,780, as well as a TGFβ1 neutralizing antibody and ERα-specific small interfering RNA effectively suppressed E(2)-induced MMP2 expression in WPMY-1 cells. Mechanistic studies showed that E(2) up-regulated MMP2 in an indirect manner: E(2) induced TGFβ1 expression via ERα; TGFβ1 stimulated MMP2 expression in PrSC; the invasion of PCa cells were stimulated by elevated MMP2 expression induced by E(2) in a paracrine manner. Our data show that E(2) induces MMP2 expression in WPMY-1 and PrSC cells, which was mediated by TGFβ1. The effect of E(2) on invasion of PCa cells is mediated by up-regulation of MMP2 in a paracrine mechanism.
Collapse
Affiliation(s)
- Lin Yu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Park II, Zhang Q, Liu V, Kozlowski JM, Zhang J, Lee C. 17Beta-estradiol at low concentrations acts through distinct pathways in normal versus benign prostatic hyperplasia-derived prostate stromal cells. Endocrinology 2009; 150:4594-605. [PMID: 19608654 DOI: 10.1210/en.2008-1591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to identify differential responses to low concentrations of 17beta-estradiol (E2) in primary stromal cell cultures derived from either normal organ donors or benign prostatic hyperplasia or hypertrophy (BPH) specimens. Furthermore, we sought to identify the potential mechanism of E2 action in these cell types, through either a genomic or nongenomic mechanism. We initially treated stromal cells derived from five normal prostates or five BPH specimens with low concentrations of E2 (0.001-1.0 nM) and analyzed their growth response. To determine whether genomic or nongenomic pathways were involved, we performed studies using specific estrogen receptor antagonists to confirm transcriptional activity or MAPK inhibitors to confirm the involvement of rapid signaling. Results of these studies revealed a fundamental difference in the mechanism of the response to E2. In normal cells, we found that a nongenomic, rapid E2 signaling pathway is predominantly involved, mediated by G protein-coupled receptor-30 and the subsequent activation of ERK1/2. In BPH-derived prostate stromal cells, a genomic pathway is predominantly involved because the addition of ICI 182780 was sufficient to abrogate any estrogenic effects. In conclusion, prostate stromal cells respond to far lower concentrations of E2 than previously recognized or examined, and this response is mediated through two distinct mechanisms, depending on its origin. This may provide the basis for new insights into the causes of, and possible treatments for, BPH.
Collapse
Affiliation(s)
- Irwin I Park
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
16
|
The role of the prostatic stroma in chronic prostatitis/chronic pelvic pain syndrome. Inflamm Res 2009; 58:829-36. [DOI: 10.1007/s00011-009-0086-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/17/2009] [Accepted: 08/19/2009] [Indexed: 11/25/2022] Open
|
17
|
Combined analysis of EGF+61G>A and TGFB1+869T>C functional polymorphisms in the time to androgen independence and prostate cancer susceptibility. THE PHARMACOGENOMICS JOURNAL 2009; 9:341-6. [PMID: 19488063 DOI: 10.1038/tpj.2009.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proliferative mechanisms involving the epidermal growth factor (EGF) and transforming growth factor beta (TGF-beta(1)) ligands are potential alternative pathways for prostate cancer (PC) progression to androgen independence (AI). Thus, the combined effect of EGF and TGFB1 functional polymorphisms might modulate tumor microenvironment and consequently its development. We studied EGF+61G>A and TGFB1+869T>C functional polymorphisms in 234 patients with PC and 243 healthy individuals. Intermediate- and high-proliferation genetic profile carriers have increased risk for PC (odds ratio (OR)=3.76, P=0.007 and OR=3.98, P=0.004, respectively), when compared with low proliferation individuals. Multivariate analysis showed a significantly lower time to AI in the high proliferation group, compared with the low/intermediate proliferation genetic profile carriers (HR=2.67, P=0.039), after adjustment for age, metastasis and stage. Results suggest that combined analysis of target genetic polymorphisms may contribute to the definition of cancer susceptibility and pharmacogenomic profiles. Combined blockage of key molecules in proliferation signaling pathways could be one of the most promising strategies for androgen-independent prostate cancer.
