1
|
Nagy A, Niu N, Ratner E, Hui P, Buza N. Novel FOXL2 Mutation in an Ovarian Adult Granulosa Cell Tumor: Report of a Case With Diagnostic and Clinicopathologic Implications. Int J Gynecol Pathol 2024; 43:631-636. [PMID: 38426544 DOI: 10.1097/pgp.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Adult granulosa cell tumor, the most common malignant ovarian sex cord-stromal tumor, harbors the characteristic mutation c.402C>G (p.C134W) in the FOXL2 gene in ~90% to 95% of cases. To date, no other variants of FOXL2 mutations have been identified in these tumors. Here we report the first case of an adult granulosa cell tumor with a novel FOXL2 point mutation c.398C>T (p.A133V) presenting in a 64-year-old postmenopausal woman. The patient underwent total hysterectomy and bilateral salpingo-oophorectomy for atypical endometrial hyperplasia and gross examination revealed an incidental 3.2 cm right ovarian mass with a solid, bright yellow, homogeneous cut surface. Microscopically, ~30% of the tumor showed a nested growth pattern composed of uniform tumor cells with oval nuclei and a moderate amount of pale cytoplasm, while the remaining areas consisted of a bland storiform fibromatous stroma. Reticulin stain demonstrated loss of the individual pericellular network within the nested areas, while the pericellular staining pattern was retained in the background stromal component. FOXL2 sequencing analysis was performed in both components and revealed a c.398C>T (p.A133V) mutation in the nested component, whereas wild-type FOXL2 sequence was identified in the fibromatous stroma. Sections from the uterus showed a low-grade endometrioid endometrial adenocarcinoma with superficial myometrial invasion. The patient underwent adjuvant vaginal cuff brachytherapy for the endometrial carcinoma and is alive and well at 8 months follow-up. This case illustrates that new FOXL2 mutations may be detected in ovarian sex cord-stromal tumors with increasing use of routine molecular testing, adding to the complexity of the pathologic diagnosis. In the right morphologic and clinical context, a FOXL2 mutation-even if it is different from the dominant hotspot mutation c.402C>G (p.C134W)-can support the diagnosis of adult granulosa cell tumor.
Collapse
|
2
|
Li X, Du H, Zhou H, Huang Y, Tang S, Yu C, Guo Y, Luo W, Gong Y. FOXL2 regulates RhoA expression to change actin cytoskeleton rearrangement in granulosa cells of chicken pre-ovulatory follicles†. Biol Reprod 2024; 111:391-405. [PMID: 38832713 DOI: 10.1093/biolre/ioae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/04/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024] Open
Abstract
Forkhead box L2 (FOXL2) is an indispensable key regulator of female follicular development, and it plays important roles in the morphogenesis, proliferation, and differentiation of follicle granulosa cells, such as establishing normal estradiol signaling and regulating steroid hormone synthesis. Nevertheless, the effects of FOXL2 on granulosa cell morphology and the underlying mechanism remain unknown. Using FOXL2 ChIP-seq analysis, we found that FOXL2 target genes were significantly enriched in the actin cytoskeleton-related pathways. We confirmed that FOXL2 inhibited the expression of RhoA, a key gene for actin cytoskeleton rearrangement, by binding to TCATCCATCTCT in RhoA promoter region. In addition, FOXL2 overexpression in granulosa cells induced the depolymerization of F-actin and disordered the actin filaments, resulting in a slowdown in the expansion of granulosa cells, while FOXL2 silencing inhibited F-actin depolymerization and stabilized the actin filaments, thereby accelerating granulosa cell expansion. RhoA/ROCK pathway inhibitor Y-27632 exhibited similar effects to FOXL2 overexpression, even reversed the actin polymerization in FOXL2 silencing granulosa cells. This study revealed for the first time that FOXL2 regulated granulosa cell actin cytoskeleton by RhoA/ROCK pathway, thus affecting granulosa cell expansion. Our findings provide new insights for constructing the regulatory network of FOXL2 and propose a potential mechanism for facilitating rapid follicle expansion, thereby laying a foundation for further understanding follicular development.
Collapse
Affiliation(s)
- Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hongting Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Haobo Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Ying Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shuixin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chengzhi Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
3
|
Migale R, Neumann M, Mitter R, Rafiee MR, Wood S, Olsen J, Lovell-Badge R. FOXL2 interaction with different binding partners regulates the dynamics of ovarian development. SCIENCE ADVANCES 2024; 10:eadl0788. [PMID: 38517962 PMCID: PMC10959415 DOI: 10.1126/sciadv.adl0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
The transcription factor FOXL2 is required in ovarian somatic cells for female fertility. Differential timing of Foxl2 deletion, in embryonic versus adult mouse ovary, leads to distinctive outcomes, suggesting different roles across development. Here, we comprehensively investigated FOXL2's role through a multi-omics approach to characterize gene expression dynamics and chromatin accessibility changes, coupled with genome-wide identification of FOXL2 targets and on-chromatin interacting partners in somatic cells across ovarian development. We found that FOXL2 regulates more targets postnatally, through interaction with factors regulating primordial follicle formation and steroidogenesis. Deletion of one interactor, ubiquitin-specific protease 7 (Usp7), results in impairment of somatic cell differentiation, germ cell nest breakdown, and ovarian development, leading to sterility. Our datasets constitute a comprehensive resource for exploration of the molecular mechanisms of ovarian development and causes of female infertility.
Collapse
Affiliation(s)
- Roberta Migale
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Michelle Neumann
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mahmoud-Reza Rafiee
- RNA Networks Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sophie Wood
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jessica Olsen
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
4
|
He L, Yang J, Hao Y, Yang X, Shi X, Zhang D, Zhao D, Yan W, Bie X, Chen L, Chen G, Zhao S, Liu X, Zheng H, Zhang K. DDX20: A Multifunctional Complex Protein. Molecules 2023; 28:7198. [PMID: 37894677 PMCID: PMC10608988 DOI: 10.3390/molecules28207198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
DEAD-box decapping enzyme 20 (DDX20) is a putative RNA-decapping enzyme that can be identified by the conserved motif Asp-Glu-Ala-Asp (DEAD). Cellular processes involve numerous RNA secondary structure alterations, including translation initiation, nuclear and mitochondrial splicing, and assembly of ribosomes and spliceosomes. DDX20 reportedly plays an important role in cellular transcription and post-transcriptional modifications. On the one hand, DDX20 can interact with various transcription factors and repress the transcriptional process. On the other hand, DDX20 forms the survival motor neuron complex and participates in the assembly of snRNP, ultimately affecting the RNA splicing process. Finally, DDX20 can potentially rely on its RNA-unwinding enzyme function to participate in microRNA (miRNA) maturation and act as a component of the RNA-induced silencing complex. In addition, although DDX20 is not a key component in the innate immune system signaling pathway, it can affect the nuclear factor kappa B (NF-κB) and p53 signaling pathways. In particular, DDX20 plays different roles in tumorigenesis development through the NF-κB signaling pathway. This process is regulated by various factors such as miRNA. DDX20 can influence processes such as viral replication in cells by interacting with two proteins in Epstein-Barr virus and can regulate the replication process of several viruses through the innate immune system, indicating that DDX20 plays an important role in the innate immune system. Herein, we review the effects of DDX20 on the innate immune system and its role in transcriptional and post-transcriptional modification processes, based on which we provide an outlook on the future of DDX20 research in innate immunity and viral infections.
Collapse
Affiliation(s)
- Lu He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Yu Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xijuan Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Dajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Dengshuai Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Wenqian Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xintian Bie
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Lingling Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guohui Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Siyue Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
5
|
Baddela VS, Michaelis M, Tao X, Koczan D, Vanselow J. ERK1/2-SOX9/FOXL2 axis regulates ovarian steroidogenesis and favors the follicular-luteal transition. Life Sci Alliance 2023; 6:e202302100. [PMID: 37532283 PMCID: PMC10397509 DOI: 10.26508/lsa.202302100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Estradiol and progesterone are the primary sex steroids produced by the ovary. Upon luteinizing hormone surge, estradiol-producing granulosa cells convert into progesterone-producing cells and eventually become large luteal cells of the corpus luteum. Signaling pathways and transcription factors involved in the cessation of estradiol and simultaneous stimulation of progesterone production in granulosa cells are not clearly understood. Here, we decipher that phosphorylated ERK1/2 regulates granulosa cell steroidogenesis by inhibiting estradiol and inducing progesterone production. Down-regulation of transcription factor FOXL2 and up-regulation of SOX9 by ERK underpin its differential steroidogenic function. Interestingly, the incidence of SOX9 is largely uncovered in ovarian cells and is found to regulate FOXL2 along with CYP19A1 and STAR genes, encoding rate-limiting enzymes of steroidogenesis, in cultured granulosa cells. We propose that the novel ERK1/2-SOX9/FOXL2 axis in granulosa cells is a critical regulator of ovarian steroidogenesis and may be considered when addressing pathophysiologies associated with inappropriate steroid production and infertility in humans and animals.
Collapse
Affiliation(s)
- Vijay Simha Baddela
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marten Michaelis
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Xuelian Tao
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Jens Vanselow
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
6
|
Jin L, Sun W, Bao H, Liang X, Li P, Shi S, Wang Z, Qian G, Ge C. The forkhead factor Foxl2 participates in the ovarian differentiation of Chinese soft-shelled turtle Pelodiscus sinensis. Dev Biol 2022; 492:101-110. [DOI: 10.1016/j.ydbio.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/24/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
7
|
Xie Y, Wu C, Li Z, Wu Z, Hong L. Early Gonadal Development and Sex Determination in Mammal. Int J Mol Sci 2022; 23:ijms23147500. [PMID: 35886859 PMCID: PMC9323860 DOI: 10.3390/ijms23147500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex determination is crucial for the transmission of genetic information through generations. In mammal, this process is primarily regulated by an antagonistic network of sex-related genes beginning in embryonic development and continuing throughout life. Nonetheless, abnormal expression of these sex-related genes will lead to reproductive organ and germline abnormalities, resulting in disorders of sex development (DSD) and infertility. On the other hand, it is possible to predetermine the sex of animal offspring by artificially regulating sex-related gene expression, a recent research hotspot. In this paper, we reviewed recent research that has improved our understanding of the mechanisms underlying the development of the gonad and primordial germ cells (PGCs), progenitors of the germline, to provide new directions for the treatment of DSD and infertility, both of which involve manipulating the sex ratio of livestock offspring.
Collapse
Affiliation(s)
- Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| |
Collapse
|
8
|
Crites BR, Carr SN, Anderson LH, Matthews JC, Bridges PJ. Form of dietary selenium affects mRNA encoding interferon-stimulated and progesterone-induced genes in the bovine endometrium and conceptus length at maternal recognition of pregnancy. J Anim Sci 2022; 100:skac137. [PMID: 35772751 PMCID: PMC9246668 DOI: 10.1093/jas/skac137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Widespread regions of the southeast United States have soils, and hence forages, deficient in selenium (Se), necessitating Se supplementation to grazing cattle for optimal immune function, growth, and fertility. We have reported that supplementation with an isomolar 1:1 mix (MIX) of inorganic (ISe) and organic (OSe) forms of Se increases early luteal phase (LP) concentrations of progesterone (P4) above that in cows on ISe or OSe alone. Increased early LP P4 advances embryonic development. Our objective was to determine the effects of the form of Se on the development of the bovine conceptus and the endometrium using targeted real-time PCR (qPCR) on day 17 of gestation, the time of maternal recognition of pregnancy (MRP). Angus-cross yearling heifers underwent 45-d Se-depletion then repletion periods, then at least 90 d of supplementation (TRT) with 35 ppm Se per day as either ISe (n = 10) or MIX (n = 10). Heifers were inseminated to a single sire after detected estrus (day 0). On day 17 of gestation, caruncular (CAR) and intercaruncular (ICAR) endometrial samples and the developing conceptus were recovered from pregnant heifers (ISe, n = 6 and MIX, n = 6). qPCR was performed to determine the relative abundance of targeted transcripts in CAR and ICAR samples, with the expression data subjected to one-way ANOVA to determine TRT effects. The effect of TRT on conceptus development was analyzed using a one-tailed Student's t-test. When compared with ISe-treated heifers, MIX heifers had decreased (P < 0.05) abundance of several P4-induced and interferon-stimulated mRNA transcripts, including IFIT3, ISG15, MX1, OAS2, RSAD2, DGAT2, FGF2 in CAR and DKK1 in ICAR samples and tended (P ≤ 0.10) to have decreased mRNA abundance of IRF1, IRF2, FOXL2, and PGR in CAR samples, and HOXA10 and PAQR7 in ICAR samples. In contrast, MIX-supplemented heifers had increased (P < 0.05) mRNA abundance of MSTN in ICAR samples and an increase in conceptus length (ISe: 17.45 ± 3.08 cm vs. MIX: 25.96 ± 3.95 cm; P = 0.05). Notably, myostatin increases glucose secretion into histotroph and contributes to advanced conceptus development. This advancement in conceptus development occurred in the presence of similar concentrations of serum P4 (P = 0.88) and whole blood Se (P = 0.07) at MRP.
Collapse
Affiliation(s)
- Benjamin R Crites
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sarah N Carr
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Leslie H Anderson
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - James C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
9
|
Liu X, Huang Y, Tan F, Wang HY, Chen JY, Zhang X, Zhao X, Liu K, Wang Q, Liu S, Piferrer F, Fan G, Shao C. Single-Cell Atlas of the Chinese Tongue Sole (Cynoglossus semilaevis) Ovary Reveals Transcriptional Programs of Oogenesis in Fish. Front Cell Dev Biol 2022; 10:828124. [PMID: 35300429 PMCID: PMC8921555 DOI: 10.3389/fcell.2022.828124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Oogenesis is a highly orchestrated process that depends on regulation by autocrine/paracrine hormones and growth factors. However, many details of the molecular mechanisms that regulate fish oogenesis remain elusive. Here, we performed a single-cell RNA sequencing (scRNA-seq) analysis of the molecular signatures of distinct ovarian cell categories in adult Chinese tongue sole (Cynoglossus semilaevis). We characterized the successive stepwise development of three germ cell subtypes. Notably, we identified the cellular composition of fish follicle walls, including four granulosa cell types and one theca cell type, and we proposed important transcription factors (TFs) showing high activity in the regulation of cell identity. Moreover, we found that the extensive niche–germline bidirectional communications regulate fish oogenesis, whereas ovulation in fish is accompanied by the coordination of simultaneous and tightly sequential processes across different granulosa cells. Additionally, a systems biology analysis of the homologous genes shared by Chinese tongue sole and macaques revealed remarkably conserved biological processes in germ cells and granulosa cells across vertebrates. Our results provide key insights into the cell-type-specific mechanisms underlying fish oogenesis at a single-cell resolution, which offers important clues for exploring fish breeding mechanisms and the evolution of vertebrate reproductive systems.
Collapse
Affiliation(s)
- Xiang Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yingyi Huang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Fujian Tan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China
| | - Hong-Yan Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian-Yang Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | - Xianghui Zhang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Xiaona Zhao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | - Francesc Piferrer
- Institut de Ciències Del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Wan H, Zhong J, Zhang Z, Zou P, Wang Y. Comparative Transcriptome Reveals the Potential Modulation Mechanisms of Spfoxl-2 Affecting Ovarian Development of Scylla paramamosain. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:125-135. [PMID: 35107659 DOI: 10.1007/s10126-022-10091-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Previously, we reported the identification, tissue distribution and confirmed the roles of Spfoxl-2 in regulating vitellogenin (vtg) expression in Scylla paramamosain. Here, we primally analyzed its potential target genes in the ovary with RNAi and RNA-Seq technology. By comparing the transcriptome data of two groups (ovaries that injected with EGFP and Foxl-2 siRNA, respectively), we found 645 DEGs (differentially expressed genes), including several conserved crucial genes involved in ovarian development, such as vtg, vitellogenin receptor (vtgR), adenylate cyclase (AC), cyclinB, and cell division cycle 2 (cdc2). In addition, these DEGs were also enriched in pathways related to ovary development, including relaxin signaling pathway, ovarian steroidogenesis, and progesterone-mediated oocyte maturation. Moreover, several genes were selected for qRT-PCR to validate the accuracy of the bioinformatic result. To the best of our knowledge, the current study was the first report about foxl-2 function through comparative transcriptome analysis in crustacean species, which identified not only relevant genes and pathways involved in ovarian development of S. paramamosain, but also provided new insights into the regulatory mechanisms of foxl-2 at the molecular level in crustacean.
Collapse
Affiliation(s)
- Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Jinying Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| |
Collapse
|
11
|
Du H, Guo Y, Wu X, Gong Y. FOXL2 regulates the expression of the Col4a1 collagen gene in chicken granulosa cells. Mol Reprod Dev 2022; 89:95-103. [PMID: 35122350 DOI: 10.1002/mrd.23554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/07/2022]
Abstract
Forkhead box L2 (FOXL2), one member in the superfamily of forkhead transcription factors, is a core transcription factor specifically expressed in ovarian granulosa cells and is essential for the development of follicles. FOXL2 has been shown to regulate the transcription of genes encoding enzymes that synthesize steroid hormones and estrogen receptors and regulate the expression of collagen genes in granulosa cells. This study explored the effect of FOXL2 on collagen gene expression in granulosa cells by overexpressing Foxl2 in pregranulosa cells, prehierarchical follicles and preovulation follicle granulosa cells. The results showed that FOXL2 regulated the expression of several genes encoding collagens in chicken granulosa cells and that overexpression of Foxl2 significantly reduced the messenger RNA and protein levels of Col4a1 in different granulosa cells. Moreover, luciferase reporter and chromatin immunoprecipitation assays were performed to study how FOXL2 regulates the expression of collagen genes, and the results showed that FOXL2 directly regulated the expression of Col4a1 by binding to the motif of CAGCAGCACCAGCAG between -640 and -625 bp upstream of the coding region. The results indicated that FOXL2 could regulate the components of the extracellular matrix; however, the biological significance of this regulation needs further clarification.
Collapse
Affiliation(s)
- Hongting Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaohui Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
12
|
Tucker EJ. The Genetics and Biology of FOXL2. Sex Dev 2021; 16:184-193. [PMID: 34727551 DOI: 10.1159/000519836] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022] Open
Abstract
FOXL2 encodes a transcription factor that regulates a wide array of target genes including those involved in sex development, eyelid development, ovarian function and maintenance, genomic integrity as well as cellular pathways such as cell-cycle progression, proliferation, and apoptosis. The role of FOXL2 has been widely studied in humans and animals. Consistent with its role in ovarian and eyelid development, over 100 germline variants in FOXL2 are associated with blepharophimosis, ptosis, and epicanthus inversus syndrome in humans, an autosomal dominant condition characterised by ovarian dysgenesis/premature ovarian insufficiency, as well as defective eyelid development. Reflecting its role in apoptosis and proliferation, a somatic variant in FOXL2 causes adult granulosa cell tumours in humans. Despite being widely studied and having clear relevance to human disease, much remains unknown about the genes FOXL2 regulates and how it exerts its wide-reaching effect on multiple organs. This review focuses on FOXL2 and its varied roles as a transcription factor in sex determination, ovarian maintenance and function, eyelid development, genome integrity, and cell regulation, followed by discussion of the in vivo disruption of FOXL2 in humans and other species.
Collapse
Affiliation(s)
- Elena J Tucker
- Reproductive Development, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Liu H, Jin H, Kim G, Bae J. A low dose of bisphenol A stimulates estradiol production by regulating β-catenin-FOXL2-CYP19A1 pathway in human ovarian granulosa cells. Biochem Biophys Res Commun 2021; 583:192-198. [PMID: 34749236 DOI: 10.1016/j.bbrc.2021.10.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical that interferes with normal steroid hormone production in various species. However, the underlying mechanism of the effect of BPA on steroid production in the human ovary is not well understood. In the present study, we found that BPA, at very low concentrations (10-11 to 10-8 M), significantly increased the expression of FOXL2, a transcriptional factor essential for proper ovarian development and function, in a human ovarian granulosa cell-derived cell line (KGN). Furthermore, BPA enhanced CYP19A1 (aromatase) expression levels and estradiol (E2) production, but these effects were not observed in FOXL2 knockout (KO) cells. In addition, we found that BPA upregulates β-catenin (CTNNB1) and stimulates nuclear translocation of CTNNB1, leading to transcriptional activation of FOXL2 mRNA. Furthermore, BPA failed to induce CYP19A1 and E2 production in CTNNB1-silenced KGN cells. Thus, we reveal a comprehensive molecular signaling cascade encompassing BPA-CTNNB1-FOXL2-CYP19A1-E2 that contributes to the endocrine-disrupting activities of BPA in human ovarian granulosa cells.