Collapse
|
18
|
Stromal growth and epithelial cell proliferation in ventral prostates of liver X receptor knockout mice. Proc Natl Acad Sci U S A 2009; 106:558-63. [PMID: 19122149 DOI: 10.1073/pnas.0811295106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With specific liver X receptor alpha and beta (LXRalpha and LXRbeta) antibodies, we found that LXRalpha is strongly expressed in the luminal and basal cells of prostatic epithelium. The ventral prostates (VP) of LXRalpha(-/-) mice are characterized by the presence of smooth-muscle actin-positive stromal overgrowth around the prostatic ducts and by numerous fibrous nodules pushing into the ducts and causing obstruction, so that most of the ducts were extremely dilated. BrdU labeling and Ki67 staining revealed epithelial and stromal proliferation in the fibrous nodules. However, the dense stroma surrounding the ducts was not positive for proliferation markers. There was no detectable difference between WT and LXRalpha(-/-) mice VP in the expression of the androgen receptor, but there was an increase in nuclear expression of Snail and Smad 2/3, indicating enhanced TGF-beta signaling. Upon treatment of WT mice for 3 months with the LXR agonist T2320 or for 3 weeks with beta-sitosterol, LXRalpha was downregulated, and a VP phenotype similar to that of LXRalpha(-/-) mice resulted. We conclude that in rodents, LXRalpha seems to control VP stromal growth and that LXRalpha(-/-) mice may be a useful model to study prostatic stromal hyperplasia. Because LXRalpha is expressed in the epithelium, the excessive stromal growth in LXRalpha(-/-) mice indicates that LXRalpha is essential for epithelial stromal communication.
Collapse
|
19
|
Djalilian A, Namavari A, Ito A, Balali S, Afshar A, Lavker R, Yue BJT. Down-regulation of Notch signaling during corneal epithelial proliferation. Mol Vis 2008; 14:1041-9. [PMID: 18552977 PMCID: PMC2426716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 05/29/2008] [Indexed: 11/05/2022] Open
Abstract
PURPOSE We evaluated the expression and activation of Notch pathway genes in the adult human and murine corneal epithelium during proliferation. METHODS The expression of Notch pathway genes in the limbal and central human corneal epithelium was compared by reverse transcription polymerase chain reaction (RT-PCR). Their expression pattern was examined by immunofluorescence and in situ hybridization. The temporal expression of Notch1 during murine wound healing was assessed by RT-PCR. Notch activity was determined using western blot for the Notch intracellular domain (NotchIC). The expression of Hes1 was evaluated in cell culture. RESULTS The expression of Notch1 and Jagged1 was higher in the human limbal epithelium while the expression of Hes1 and Hes5 was higher in the central cornea. Expression of Notch1, Jagged1, and Hes1 was found predominantly in the basal and immediate suprabasal cells. During neonatal corneal development, NotchIC was detected in occasional cells at P10 while at P15 and P90, it was found in the basal and early suprabasal layers. NotchIC was found to be lower in the limbal compared to central corneal epithelium. The expression of Notch1 was lower at 24 h post-wounding but was completely restored in six days. The levels of NotchIC were decreased at 24 h post-wounding and after application of topical phorbol myristate. In vitro, the expression of Hes1 was higher in confluent cells maintained under high calcium conditions. CONCLUSIONS The inverse correlation between Notch signaling and the proliferative status of the corneal epithelium is consistent with the idea that Notch plays a role in corneal epithelial differentiation.