Collapse
Affiliation(s)
- Haifeng Liu
- School of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Hanyong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Guenhwi Kim
- School of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
14
|
Yu Y, Ji M, Xu W, Zhang L, Qi M, Shu J. Confrontment and solution to gonadotropin resistance and low oocyte retrieval in in vitro fertilization for type I BPES: a case series with review of literature. J Ovarian Res 2021; 14:143. [PMID: 34711234 PMCID: PMC8555206 DOI: 10.1186/s13048-021-00900-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023] Open
Abstract
Background FOXL2 mutations in human cause Blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES). While type II BPES solely features eyelid abnormality, type I BPES involves not only eyelid but also ovary, leading to primary ovarian insufficiency (POI) and female infertility. Current mainstream reproductive option for type I BPES is embryo or oocyte donation. Attempts on assisted reproductive technology (ART) aiming biological parenthood in this population were sparse and mostly unsuccessful. Case presentation Two Chinese type I BPES patients with low anti-müllerian hormone (AMH) and elevated follicle stimulating hormone (FSH) presented with primary infertility in their early 30s. Genetic studies confirmed two heterozygous duplication mutations that were never reported previously in East Asian populations. They received in vitro fertilization (IVF) treatment and both exhibited resistance to gonadotropin and difficulty in retrieving oocytes in repeated cycles. Doubled to quadrupled total gonadotropin doses were required to awaken follicular response. Patient 1 delivered a baby girl with the same eyelid phenotype and patient 2 had ongoing live intrauterine pregnancy at the time of manuscript submission. Conclusions This is the second reported live birth of biological offspring in type I BPES patients, and first success using IVF techniques. It confirmed that ART is difficult but feasible in type I BPES. It further alerts clinicians and genetic counsellors to type female BPES patients with caution in view of the precious and potentially narrowed reproductive window. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00900-2.
Collapse
Affiliation(s)
- Yiqi Yu
- Department of Reproductive Endocrinology, Reproductive Medicine Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mengxia Ji
- Department of Reproductive Endocrinology, Reproductive Medicine Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Weihai Xu
- Department of Reproductive Endocrinology, Reproductive Medicine Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ling Zhang
- Department of Reproductive Endocrinology, Reproductive Medicine Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ming Qi
- Department of Cell Biology and Medical Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shu
- Department of Reproductive Endocrinology, Reproductive Medicine Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
15
|
Gan RH, Wang Y, Li Z, Yu ZX, Li XY, Tong JF, Wang ZW, Zhang XJ, Zhou L, Gui JF. Functional Divergence of Multiple Duplicated Foxl2 Homeologs and Alleles in a Recurrent Polyploid Fish. Mol Biol Evol 2021; 38:1995-2013. [PMID: 33432361 PMCID: PMC8097289 DOI: 10.1093/molbev/msab002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evolutionary fates of duplicated genes have been widely investigated in many polyploid plants and animals, but research is scarce in recurrent polyploids. In this study, we focused on foxl2, a central player in ovary, and elaborated the functional divergence in gibel carp (Carassius gibelio), a recurrent auto-allo-hexaploid fish. First, we identified three divergent foxl2 homeologs (Cgfoxl2a-B, Cgfoxl2b-A, and Cgfoxl2b-B), each of them possessing three highly conserved alleles and revealed their biased retention/loss. Then, their abundant sexual dimorphism and biased expression were uncovered in hypothalamic-pituitary-gonadal axis. Significantly, granulosa cells and three subpopulations of thecal cells were distinguished by cellular localization of CgFoxl2a and CgFoxl2b, and the functional roles and the involved process were traced in folliculogenesis. Finally, we successfully edited multiple foxl2 homeologs and/or alleles by using CRISPR/Cas9. Cgfoxl2a-B deficiency led to ovary development arrest or complete sex reversal, whereas complete disruption of Cgfoxl2b-A and Cgfoxl2b-B resulted in the depletion of germ cells. Taken together, the detailed cellular localization and functional differences indicate that Cgfoxl2a and Cgfoxl2b have subfunctionalized and cooperated to regulate folliculogenesis and gonad differentiation, and Cgfoxl2b has evolved a new function in oogenesis. Therefore, the current study provides a typical case of homeolog/allele diversification, retention/loss, biased expression, and sub-/neofunctionalization in the evolution of duplicated genes driven by polyploidy and subsequent diploidization from the recurrent polyploid fish.
Collapse
Affiliation(s)
- Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Xi Yu
- Ningxia Fisheries Research Institute, Yinchuan, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Procr-expressing granulosa cells are highly proliferative and are important for follicle development. iScience 2021; 24:102065. [PMID: 33644709 PMCID: PMC7889980 DOI: 10.1016/j.isci.2021.102065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/20/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Granulosa cells (GCs) play a critical role in folliculogenesis. It remains unclear how GCs expand during follicle development and whether there is a subpopulation of cells that is responsible for GCs growth. Here, we observed that a small population of GCs expressed stem cell surface marker Procr (Protein C receptor). Procr GCs displayed higher proliferation ability and lower levels of hormone receptors compared with Procr- GCs. Knockdown of Procr inhibited proliferation. Lineage tracing experiments demonstrated that they contribute to increasing numbers of GCs during folliculogenesis. Targeted ablation of Procr+ cells disrupted ovarian follicle development, leading to phenotypes of polycystic ovary syndrome. Our findings suggest that Procr-expressing GCs are endowed with high proliferative capacity that is critical for follicle development.
Collapse
|
17
|
Yang S, Han H, Li J, Zhang Y, Zhao J, Wei H, Hasi T, Lv H, Zhao X, Quan K. Transcriptomic analysis of gene expression in normal goat ovary and intersex goat gonad. Reprod Domest Anim 2020; 56:12-25. [PMID: 33073450 DOI: 10.1111/rda.13844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023]
Abstract
Intersexuality is a congenital reproductive disorder that usually occurs in hornless goats, hindering breeding of goats with hornless traits and the development of the goat industry. In this study, we aimed to identify differentially expressed genes in intersex and normal goat gonads by comparing gene transcription profiles of intersex and normal goat gonads. As intersex goats are genetically based on females, we chose female goats as controls. The goats in the control group and the experimental group were both over one-year old. We evaluated the anatomical characteristics of the reproductive organs of five intersex goats using histopathological methods. The gonads were found to be ovarian and testicular types. RNA-Seq technology was used to identify differentially expressed genes in gonads and normal goat ovary tissues. Transcription analysis results were verified by qPCR. The results showed that 2,748 DEGs were upregulated and 3,327 DEGs were downregulated in intersex ovaries unlike in controls, whereas 2006 DEGs were upregulated and 2032 DEGs were downregulated in the interstitial testes. Many of these genes play important roles in mammalian sex determination and sex differentiation, such as SOX9, WT1, GATA4, DMRT1, DHH, AMH, CYP19A1 and FST. We found that many DEGs are involved in biological developmental regulation by GO and KEGG enrichment analyses, and that most genes associated with the steroid synthesis pathway were downregulated. The DEGs identified in this study may be involved in the regulation of intersex goat sex determination and differentiation, and may increase our understanding of the molecular mechanisms of mammalian sex differentiation.
Collapse
Affiliation(s)
- Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Haoyuan Han
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - JinYan Zhao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Hongfang Wei
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Tonglaga Hasi
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Huifang Lv
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
18
|
Zhang Q, Cai Z, Lhomme M, Sahana G, Lesnik P, Guerin M, Fredholm M, Karlskov-Mortensen P. Inclusion of endophenotypes in a standard GWAS facilitate a detailed mechanistic understanding of genetic elements that control blood lipid levels. Sci Rep 2020; 10:18434. [PMID: 33116219 PMCID: PMC7595098 DOI: 10.1038/s41598-020-75612-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Dyslipidemia is the primary cause of cardiovascular disease, which is a serious human health problem in large parts of the world. Therefore, it is important to understand the genetic and molecular mechanisms that regulate blood levels of cholesterol and other lipids. Discovery of genetic elements in the regulatory machinery is often based on genome wide associations studies (GWAS) focused on end-point phenotypes such as total cholesterol level or a disease diagnosis. In the present study, we add endophenotypes, such as serum levels of intermediate metabolites in the cholesterol synthesis pathways, to a GWAS analysis and use the pig as an animal model. We do this to increase statistical power and to facilitate biological interpretation of results. Although the study population was limited to ~ 300 individuals, we identify two genome-wide significant associations and ten suggestive associations. Furthermore, we identify 28 tentative associations to loci previously associated with blood lipids or dyslipidemia associated diseases. The associations with endophenotypes may inspire future studies that can dissect the biological mechanisms underlying these previously identified associations and add a new level of understanding to previously identified associations.