Collapse
Affiliation(s)
- A.R. Djalilian
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL
| | - A. Namavari
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL
| | - A. Ito
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL
| | - S. Balali
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL
| | - A. Afshar
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL
| | - R.M. Lavker
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - B.Y. J. T. Yue
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
20
|
Chen YH, Guh JY, Chuang TD, Chen HC, Chiou SJ, Huang JS, Yang YL, Chuang LY. High glucose decreases endothelial cell proliferation via the extracellular signal regulated kinase/p15INK4b pathway. Arch Biochem Biophys 2007; 465:164-71. [PMID: 17597576 DOI: 10.1016/j.abb.2007.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 01/07/2023]
Abstract
High glucose inhibits endothelial cell proliferation. Thus, we studied cyclin-dependent kinase inhibitor p15(INK4b) in high glucose-induced effects in human umbilical endothelial cells at 24h. High glucose decreased cell proliferation while arresting cells in G(0)/G(1) phase of the cell cycle. High glucose increased phospho-extracellular signal regulated kinase (ERK)1/2, p15(INK4b) protein and mRNA expression. High glucose-inhibited cell proliferation was attenuated by antisense p15(INK4b) oligonucleotide. Moreover, PD98059 attenuated high glucose-induced p15(INK4b) protein expression. High glucose increased transforming growth factor-beta (TGF-beta) gene transcriptional activity and mRNA expression. However, neither SB431542 (type I TGF-beta receptor blocker) nor TGF-beta1 antibody affected high glucose-induced p15(INK4b) protein expression. Additionally, N-acetylcysteine (an antioxidant) attenuated high glucose-induced growth arrest and p15(INK4b) protein expression. Thus, high glucose-induced growth arrest is dependent on p15(INK4b) and oxidative stress in endothelial cells. Moreover, high glucose-induced p15(INK4b) protein expression is dependent on ERK1/2 and oxidative stress.
Collapse
Affiliation(s)
- Yen-Hui Chen
- Graduate Institute of Medicine, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee GT, Hong JH, Kwak C, Woo J, Liu V, Lee C, Kim IY. Effect of dominant negative transforming growth factor-beta receptor type II on cytotoxic activity of RAW 264.7, a murine macrophage cell line. Cancer Res 2007; 67:6717-24. [PMID: 17638882 DOI: 10.1158/0008-5472.can-06-4263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a potent suppressor of the immune system. In the present study, we investigated the effect of TGF-beta resistance on a murine macrophage cell line, RAW 264.7, by overexpressing a dominant negative TGF-beta receptor type II (TbetaRIIDN) construct. As expected, TbetaRIIDN-expressing RAW cells, designated as RAW-TbetaRIIDN, were resistant to TGF-beta signaling. When these cells were cocultured with the murine renal cell carcinoma cell line, Renca, a dramatic increase in apoptosis of Renca cells was observed. Simultaneously, elevated levels of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-alpha) in association with IFN-gamma were detected in RAW-TbetaRIIDN cells. When the effects of TNF-alpha and iNOS were neutralized through the use of neutralizing antibody and N(G)-methyl-L-arginine, respectively, the enhanced cytotoxicity of TbetaRIIDN-RAW cells was partially reversed. Taken together, these results show that TGF-beta-resistant RAW 264.7 murine macrophage cells have increased cytotoxic activity that is in part mediated by iNOS and TNF-alpha.
Collapse
Affiliation(s)
- Geun Taek Lee
- Division of Urologic Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Li W, Wu CL, Febbo PG, Olumi AF. Stromally expressed c-Jun regulates proliferation of prostate epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1189-98. [PMID: 17702894 PMCID: PMC1988869 DOI: 10.2353/ajpath.2007.070285] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stromal-epithelial interactions play a critical role in development of benign prostatic hyperplasia. We have previously shown that stromal cells associated with prostatic carcinoma can potentiate proliferation and reduce cell death of prostatic epithelial cells. Genetic alterations in stromal cells affect stromal-epithelial interactions and modulate epithelial growth. The c-Jun proteins that are early transcription factor molecules have been shown to regulate stromal-epithelial interactions via paracrine signals. Moreover, the Jun-family member proteins have been shown to play an important role in proper development of the genitourinary organs. In this study, we show that c-Jun protein in fibroblasts regulates production and paracrine signals of insulin-like growth factor-1 (IGF-1). c-jun(+/+) fibroblasts secrete higher levels of IGF-1 and stimulate benign prostatic hyperplasia-1 cellular proliferation. In addition, stromally produced IGF-1 up-regulates epithelial mitogen-activated protein kinase, Akt, and cyclin D protein levels while down-regulating the cyclin-dependent kinase inhibitor p27. These data suggest that stromally expressed c-Jun may promote prostatic epithelial proliferation through IGF-1 as a paracrine signal that, in turn, can promote prostate epithelial proliferation. Identification of the signal transduction pathways between prostate epithelial cells and the surrounding stromal cells will improve our understanding of the normal and abnormal biology in prostatic diseases.