Collapse
Affiliation(s)
- Qianqian Zhang
- Bioinformatics Research Centre (BiRC), Aarhus University, C.F.Møllers Allé 8, 8000, Aarhus C, Denmark
| | - Zexi Cai
- Center for Quantitativ Genetics and Genomics, Aarhus University, Blichers Allé 20, 8830, Tjele, Danmark
| | - Marie Lhomme
- ICANalytics, Institute of Cardiometabolism and Nutrition (ICAN), 47-83 boulevard de l'hôpital, 75013, Paris, France
| | - Goutam Sahana
- Center for Quantitativ Genetics and Genomics, Aarhus University, Blichers Allé 20, 8830, Tjele, Danmark
| | - Philippe Lesnik
- Unité de Recherche sur les maladies cardiovasculaires, le métabolisme et la nutrition, INSERM UMR_S 1166, ICAN Institute of Cardiometabolism & Nutrition, Faculté de Médecine Sorbonne Université, Sorbonne Université, 4ème étage, Bureau 421,91, boulevard de l'Hôpital, 75634, Paris Cedex 13, France
| | - Maryse Guerin
- Unité de Recherche sur les maladies cardiovasculaires, le métabolisme et la nutrition, INSERM UMR_S 1166, ICAN Institute of Cardiometabolism & Nutrition, Faculté de Médecine Sorbonne Université, Sorbonne Université, 4ème étage, Bureau 421,91, boulevard de l'Hôpital, 75634, Paris Cedex 13, France
| | - Merete Fredholm
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Gronnegaardsvej 3, 1870, Frederikgsberg C, Denmark
| | - Peter Karlskov-Mortensen
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Gronnegaardsvej 3, 1870, Frederikgsberg C, Denmark.
| |
Collapse
|
19
|
Abstract
Primary ovarian insufficiency (POI) is an uncommon yet devastating occurrence that results from a premature depletion of the ovarian pool of primordial follicles. Our understanding of both putative and plausible mechanisms underlying POI, previously considered to be largely "idiopathic", has been furthered over the past several years, largely due to advances in the field of genetics and through expansion of translational models for experimental research. In this review, our goal is to familiarize the multidisciplinary readers of the F1000 platform with the strides made in the field of reproductive medicine that hold both preventative and therapeutic implications for those women who are at risk for or who have POI.
Collapse
Affiliation(s)
- Victoria Wesevich
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Amanada N Kellen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Lubna Pal
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
20
|
Nicol B, Rodriguez K, Yao HHC. Aberrant and constitutive expression of FOXL2 impairs ovarian development and functions in mice. Biol Reprod 2020; 103:966-977. [PMID: 32945847 DOI: 10.1093/biolre/ioaa146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 01/05/2023] Open
Abstract
Development and functions of the ovary rely on appropriate signaling and communication between various ovarian cell types. FOXL2, a transcription factor that plays a key role at different stages of ovarian development, is associated with primary ovarian insufficiency and ovarian cancer as a result of its loss-of-function or mutations. In this study, we investigated the impact of aberrant, constitutive expression of FOXL2 in somatic cells of the ovary. Overexpression of FOXL2 that started during fetal life resulted in defects in nest breakdown and consequent formation of polyovular follicles. Granulosa cell differentiation was impaired and recruitment and differentiation of steroidogenic theca cells was compromised. As a consequence, adult ovaries overexpressing FOXL2 exhibited defects in compartmentalization of granulosa and theca cells, significant decreased steroidogenesis and lack of ovulation. These findings demonstrate that fine-tuned expression of FOXL2 is required for proper folliculogenesis and fertility.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Karina Rodriguez
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
21
|
Luo W, Gu L, Li J, Gong Y. Transcriptome sequencing revealed that knocking down FOXL2 affected cell proliferation, the cell cycle, and DNA replication in chicken pre-ovulatory follicle cells. PLoS One 2020; 15:e0234795. [PMID: 32645018 PMCID: PMC7347172 DOI: 10.1371/journal.pone.0234795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Forkhead box L2 (FOXL2) is a single-exon gene encoding a forkhead transcription factor, which is mainly expressed in the ovary, eyelids and the pituitary gland. FOXL2 plays an essential role in ovarian development. To reveal the effects of FOXL2 on the biological process and gene expression of ovarian granulosa cells (GCs), we established stable FOXL2-knockdown GCs and then analysed them using transcriptome sequencing. It was observed that knocking down FOXL2 affected the biological processes of cell proliferation, DNA replication, and apoptosis and affected cell cycle progression. FOXL2 knockdown promoted cell proliferation and DNA replication, decreased cell apoptosis, and promoted mitosis. In addition, by comparing the transcriptome after FOXL2 knockdown, we found a series of DEGs (differentially expressed genes) and related pathways. These results indicated that, through mediating these genes and pathways, the FOXL2 might induce the cell proliferation, cycle, and DNA replication, and play a key role during ovarian development and maintenance.
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Guilin Medical University, Guilin, Guangxi, China
| | - Lantao Gu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Guilin Medical University, Guilin, Guangxi, China
| | - Jinqiu Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
22
|
FOXL2 directs DNA double-strand break repair pathways by differentially interacting with Ku. Nat Commun 2020; 11:2010. [PMID: 32332759 PMCID: PMC7181608 DOI: 10.1038/s41467-020-15748-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/22/2020] [Indexed: 12/26/2022] Open
Abstract
The balance between major DNA double-strand break (DSB) repair pathways is influenced by binding of the Ku complex, a XRCC5/6 heterodimer, to DSB ends, initiating non-homologous end joining (NHEJ) but preventing additional DSB end resection and homologous recombination (HR). However, the key molecular cue for Ku recruitment to DSB sites is unknown. Here, we report that FOXL2, a forkhead family transcriptional factor, directs DSB repair pathway choice by acetylation-dependent binding to Ku. Upon DSB induction, SIRT1 translocates to the nucleus and deacetylates FOXL2 at lysine 124, leading to liberation of XRCC5 and XRCC6 from FOXL2 and formation of the Ku complex. FOXL2 ablation enhances Ku recruitment to DSB sites, imbalances DSB repair kinetics by accelerating NHEJ and inhibiting HR, and thus leads to catastrophic genomic events. Our study unveils the SIRT1-(de)acetylated FOXL2-Ku axis that governs the balance of DSB repair pathways to maintain genome integrity.
Collapse
|
23
|
Cervantes-Camacho I, Guerrero-Estévez SM, López MF, Alarcón-Hernández E, López-López E. Effects of Bisphenol A on Foxl2 gene expression and DNA damage in adult viviparous fish Goodeaatripinnis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:95-112. [PMID: 32075523 DOI: 10.1080/15287394.2020.1730282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is an emerging pollutant of global concern. Viviparous fish Goodea atripinnis is endemic to the Central Mexican Plateau where BPA was detected; however, few studies examined the influence of this chemical on native viviparous fish. The effects of BPA (sublethal dose) were determined on DNA integrity and Foxl2 expression in G. atripinnis gonads, and interactions of BPA with FOXL2 protein. Genotoxicity analysis revealed that % comets, at 14 and 28 days and comet tail length (at 14 days) were significantly higher in exposed compared to controls. In general, the % DNA tail was not markedly higher in BPA-treated fish; however, tail moment related to tail length exhibited significant increases in DNA damage. RT-qPCR assays showed Foxl2 overexpression after 14 and 28 days of exposure in females; while in males, Foxl2 was overexpressed after 28 days. In silico analysis demonstrated that BPA interacted with seven residues located in FOXL2 homeodomain. In summary, sublethal BPA doses induced DNA damage and changes in Foxl2 expression in gonadal cells of G. atripinnis, which may adversely affect reproduction in BPA-exposed wild populations. Foxl2 overexpression and BPA-FOXL2 interaction suggested alterations in processes involving Foxl2. Viviparous fish may thus serve as potential non-conventional models for assessing pollutants effects.
Collapse
Affiliation(s)
- Isabel Cervantes-Camacho
- Laboratorio De Evaluación De La Salud De Los Ecosistemas Acuáticos, Escuela Nacional De Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación Carpio Y Plan De Ayala S/N Col. Sto. Tomás, Ciudad de México, México
| | - Sandra M Guerrero-Estévez
- Laboratorio De Evaluación De La Salud De Los Ecosistemas Acuáticos, Escuela Nacional De Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación Carpio Y Plan De Ayala S/N Col. Sto. Tomás, Ciudad de México, México
| | - María Fernanda López
- Laboratorio De Variación Biológica Y Evolución, Escuela Nacional De Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación Carpio Y Plan De Ayala S/N Col. Sto. Tomás, Ciudad de México, México
| | - Ernesto Alarcón-Hernández
- Laboratorio De Genética Molecular, Escuela Nacional De Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación Carpio Y Plan De Ayala S/N Col. Sto. Tomás, Ciudad de México, México
| | - Eugenia López-López
- Laboratorio De Evaluación De La Salud De Los Ecosistemas Acuáticos, Escuela Nacional De Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación Carpio Y Plan De Ayala S/N Col. Sto. Tomás, Ciudad de México, México
| |
Collapse
|
24
|
Oliveira CFA, Lara NLM, Lacerda SMSN, Resende RR, França LR, Avelar GF. Foxn1 and Prkdc genes are important for testis function: evidence from nude and scid adult mice. Cell Tissue Res 2020; 380:615-625. [DOI: 10.1007/s00441-019-03165-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
|
25
|
Hu J, Ke H, Luo W, Yang Y, Liu H, Li G, Qin Y, Ma J, Zhao S. A novel FOXL2 mutation in two infertile patients with blepharophimosis-ptosis-epicanthus inversus syndrome. J Assist Reprod Genet 2020; 37:223-229. [PMID: 31823134 PMCID: PMC7000634 DOI: 10.1007/s10815-019-01651-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare, autosomal dominant disease. There are two clinical types of BPES: type I patients have eyelid abnormalities accompanied by infertility in affected females, while type II patients only display eyelid malformations. Previous studies have reported that the forkhead box L2 (FOXL2) gene mutations cause BPES. PURPOSE To identify plausible FOXL2 mutation in a Chinese family with BPES and infertility METHODS: Mutational screening of FOXL2 was performed in the affected members and 223 controls. Functional characterization of the novel mutation identified was carried out in vitro by luciferase reporter assay and subcellular localization experiment. RESULTS A novel heterozygous mutation c.188 T > A (p.I63N) in FOXL2 was identified in two BPES patients in this family. The mutation abolished the transcriptional repression of FOXL2 on the promoters of CYP19A1 and CCND2 genes, as shown by luciferase reporter assays. However, no dominant-negative effect was observed for the mutation, and it did not impact FOXL2 protein nuclear localization and distribution. CONCLUSIONS The mutation c.188 T > A (p.I63N) in FOXL2 might be causative for BPES and infertility in this family and further amplified the spectrum of FOXL2 mutations.