Collapse
Affiliation(s)
- Wenhua Li
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Yawkey Bdlg., Suite 7E, 55 Fruit St., Boston, MA 02114-2354, USA
| | | | | | | |
Collapse
|
23
|
Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun 2007; 359:108-14. [PMID: 17532297 DOI: 10.1016/j.bbrc.2007.05.067] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 05/09/2007] [Indexed: 11/22/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are able to both self-replicate and differentiate into a variety of cell types. Fibroblast growth factor-2 (FGF-2) stimulates the growth of hMSCs in vitro, but its mechanisms have not been clarified yet. In this study, we investigated whether cellular senescence was involved in the stimulation of hMSCs growth by FGF-2 and the expression levels of transforming growth factor-beta1 and -beta2 (TGF-betas). Because hMSCs were induced cellular senescence due to long-term culture, FGF-2 decreased the percentage of senescent cells and suppressed G1 cell growth arrest through the suppression of p21(Cip1), p53, and p16(INK4a) mRNA expression levels. Furthermore, the levels of TGF-betas mRNA expression in hMSCs were increased by long-term culture, but FGF-2 suppressed the increase of TGF-beta2 mRNA expression due to long-term culture. These results suggest that FGF-2 suppresses the hMSCs cellular senescence dependent on the length of culture through down-regulation of TGF-beta2 expression.
Collapse
Affiliation(s)
- Tomomi Ito
- Division of Medical Devices, National Institute of Health Sciences, 1-18-1 Kamiyoga, Tokyo 158-8501, Japan
| | | | | | | | | |
Collapse
|
24
|
Abstract
Transforming growth factor-beta (TGF-beta) is a multifunctional regulatory polypeptide that is the prototypical member of a large family of cytokines that controls many aspects of cellular function, including cellular proliferation, differentiation, migration, apoptosis, adhesion, angiogenesis, immune surveillance, and survival. The actions of TGF-beta are dependent on several factors including cell type, growth conditions, and the presence of other polypeptide growth factors. One of the biological effects of TGF-beta is the inhibition of proliferation of most normal epithelial cells using an autocrine mechanism of action, and this suggests a tumor suppressor role for TGF-beta. Loss of autocrine TGF-beta activity and/or responsiveness to exogenous TGF-beta appears to provide some epithelial cells with a growth advantage leading to malignant progression. This suggests a pro-oncogenic role for TGF-beta in addition to its tumor suppressor role. During the early phase of epithelial tumorigenesis, TGF-beta inhibits primary tumor development and growth by inducing cell cycle arrest and apoptosis. In late stages of tumor progression when tumor cells become resistant to growth inhibition by TGF-beta due to inactivation of the TGF-beta signaling pathway or aberrant regulation of the cell cycle, the role of TGF-beta becomes one of tumor promotion. Resistance to TGF-beta-mediated inhibition of proliferation is frequently observed in multiple human cancers, as are various alterations in the complex TGF-beta signaling and cell cycle pathways. TGF-beta can exert effects on tumor and stromal cells as well as alter the responsiveness of tumor cells to TGF-beta to stimulate invasion, angiogenesis, and metastasis, and to inhibit immune surveillance. Because of the dual role of TGF-beta as a tumor suppressor and pro-oncogenic factor, members of the TGF-beta signaling pathway are being considered as predictive biomarkers for progressive tumorigenesis, as well as molecular targets for prevention and treatment of cancer and metastasis.