Collapse
Affiliation(s)
- Jingmei Hu
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology, Ministry of Education, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Hanni Ke
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology, Ministry of Education, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Wei Luo
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology, Ministry of Education, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yajuan Yang
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology, Ministry of Education, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Hongli Liu
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology, Ministry of Education, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Guangyu Li
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology, Ministry of Education, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology, Ministry of Education, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jinlong Ma
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology, Ministry of Education, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology, Ministry of Education, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
26
|
Sharma A, Baddela VS, Roettgen V, Vernunft A, Viergutz T, Dannenberger D, Hammon HM, Schoen J, Vanselow J. Effects of Dietary Fatty Acids on Bovine Oocyte Competence and Granulosa Cells. Front Endocrinol (Lausanne) 2020; 11:87. [PMID: 32158433 PMCID: PMC7052110 DOI: 10.3389/fendo.2020.00087] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
Here we assessed the effects of dietary essential fatty acids on the developmental competence of oocytes in cows and on the functionality of follicular granulosa cells (GC). Lactating German Holstein cows were supplemented from week 9 ante partum (ap) until week 8 post-partum (pp) in four dietary groups designed as (i) control (CTRL: coconut oil), (ii) essential fatty acid (EFA: linseed and safflower oil), (iii) conjugated linoleic acid (CLA: Lutalin®), and (iv) EFA+CLA (mixture of linseed oil, safflower oil and Lutalin®). EFA, CLA or EFA+CLA supplementation did not improve in vitro embryo production. However, higher proportions of α-linolenic acid (ALA) and cis-9, trans-11 CLA were observed in the follicular fluid suggesting the exposure of GC to relatively high levels of ALA and cis-9, trans-11 CLA. Consequently, we tested different concentrations of ALA and cis-9, trans-11 CLA in a bovine GC culture model for their effects on steroid production, marker gene expression and viability. Both fatty acids upregulated CD36 and downregulated the expression of FOXL2, while ALA significantly increased SOX 9 transcript levels. Both ALA and cis-9, trans-11 CLA reduced the CCND2 expression and cis-9, trans-11 CLA induced apoptosis. ALA and cis-9, trans-11 CLA significantly down-regulated the expression of STAR, CYP19A1, FSHR, LHCGR and decreased the 17β-Estradiol (E2) and progesterone (P4) production. In conclusion, dietary lipids did not improve in vitro embryo production, while ALA and cis-9, trans-11 CLA affected the morphology and functionality of GC. This could suggestively lead to compromised follicle development and ovarian cyclicity in dairy cows.
Collapse
|
27
|
Niu W, Qazi IH, Li S, Zhao X, Yin H, Wang Y, Zhu Q, Han H, Zhou G, Du X. Expression of FOXL2 and RSPO1 in Hen Ovarian Follicles and Implication of Exogenous Leptin in Modulating Their mRNA Expression in In Vitro Cultured Granulosa Cells. Animals (Basel) 2019; 9:ani9121083. [PMID: 31817265 PMCID: PMC6941104 DOI: 10.3390/ani9121083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, using a laying hen model, we determined the expression of FOXL2 and RSPO1 in different central and peripheral tissue and ovarian follicles at different stages of development. At the same time, mRNA expression of both genes in granulosa and theca cells harvested from follicles at different stages of folliculogenesis was also evaluated. Finally, we assessed the effect of leptin treatment on expression of FOXL2 and RSPO1 in in vitro cultured granulosa cells harvested from 1-5 mm to F3-F1 follicles. Our RT-qPCR results revealed that a comparatively higher expression of FOXL2 and RSPO1 was observed in ovary, hypothalamus, and pituitary. Abundant mRNA expression of FOXL2 was observed in small prehierarchical follicles (1-1.9 and 2-2.9 mm follicles; p < 0.05), whereas mRNA expression of RSPO1 showed an increasing trend in large hierarchical follicles (F5-F1), and its abundant expression was observed in post-ovulatory follicles. FOXL2 mRNA expression was stable in granulosa cells harvested from 3-5 mm to F4 follicles, and exhibited a significantly higher expression in large hierarchical follicles. Conversely, relatively low mRNA expression of FOXL2 was observed in theca cells. RSPO1 mRNA expression was relatively lower in granulosa cells; however, theca cells exhibited a significantly higher mRNA expression of RSPO1 in F4 to F1 follicles. In the next experiment, we treated the in vitro cultured granulosa cells with different concentrations (1, 10, 100, and 1000 ng/mL) of exogenous leptin. Compared to the control group, a significant increase in the expression of FOXL2 was observed in groups treated with 1, 10, and 100 ng/mL leptin, whereas expression of RSPO1 was increased in all leptin-treated groups. When treated with 100 ng/mL leptin, FOXL2 and RSPO1 expression was upregulated in cultured granulosa cells harvested from both large hierarchical (F3-F1) and small prehierarchical follicles (1-5 mm). Based on these findings and evidence from mainstream literature, we envisage that FOXL2 and RSPO1 genes (in connection with hypothalamic-hypophysis axis) and leptin (via modulation of FOXL2 and RSPO1 expression) might have significant physiological roles, at least in part, in modulating the ovarian mechanisms, such as follicle development, selection, and steroidogenesis in laying hens.
Collapse
Affiliation(s)
- Weihe Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan
| | - Sichen Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
- Correspondence: (G.Z.); (X.D.)
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
- Correspondence: (G.Z.); (X.D.)
| |
Collapse
|
28
|
Penrad-Mobayed M, Perrin C, Herman L, Todeschini AL, Nigon F, Cosson B, Caburet S, Veitia RA. Conventional and unconventional interactions of the transcription factor FOXL2 uncovered by a proteome-wide analysis. FASEB J 2019; 34:571-587. [PMID: 31914586 DOI: 10.1096/fj.201901573r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022]
Abstract
Beyond the study of its transcriptional target genes, the identification of the various interactors of a transcription factor (TF) is crucial to understand its diverse cellular roles. We focused on FOXL2, a winged-helix forkhead TF important for ovarian development and maintenance. FOXL2 has been implicated in diverse cellular processes, including apoptosis, the control of cell cycle or the regulation of steroid hormone synthesis. To reliably identify partners of endogenous FOXL2, we performed a proteome-wide analysis using co-immunoprecipitation in the murine granulosa cell-derived AT29c and the pituitary-derived alpha-T3 cell lines, using three antibodies targeting different parts of the protein. Following a stringent selection of mass spectrometry data on the basis of identification reliability and protein enrichment, we identified a core set of 255 partners common to both cell lines. Their analysis showed that we could co-precipitate several complexes involved in mRNA processing, chromatin remodeling and DNA replication and repair. We further validated (direct and/or indirect) interactions with selected partners, suggesting an unexpected role for FOXL2 in those processes. Overall, this comprehensive analysis of the endogenous FOXL2 interactome sheds light on its numerous and diverse interactors and unconventional cellular roles.
Collapse
Affiliation(s)
- May Penrad-Mobayed
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| | - Caroline Perrin
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| | - Laetitia Herman
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| | | | - Fabienne Nigon
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Bertrand Cosson
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Sandrine Caburet
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| | - Reiner A Veitia
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| |
Collapse
|
29
|
Wu J, Miao C, Lv X, Zhang Y, Li Y, Wang D. Estrogen regulates forkhead transcription factor 2 to promote apoptosis of human ovarian granulosa-like tumor cells. J Steroid Biochem Mol Biol 2019; 194:105418. [PMID: 31376461 DOI: 10.1016/j.jsbmb.2019.105418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 02/03/2023]
Abstract
Granulosa cell tumors of the ovary (GCTs) are the predominant form of ovarian stromal tumors and can lead to abnormally secreted estrogen hormones. Studies have reported that forkhead transcription factor 2 (FOXL2) inhibits estrogen synthesis and its gene mutation can lead to GCTs. We unexpected found that estrogen also regulates the expression level of FOXL2. High-dose estrogen increased the expression of FOXL2 in ovarian-like granulosa (KGN) cells at both the mRNA and protein levels. However, no research has reported on the molecular regulatory mechanism and function between estrogen and FOXL2 in the development of GCTs. In this research, FOXL2 was highly expressed in KGN cells and ovarian stromal tumor tissues. Deletion of FOXL2 increased the estrogen secretion in KGN cells. In turn, high-dose estrogen increased the FOXL2 expression levels. FOXL2 was phosphorylated by GPR30 (G protein coupled receptor)-Protein kinase C (PKC) signaling pathway upon estrogen stimulation. Estrogen inhibited cell migration and proliferation, while promoting cell apoptosis. Deletion of FOXL2 inhibited the influence of estrogen on cell proliferation, migration, and apoptosis. Results suggest that estrogen via regulating FOXL2 suppresses cell proliferation and induces cell apoptosis.
Collapse
Affiliation(s)
- Jun Wu
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Chunlei Miao
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Xiaoyu Lv
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Yujie Zhang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Yanyan Li
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Di Wang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| |
Collapse
|
30
|
Hall SE, Upton RMO, McLaughlin EA, Sutherland JM. Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) follicular signalling is conserved in the mare ovary. Reprod Fertil Dev 2019; 30:624-633. [PMID: 28945982 DOI: 10.1071/rd17024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/03/2017] [Indexed: 01/02/2023] Open
Abstract
The mare ovary is unique in its anatomical structure; however, the signalling pathways responsible for physiological processes, such as follicular activation, remain uncharacterised. This provided us with the impetus to explore whether signalling molecules from important folliculogenesis pathways, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT), are conserved in the mare ovary. Messenger RNA expression of six genes important in follicle development was measured using quantitative polymerase chain reaction and protein localisation of key pathway members (PI3K, AKT1, phosphatase and tensin homologue (PTEN), JAK1, STAT3 and suppressor of cytokine signalling 4 (SOCS4)) was compared in tissue from fetal and adult mare ovaries. Tissue from adult ovaries exhibited significantly increased levels of mRNA expression of PI3K, AKT1, PTEN, JAK1, STAT3 and SOCS4 compared with tissue from fetal ovaries. PI3K, AKT1, JAK1 and STAT3 demonstrated redistributed localisation, from pregranulosa cells in fetal development, to both the oocyte and granulosa cells of follicles in the adult ovary, whilst negative feedback molecules PTEN and SOCS4 were only localised to the granulosa cells in the adult ovary. These findings suggest that the PI3K/AKT and JAK/STAT signalling pathways are utilised during folliculogenesis in the mare, similarly to previously studied mammalian species, and may serve as useful biomarkers for assessment of ovary development in the horse.