Collapse
Affiliation(s)
- Sonia B Jakowlew
- National Cancer Institute, Cell and Cancer Biology Branch, 9610 Medical Center Drive, Suite 300, Rockville, MD 20850, USA.
| |
Collapse
|
25
|
Suzuki K, Obara K, Kobayashi K, Yamana K, Bilim V, Itoi T, Takahashi K. Role of connective tissue growth factor in fibronectin synthesis in cultured human prostate stromal cells. Urology 2006; 67:647-53. [PMID: 16527597 DOI: 10.1016/j.urology.2005.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 09/16/2005] [Accepted: 10/07/2005] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To clarify the correlation of connective tissue growth factor (CTGF) expression and fibronectin (FN) synthesis after transforming growth factor-beta-1 (TGF-beta1) stimulation in human prostate stromal cells. METHODS Primary cultures of human prostate stromal cells were established from nine normal prostates by the explant method. The gene and protein expressions of CTGF and FN after TGF-beta1 treatment were examined. We also investigated the effect of CTGF blockade on TGF-beta1-induced FN synthesis by CTGF antisense oligodeoxynucleotide treatment. RESULTS CTGF expression was detected in all nine prostate stromal cells by reverse transcriptase-polymerase chain reaction and immunoblotting. In prostatic tissues, CTGF expression was observed more strongly in epithelial cells than in the stromal area by immunohistochemistry. The upregulation of both CTGF and FN protein by TGF-beta1 treatment was demonstrated in a dose-dependent manner. CTGF antisense oligodeoxynucleotide inhibited TGF-beta1-stimulated FN synthesis. CONCLUSIONS CTGF plays a crucial role in extracellular matrix production as a TGF-beta1 downstream mediator in human prostate stromal cells, suggesting that CTGF blockade is likely to be a therapeutic target against benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Kazuya Suzuki
- Division of Urology, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Kim HW, Lim JS, Chang YS, Song KH. Effect of 5alpha-Reductase Inhibitor in Expression of Transforming Growth Factor-β 1in Benign Prostatic Hyperplasia Patients. Korean J Urol 2006. [DOI: 10.4111/kju.2006.47.11.1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hong Wook Kim
- Department of Urology, Konyang University College of Medicine, Daejeon, Korea
| | - Je Soo Lim
- Myeonggok Clinical Institute, Konyang University College of Medicine, Daejeon, Korea
| | - Young Seop Chang
- Department of Urology, Konyang University College of Medicine, Daejeon, Korea
| | - Ki Hak Song
- Department of Urology, Konyang University College of Medicine, Daejeon, Korea
| |
Collapse
|
27
|
Shibata Y, Kashiwagi B, Arai S, Fukabori Y, Suzuki K. Administration of extract of mushroom Phellinus linteus induces prostate enlargement with increase in stromal component in experimentally developed rat model of benign prostatic hyperplasia. Urology 2005; 66:455-60. [PMID: 16098375 DOI: 10.1016/j.urology.2005.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2004] [Revised: 02/19/2005] [Accepted: 03/09/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To clarify the effect of the mushroom extract Phellinus linteus on noncancerous prostate cells using an experimentally developed rat benign prostatic hyperplasia model. A growing number of people take some natural herbal extracts for maintenance of their health. Among them, the extracts of certain mushrooms are believed to have a marked tumoricidal effect but low toxicity for normal tissues, and they are being drunk widely in Japan and Korea. However, until now, their effect on noncancerous benign prostate growth has not been examined. METHODS The mushroom extract was administered daily for 5 weeks to experimentally developed benign prostatic hyperplasia rats. Prostate organ weight, histologic composition, and gene expression levels of sex hormone receptors, transforming growth factor-beta, vascular endothelial growth factor, and endothelial nitric oxide synthase were examined. RESULTS Prostate weight increased significantly by 37% owing to treatment with the mushroom extract (P < 0.05). In particular, the stromal component of the prostate increased significantly by 80% (P < 0.05). A suppression of transforming growth factor-beta1 expression by 56% was observed with the mushroom extract treatment (P < 0.05). CONCLUSIONS We found that the mushroom extract enlarged the prostate. The effect was suggested to be on the prostate stroma, which may be involved in transforming growth factor-beta1 regulation. Administration of mushroom extract should be considered carefully by those with an enlarged prostate.