Collapse
Affiliation(s)
- Sally E Hall
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Life Sciences Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rose M O Upton
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Life Sciences Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Life Sciences Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Life Sciences Building, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
31
|
Belli M, Secchi C, Stupack D, Shimasaki S. FOXO1 Negates the Cooperative Action of FOXL2 C134W and SMAD3 in CYP19 Expression in HGrC1 Cells by Sequestering SMAD3. J Endocr Soc 2019; 3:2064-2081. [PMID: 31701078 PMCID: PMC6797057 DOI: 10.1210/js.2019-00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022] Open
Abstract
Adult granulosa cell tumor (aGCT) is a rare type of ovarian cancer characterized by estrogen excess. Interestingly, only the single somatic mutation FOXL2 C134W was found across virtually all aGCTs. We previously reported that FOXL2C134W stimulates CYP19 transcription synergistically with SMAD3, leading to elevated estradiol synthesis in a human granulosa cell line (HGrC1). This finding suggested a key role for FOXL2C134W in causing the typical estrogen overload in patients with aGCTs. We have now investigated the effect of FOXO1, a tumor suppressor, on CYP19 activation by FOXL2C134W in the presence of SMAD3. Intriguingly, FOXO1 antagonized the positive, synergistic effect of FOXL2C134W and SMAD3 on CYP19 transcription. Similar to FOXL2C134W, FOXO1 binds SMAD3 but not the proximal FOXL2C134W binding site (-199 bp) of the CYP19 promoter identified in our earlier studies. The results of a competitive binding assay suggested a possible underlying mechanism in which FOXO1 sequesters SMAD3 away from FOXL2C134W, thereby negating the cooperative action of FOXL2C134W and SMAD3 in inducing CYP19 expression. To our knowledge, this study is the first to demonstrate the ability of FOXO1 to restore an altered CYP19 expression by FOXL2C134W and SMAD3 and provides insight as to why FOXO1 deficiency promotes GCT development in mice.
Collapse
Affiliation(s)
- Martina Belli
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Christian Secchi
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Dwayne Stupack
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
32
|
Wang Y, Liu X, Zhao J, Ouyang S, Li W, Zhu J, Zhu Y, Zhu X. Molecular cloning of ESR1, BMPR1B, and FOXL2 and differential expressions depend on maternal age and size during breeding season in cultured Asian yellow pond turtle (Mauremys mutica). Comp Biochem Physiol B Biochem Mol Biol 2019; 232:108-120. [DOI: 10.1016/j.cbpb.2019.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
33
|
Tao JJ, Cangemi NA, Makker V, Cadoo KA, Liu JF, Rasco DW, Navarro WH, Haqq CM, Hyman DM. First-in-Human Phase I Study of the Activin A Inhibitor, STM 434, in Patients with Granulosa Cell Ovarian Cancer and Other Advanced Solid Tumors. Clin Cancer Res 2019; 25:5458-5465. [PMID: 31068369 DOI: 10.1158/1078-0432.ccr-19-1065] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE STM 434 is a soluble receptor ligand trap targeting activin A, a protein in the TGFβ family that plays important roles in growth, differentiation, and cancer cachexia. This study evaluated the safety, antitumor activity, and metabolic effects of STM 434 in a first-in-human, multicenter, phase I clinical trial (NCT02262455). PATIENTS AND METHODS Patients with advanced solid tumors were enrolled in 8 dose cohorts ranging from 0.25 mg/kg every 4 weeks to 8 mg/kg every 2 weeks via a 3 + 3 dose-escalation design. The primary endpoint was maximum tolerated dose (MTD). Secondary endpoints included safety, pharmacokinetics, and response. As activin A is implicated in metabolism and muscle function, changes in key metabolic parameters, including lean body mass and 6-minute walk test, were serially measured. RESULTS Thirty-two patients were treated on study. The most common treatment-related adverse events were fatigue (41%) and mucocutaneous bleeding complications including epistaxis (34%) and gingival bleeding (22%), likely related to off-target inhibition of bone morphogenetic protein 9 (BMP9). STM 434 treatment resulted in the expected follicle-stimulating hormone level decreases in most patients and in metabolic parameter changes, including an increase in total lean body mass and 6-minute walk test distance. No responses were observed in the 30 evaluable patients, but the stable disease rate in patients with granulosa cell ovarian cancer was 10 of 12 (80%). CONCLUSIONS Although no direct antitumor efficacy was documented, potentially clinically meaningful dose-related metabolic effects, including treatment of cancer cachexia, were observed that support further exploration of activin A inhibitors that limit BMP9 blockade.See related commentary by Bonilla and Oza, p. 5432.
Collapse
Affiliation(s)
- Jessica J Tao
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicholas A Cangemi
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vicky Makker
- Gynecologic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Karen A Cadoo
- Gynecologic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joyce F Liu
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Drew W Rasco
- South Texas Accelerated Research Therapeutics, San Antonio, Texas
| | | | | | - David M Hyman
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
34
|
Zhang D, Liu Y, Cui Y, Cui S. Mitogen-activated protein kinase kinase kinase 8 (MAP3K8) mediates the LH-induced stimulation of progesterone synthesis in the porcine corpus luteum. Reprod Fertil Dev 2019; 31:1444-1456. [PMID: 31039922 DOI: 10.1071/rd18478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/25/2019] [Indexed: 11/23/2022] Open
Abstract
Progesterone (P4) synthesized by the corpus luteum (CL) plays a key role in the establishment and maintenance of pregnancy. The LH signal is important for luteinisation and P4 synthesis in pigs. In a previous study, we demonstrated that mitogen-activated protein kinase kinase kinase 8 (MAP3K8) regulates P4 synthesis in mouse CL, but whether the function and mechanism of MAP3K8 in the pig is similar to that in the mouse is not known. Thus, in the present study we investigated the effects of MAP3K8 on porcine CL. Abundant expression of MAP3K8 was detected in porcine CL, and, in pigs, MAP3K8 expression was higher in mature CLs (or those of the mid-luteal phase) than in regressing CLs (late luteal phase). Further functional studies in cultured porcine luteal cells showed that P4 synthesis and the expression of genes encoding the key enzymes in P4 synthesis are significantly reduced when MAP3K8 is inhibited with the MAP3K8 inhibitor Tpl2 kinase inhibitor (MAP3K8i, 10μM). After 12-24h treatment of luteal cells with 100ngmL-1 LH, MAP3K8 expression and P4 secretion were significantly upregulated. In addition, the 10μM MAP3K8 inhibitor blocked the stimulatory effect of LH on P4 synthesis and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in porcine luteal cells. The LH-induced increases in MAP3K8 phosphorylation and expression, ERK1/2 phosphorylation and P4 synthesis were all blocked when protein kinase A was inhibited by its inhibitor H89 (20 μM) in porcine luteal cells. In conclusion, MAP3K8 mediates the LH-induced stimulation of P4 synthesis through the PKA/mitogen-activated protein kinase signalling pathway in porcine CL.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100094, PR China
| | - Ying Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100094, PR China
| | - Yan Cui
- The 306th Hospital of People's Liberation Army, Beijing, 100101, PR China; and Corresponding authors. Emails: ;
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100094, PR China; and Corresponding authors. Emails: ;
| |
Collapse
|
35
|
Chacón-Camacho OF, Salgado-Medina A, Alcaraz-Lares N, López-Moreno D, Barragán-Arévalo T, Nava-Castañeda A, Rodríguez-Uribe G, Lieberman E, Rodríguez-Cabrera L, González-Del Angel A, Borbolla AM, Fernández-Hernández L, Graue-Hernández EO, Zenteno JC. Clinical characterization and identification of five novel FOXL2 pathogenic variants in a cohort of 12 Mexican subjects with the syndrome of blepharophimosis-ptosis-epicanthus inversus. Gene 2019; 706:62-68. [PMID: 31048069 DOI: 10.1016/j.gene.2019.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/10/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023]
Abstract
Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is an autosomal dominant entity characterized by eyelid malformations and caused by mutations in the forkhead box L2 (FOXL2) gene. Clinical and genetic analyses of large cohorts of BPES patients from different ethnic origins are important for a better characterization of FOXL2 mutational landscape. The purpose of this study is to describe the phenotypic features and the causal FOXL2 variants in a Mexican cohort of BPES patients. A total of 12 individuals with typical facial findings were included. Clinical evaluation included palpebral measurements and levator function assessment. The complete coding sequence of FOXL2 was amplified by PCR and subsequently analyzed by Sanger sequencing. A total of 11 distinct FOXL2 pathogenic variants were identified in our cohort (molecular diagnostic rate of 92%), including 5 novel mutations. Our results broaden the BPES-related mutational spectrum and supports considerable FOXL2 allelic heterogeneity in our population.
Collapse
Affiliation(s)
- Oscar F Chacón-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Acatzin Salgado-Medina
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Nayeli Alcaraz-Lares
- Department of Orbit and Oculoplastics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Daniel López-Moreno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Angel Nava-Castañeda
- Department of Orbit and Oculoplastics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Genaro Rodríguez-Uribe
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Esther Lieberman
- Department of Genetics, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Lourdes Rodríguez-Cabrera
- Department of Orbit and Oculoplastics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Ariadna González-Del Angel
- Molecular Biology Laboratory, Department of Genetics, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Ana María Borbolla
- Department of Ophthalmology, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | | | - Juan Carlos Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico; Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
36
|
Dean DD, Agarwal S, Tripathi P. Connecting links between genetic factors defining ovarian reserve and recurrent miscarriages. J Assist Reprod Genet 2018; 35:2121-2128. [PMID: 30219969 PMCID: PMC6289926 DOI: 10.1007/s10815-018-1305-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Approximately 1-2% of the women faces three or more successive spontaneous miscarriages termed as recurrent miscarriage (RM). Many clinical factors have been attributed so far to be the potential risk factors in RM, including uterine anomalies, antiphospholipid syndrome, endocrinological abnormalities, chromosomal abnormalities, and infections. However, in spite of extensive studies, reviews, and array of causes known to be associated with RM, about 50% cases encountered by treating physicians remains unknown. The aims of this study were to evaluate recent publications and to explore oocyte-specific genetic factors that may have role in incidence of recurrent miscarriages. METHOD Recent studies have identified common molecular factors contributing both in establishment of ovarian reserve and in early embryonic development. Also, studies have pointed out the relationship between the age-associated depletion of OR and increase in the risk of miscarriages, thus suggestive of an interacting biology. Here, we have gathered literature evidences in establishing connecting links between genetic factors associated with age induced or pathological OR depletion and idiopathic RM, which are the two extreme ends of female reproductive pathology. CONCLUSION In light of connecting etiological link between infertility and RM as reviewed in this study, interrogating the oocyte-specific genes with suspected roles in reproductive biology, in cases of unexplained RM, may open new possibilities in widening our understanding of RM pathophysiology.
Collapse
Affiliation(s)
- Deepika Delsa Dean
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| | - Sarita Agarwal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| | - Poonam Tripathi
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| |
Collapse
|
37
|
Baddela VS, Sharma A, Viergutz T, Koczan D, Vanselow J. Low Oxygen Levels Induce Early Luteinization Associated Changes in Bovine Granulosa Cells. Front Physiol 2018; 9:1066. [PMID: 30131718 PMCID: PMC6090175 DOI: 10.3389/fphys.2018.01066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 11/29/2022] Open
Abstract
During follicle maturation, oxygen levels continuously decrease in the follicular fluid and reach lowest levels in the preovulatory follicle. The current study was designed to comprehensively understand effects of low oxygen levels on bovine granulosa cells (GC) using our established estrogen active GC culture model. As evident from flow cytometry analysis the viability of GC was not found to be affected at severely low oxygen condition (1% O2) compared to normal (atmospheric) oxygen condition (21% O2). Estimations of hormone concentrations using competitive radioimmunoassay revealed that the production of estradiol and progesterone was significantly reduced at low oxygen condition. To understand the genome-wide changes of gene expression, mRNA microarray analysis was performed using Affymetrix's Bovine Gene 1.0 ST Arrays. This resulted in the identification of 1104 differentially regulated genes of which 505 were up- and 599 down-regulated under low oxygen conditions. Pathway analysis using Ingenuity pathway analyzer (IPA) identified 36 significantly affected (p < 0.05) canonical pathways. Importantly, pathways like "Estrogen-mediated S-phase Entry" and "Cyclins and Cell Cycle Regulation" were found to be greatly down-regulated at low oxygen levels. This was experimentally validated using flow cytometry based cell cycle analysis. Up-regulation of critical genes associated with angiogenesis, inflammation, and glucose metabolism, and down-regulation of FSH signaling, steroidogenesis and cell proliferation indicated that low oxygen levels induced early luteinization associated changes in granulosa cells. Identification of unmethylated CpG sites in the CYP19A1 promoter region suggests that granulosa cells were not completely transformed into luteal cells under the present low oxygen in vitro condition. In addition, the comparison with earlier published in vivo microarray data indicated that 1107 genes showed a similar expression pattern in granulosa cells at low oxygen levels (in vitro) as found in preovulatory follicles after the LH surge (in vivo). Overall, our findings demonstrate for the first time that low oxygen levels in preovulatory follicles may play an important role in supporting early events of luteinization in granulosa cells.
Collapse
Affiliation(s)
- Vijay S. Baddela
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Arpna Sharma
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Jens Vanselow
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
38
|
Zhou L, Wang J, Wang T. Functional study on new FOXL2 mutations found in Chinese patients with blepharophimosis, ptosis, epicanthus inversus syndrome. BMC MEDICAL GENETICS 2018; 19:121. [PMID: 30029625 PMCID: PMC6053710 DOI: 10.1186/s12881-018-0631-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 06/21/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Blepharophimosis, ptosis, epicanthus inversus syndrome (BPES) is a rare inheritable disease that mainly affects eyelid development associated with (type I) or without (type II) ovarian dysfunction, resulting in premature ovarian failure (POF). Mutations in the gene forkhead box L2 (FOXL2) have been shown to be responsible for BPES. The aim of this study was to determine and functionally validate the FOXL2 mutation in a Chinese BPES family. METHODS Twelve individuals including five BPES patients from a Chinese family were enrolled. Genomic DNA was extracted from peripheral blood of enrolled subjects. The coding region of the FOXL2 gene was amplified and mutations were determined by sequencing analyses. Functional analysis was carried out to study changes in expression and transcriptional activity of the mutant FOXL2 protein. RESULTS A novel mutation in the FOXL2 gene (c.931C > T) was detected in all five BPES patients, which converts a histidine residue into a tyrosine (p.H311Y) in the FOXL2 protein. Functional analysis revealed that this point mutation reduces FOXL2 protein expression, concomitant with decreased transcriptional activity on the steroidogenic acute regulatory (StAR) gene promotor. CONCLUSIONS Our results expand the mutational spectrum of the FOXL2 gene and provide additional insights to the research on the molecular pathogenesis of FOXL2 in BPES.
Collapse
Affiliation(s)
- Lu Zhou
- The 3rd Department, Plastic Surgery Hospital of the Chinese Academy of Medical Sciences, Peking Union Medical College, Badachu Road, Shijingshan District, No. 33, Beijing, 100041, China
| | - Jiaqi Wang
- The 3rd Department, Plastic Surgery Hospital of the Chinese Academy of Medical Sciences, Peking Union Medical College, Badachu Road, Shijingshan District, No. 33, Beijing, 100041, China
| | - Tailing Wang
- The 3rd Department, Plastic Surgery Hospital of the Chinese Academy of Medical Sciences, Peking Union Medical College, Badachu Road, Shijingshan District, No. 33, Beijing, 100041, China.
| |
Collapse
|
39
|
Selvaraj V, Stocco DM, Clark BJ. Current knowledge on the acute regulation of steroidogenesis. Biol Reprod 2018; 99:13-26. [PMID: 29718098 PMCID: PMC6044331 DOI: 10.1093/biolre/ioy102] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/23/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
How rapid induction of steroid hormone biosynthesis occurs in response to trophic hormone stimulation of steroidogenic cells has been a subject of intensive investigation for approximately six decades. A key observation made very early was that acute regulation of steroid biosynthesis required swift and timely synthesis of a new protein whose role appeared to be involved in the delivery of the substrate for all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane where the process of steroidogenesis begins. It was quickly learned that this transfer of cholesterol to the inner mitochondrial membrane was the regulated and rate-limiting step in steroidogenesis. Following this observation, the quest for this putative regulator protein(s) began in earnest in the late 1950s. This review provides a history of this quest, the candidate proteins that arose over the years and facts surrounding their rise or decline. Only two have persisted-translocator protein (TSPO) and the steroidogenic acute regulatory protein (StAR). We present a detailed summary of the work that has been published for each of these two proteins, the specific data that has appeared in support of their role in cholesterol transport and steroidogenesis, and the ensuing observations that have arisen in recent years that have refuted the role of TSPO in this process. We believe that the only viable candidate that has been shown to be indispensable is the StAR protein. Lastly, we provide our view on what may be the most important questions concerning the acute regulation of steroidogenesis that need to be asked in future.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Douglas M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
40
|
Belli M, Iwata N, Nakamura T, Iwase A, Stupack D, Shimasaki S. FOXL2C134W-Induced CYP19 Expression via Cooperation With SMAD3 in HGrC1 Cells. Endocrinology 2018; 159:1690-1703. [PMID: 29471425 PMCID: PMC6238151 DOI: 10.1210/en.2017-03207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
Germline knockout studies in female mice demonstrated an essential role for forkhead box L2 (FOXL2) in early follicle development, whereas an inducible granulosa cell (GC)-specific deletion of Foxl2 in adults has shown ovary-to-testis somatic sex reprogramming. In women, over 120 different germline mutations in the FOXL2 gene have been shown to cause blepharophimosis/ptosis/epicantus inversus syndrome associated with or without primary ovarian insufficiency. By contrast, a single somatic mutation (FOXL2C134W) accounts for almost all adult-type GC tumors (aGCTs). To test the hypothesis that FOXL2C134W differentially regulates the expression of aGCT markers, we investigated the effect of FOXL2C134W on inhibin B and P450 aromatase expression using a recently established human GC line (HGrC1), which we now show to bear two normal alleles of FOXL2. Neither FOXL2wt nor FOXL2C134W regulate INHBB messenger RNA (mRNA) expression. However, FOXL2C134W selectively displays a 50-fold induction of CYP19 mRNA expression dependent upon activin A. Mechanistically, the CYP19 promoter is activated in a similar way by FOXL2C134W interaction with SMAD3, but not by FOXL2wt. SMAD2 had no effect. Moreover, FOXL2C134W interactions with SMAD3 and with the FOX binding element located at -199 bp upstream of the ATG initiation codon of CYP19 are more sustainable than FOXL2wt. Thus, FOXL2C134W potentiates CYP19 expression in HGrC1 cells via enhanced recruitment of SMAD3 to a proximal FOX binding element. These findings may explain the pathophysiology of estrogen excess in patients with aGCT.
Collapse
Affiliation(s)
- Martina Belli
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Nahoko Iwata
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Tomoko Nakamura
- Center for Maternal-Perinatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Akira Iwase
- Center for Maternal-Perinatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Dwayne Stupack
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
- Correspondence: Shunichi Shimasaki, PhD, Department of Reproductive Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
41
|
High-Throughput Sequencing and Linkage Mapping of a Clownfish Genome Provide Insights on the Distribution of Molecular Players Involved in Sex Change. Sci Rep 2018; 8:4073. [PMID: 29511241 PMCID: PMC5840384 DOI: 10.1038/s41598-018-22282-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
Clownfishes are an excellent model system for investigating the genetic mechanism governing hermaphroditism and socially-controlled sex change in their natural environment because they are broadly distributed and strongly site-attached. Genomic tools, such as genetic linkage maps, allow fine-mapping of loci involved in molecular pathways underlying these reproductive processes. In this study, a high-density genetic map of Amphiprion bicinctus was constructed with 3146 RAD markers in a full-sib family organized in 24 robust linkage groups which correspond to the haploid chromosome number of the species. The length of the map was 4294.71 cM, with an average marker interval of 1.38 cM. The clownfish linkage map showed various levels of conserved synteny and collinearity with the genomes of Asian and European seabass, Nile tilapia and stickleback. The map provided a platform to investigate the genomic position of genes with differential expression during sex change in A. bicinctus. This study aims to bridge the gap of genome-scale information for this iconic group of species to facilitate the study of the main gene regulatory networks governing social sex change and gonadal restructuring in protandrous hermaphrodites.