Collapse
Affiliation(s)
- Yasuhiro Shibata
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | | | | | | | | |
Collapse
|
28
|
Ho J, de Guise C, Kim C, Lemay S, Wang XF, Lebrun JJ. Activin induces hepatocyte cell growth arrest through induction of the cyclin-dependent kinase inhibitor p15INK4B and Sp1. Cell Signal 2005; 16:693-701. [PMID: 15093610 DOI: 10.1016/j.cellsig.2003.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 11/12/2003] [Accepted: 11/14/2003] [Indexed: 01/07/2023]
Abstract
In this report, we examined the role of activin in the regulation of cell growth inhibition of human hepatocarcinoma cells. Using RNase protection assay for various cell cycle regulators and Western blotting experiments, we show that activin treatment of HepG2 cells leads to increased gene expression of the cyclin-dependent kinase inhibitor (CDKI) p15INK4B. Furthermore, transient co-transfection studies of the p15INK4B promoter/luciferase construct performed in HepG2 cells demonstrates that activin induction of the p15INK4B promoter is mediated through the Smad pathway. p15INK4B gene promoter mapping analysis revealed a 66-bp region within the proximal domain of the promoter, which contains a consensus site for the transcription factor Sp1, as critical for mediating the activin effect on p15INK4B gene expression. Finally, gel mobility shift experiments, using the Sp1 consensus site, revealed increased DNA binding of Sp1 in response to activin treatment of HepG2 cells, further confirming the involvement of Sp1 in activin-mediated p15INK4B gene promoter activation. Together, our data indicates an important role for the cyclin-dependent kinase inhibitor p15INK4B in activin-induced cell cycle arrest in liver cells.
Collapse
Affiliation(s)
- Joanne Ho
- Hormones and Cancer Research Unit, Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Canada H3A 1A1
| | | | | | | | | | | |
Collapse
|
29
|
Nazarova N, Golovko O, Bläuer M, Tuohimaa P. Calcitriol inhibits growth response to Platelet-Derived Growth Factor-BB in human prostate cells. J Steroid Biochem Mol Biol 2005; 94:189-96. [PMID: 15862965 DOI: 10.1016/j.jsbmb.2005.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Calcitriol, a hormonal form of Vitamin D, regulates growth of normal and cancer cells of various origins by modulation of peptide growth factors signaling. Platelet-Derived Growth Factor (PDGF) signaling pathway is involved in prostate cancer progression. We studied the expression of PDGF receptors in human prostate primary stromal cells and cancer epithelial cell lines and growth response to PDGF-BB isoform. We found that the expression of PDGF receptors and PDGF-BB-mediated cell growth are regulated by calcitriol in prostate cells. Quantitative RT-PCR analysis revealed a lower level of mRNA for PDGF receptors in LNCaP and PC-3 cells than in primary stromal cells. Western blotting showed a high amount of PDGFRalpha and beta proteins in primary stromal cells that could not be detected in LNCaP, which may explain the resistance of LNCaP cells to growth-promoting effect of PDGF-BB. Addition of Epidermal Growth Factor (EGF) to the culture medium induces the expression of PDGFRbeta and restores responsiveness of LNCaP to PDGF-BB to some extent. Calcitriol down-regulates PDGFRbeta expression and negatively regulates PDGF-mediated cell growth. Calcitriol does not affect PDGFRalpha and PDGF-B mRNA expression. We suggest that inhibition of PDGFRbeta expression by calcitriol might reduce responsiveness of prostate cells to mitogenic action of PDGF-BB.
Collapse
Affiliation(s)
- Nadja Nazarova
- Department of Anatomy, Medical School, University of Tampere, 33014 Tampere, Finland.
| | | | | | | |
Collapse
|