Collapse
|
42
|
Yang XW, He WB, Gong F, Li W, Li XR, Zhong CG, Lu GX, Lin G, Du J, Tan YQ. Novel FOXL2 mutations cause blepharophimosis-ptosis-epicanthus inversus syndrome with premature ovarian insufficiency. Mol Genet Genomic Med 2018; 6:261-267. [PMID: 29378385 PMCID: PMC5902393 DOI: 10.1002/mgg3.366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/29/2017] [Accepted: 12/27/2017] [Indexed: 01/02/2023] Open
Abstract
Background Blepharophimosis‐ptosis‐epicanthus inversus syndrome (BPES) is a malformation of the eyelids. Forkhead Box L2 (FOXL2) is the only gene known to be associated with BPES. Methods We identified two Han Chinese BPES families with premature ovarian insufficiency (POI). Sanger sequencing and in vitro functional analysis were performed to identify the genetic cause. Results Sanger sequencing identified two novel mutations (c.462_468del, c.988_989insG) in FOXL2, one in each family. The in vitro functional analysis confirmed that both novel mutations were associated with impaired transactivation of downstream genes. Specifically, the single‐base insertion, c.988_989insG, led to subcellular mislocalization and aggregation of the encoded protein, which validated the hypothesis that the two novel FOXL2 mutations are deleterious and associated with POI in the two BPES families. Conclusion The novel mutations identified in the present study will enhance the present knowledge of the mutation spectrum of FOXL2. The in vitro experiments provide further insights into the molecular mechanism by which the two new variants mediate disease pathogenesis and may contribute to elucidating the genotype‐phenotype correlation between the two novel FOXL2 mutations and POI.
Collapse
Affiliation(s)
- Xiao-Wen Yang
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Wen-Bin He
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Wen Li
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Xiu-Rong Li
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Chang-Gao Zhong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| |
Collapse
|
43
|
Boussios S, Moschetta M, Zarkavelis G, Papadaki A, Kefas A, Tatsi K. Ovarian sex-cord stromal tumours and small cell tumours: Pathological, genetic and management aspects. Crit Rev Oncol Hematol 2017; 120:43-51. [PMID: 29198337 DOI: 10.1016/j.critrevonc.2017.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/21/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Non-epithelial ovarian cancers (NEOC) constitute a group of uncommon malignancies and their treatment is still a challenging task. Collectively, these tumours account for about 10% of all ovarian cancers and occur in all age groups from childhood to old-age. They include malignancies of germ cell origin, sex cord-stromal cell origin, and a variety of extremely rare ovarian cancers, such as small-cell carcinomas and sarcomas. Each of these classifications encompasses multiple histologic subtypes. It is imperative that these rare tumours are managed with accurate diagnosis, staging, and treatment, to optimise the outcome. The aetiology and molecular origins of each sub-group of NEOC remain largely unresolved, and international cooperation to promote high quality translational research is crucial. Much effort has been made into researching the molecular mechanisms underlying epithelial ovarian cancers, but far less is known about the genetic changes in NEOC. In this article, it is provided an overview of the current knowledge on the incidence, clinical presentation, pathology, genetics, therapeutic interventions, survival and prognostic factors of adult and juvenile granulosa cell tumours (GrCT), Sertoli-Leydig Cell tumours (SLCT) and small cell carcinoma of the ovary. We also consider future potential therapeutic targets in these rare cancers.
Collapse
Affiliation(s)
- Stergios Boussios
- Department of Medical Oncology, Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110, Ioannina, Greece.
| | - Michele Moschetta
- Drug Development Unit, Sarah Cannon Research Institute, 93 Harley Street, London, W1G 6AD, UK; University College London, London, UK
| | - George Zarkavelis
- Department of Medical Oncology, Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110, Ioannina, Greece
| | - Alexandra Papadaki
- Department of Medical Oncology, Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110, Ioannina, Greece
| | - Aristides Kefas
- Department of Medical Oncology, Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110, Ioannina, Greece
| | - Konstantina Tatsi
- Gynaecology Unit, General Hospital "G. Hatzikosta", Makrigianni Avenue, 45001, Ioannina, Greece
| |
Collapse
|
44
|
Guo L, Rhen T. Characterization of the FoxL2 proximal promoter and coding sequence from the common snapping turtle (Chelydra serpentina). Comp Biochem Physiol A Mol Integr Physiol 2017; 212:45-55. [DOI: 10.1016/j.cbpa.2017.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
|
45
|
Eid W, Biason-Lauber A. Why boys will be boys and girls will be girls: Human sex development and its defects. ACTA ACUST UNITED AC 2017; 108:365-379. [PMID: 28033664 DOI: 10.1002/bdrc.21143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among the most defining events of an individual's life, is the development of a human embryo into male or a female. The phenotypic sex of an individual depends on the type of gonad that develops in the embryo, a process which itself is determined by the genetic setting of the individual. The development of the gonads is different from any other organ, as they possess the potential to differentiate into two functionally distinct organs, testes, or ovaries. Sex development can be divided into two distinctive processes, "sex determination," which is the commitment of the undifferentiated gonad into either a testis or an ovary, a process that is genetically programmed in a critically timed manner and "sex differentiation," which takes place through hormones produced by the gonads, once the developmental sex determination decision has been made. Disruption of any of the genes involved in either the testicular or ovarian development pathway could lead to disorders of sex development. In this review, we provide an insight into the factors important for sex determination, their antagonistic actions and whenever possible, references on the "prismatic" clinical cases are given. Birth Defects Research (Part C) 108:365-379, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wassim Eid
- Division of Endocrinology, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Anna Biason-Lauber
- Division of Endocrinology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
46
|
Sacchi S, Marinaro F, Xella S, Marsella T, Tagliasacchi D, La Marca A. The anti-Müllerian hormone (AMH) induces forkhead box L2 (FOXL2) expression in primary culture of human granulosa cells in vitro. J Assist Reprod Genet 2017; 34:1131-1136. [PMID: 28660501 DOI: 10.1007/s10815-017-0980-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Anti-Müllerian hormone (AMH) and forkhead box L2 (FOXL2) are two pivotal genes expressed in human granulosa cells (hGCs) where both genes share similar inhibitory functions on activation and follicular growth in order to preserve the ovarian follicle reserve. Furthermore, AMH and FOXL2 contribute to inhibit steroidogenesis, decreasing or preventing the activation of gonadotrophin-dependent aromatase CYP19A1 cytochrome P450 family 19 subfamily A member 1 (CYP19A1). The purpose of this study is to evaluate the role of AMH in regulating the expression of FOXL2. METHODS Primary cultures of hGCs were treated with increasing concentrations of recombinant human AMH (rhAMH; range 10-100 ng/ml) for 3 h. Negative controls were performed using corresponding amounts of AMH vehicle. Total RNA or proteins were purified and quantified by spectrophotometry. FOXL2 and CYP19A1 gene expression, normalized by reference gene ribosomal protein S7 (RpS7), was evaluated by RT-qPCR. Each reaction was repeated in triplicate. Statistical analysis was performed. Extracted proteins were analyzed by immunoblot using anti-FOXL2 and anti-β-actin as primary antibodies. RESULTS rhAMH treatments tested did not modulate the basal expression of aromatase CYP19A1 gene. rhAMH (50 ng/ml) was able to increase FOXL2 gene expression and its intracellular content. CONCLUSIONS This study demonstrated the existence of an AMH-FOXL2 relationship in hGCs. AMH is capable of increasing both gene and protein expression of FOXL2. Because FOXL2 induces AMH transcription, these ovarian factors could be finely regulated by a positive feedback loop mechanism to preserve the ovarian follicle reserve.
Collapse
Affiliation(s)
- Sandro Sacchi
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University of Modena and Reggio Emilia and Clinica Eugin Modena, Via del Pozzo 71, 41100, Modena, Italy
| | - Federica Marinaro
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University of Modena and Reggio Emilia and Clinica Eugin Modena, Via del Pozzo 71, 41100, Modena, Italy
| | - Susanna Xella
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University of Modena and Reggio Emilia and Clinica Eugin Modena, Via del Pozzo 71, 41100, Modena, Italy
| | - Tiziana Marsella
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University of Modena and Reggio Emilia and Clinica Eugin Modena, Via del Pozzo 71, 41100, Modena, Italy
| | - Daniela Tagliasacchi
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University of Modena and Reggio Emilia and Clinica Eugin Modena, Via del Pozzo 71, 41100, Modena, Italy
| | - Antonio La Marca
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University of Modena and Reggio Emilia and Clinica Eugin Modena, Via del Pozzo 71, 41100, Modena, Italy.
| |
Collapse
|
47
|
Abstract
The process of sexual differentiation is central for reproduction of almost all metazoan and therefore for maintenance of practically all multicellular organisms. In sex development we can distinguish two different processes: First, sex determination is the developmental decision that directs the undifferentiated embryo into a sexually dimorphic individual. In mammals, sex determination equals gonadal development. The second process known as sex differentiation takes place once the sex determination decision has been made through factors produced by the gonads that determine the development of the phenotypic sex. Most of the knowledge on the factors involved in sexual development came from animal models and from studies of cases in whom the genetic or the gonadal sex does not match the phenotypical sex, i.e., patients affected by disorders of sex development (DSD). Generally speaking, factors influencing sex determination are transcriptional regulators, whereas factors important for sex differentiation are secreted hormones and their receptors. This review focuses on the factors involved in gonadal determination, and whenever possible, references on the "prismatic" clinical cases are given.
Collapse
Affiliation(s)
- Anna Biason-Lauber
- Department of Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland.
| |
Collapse
|
48
|
Transcriptome analysis of the potential roles of FOXL2 in chicken pre-hierarchical and pre-ovulatory granulosa cells. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 21:56-66. [PMID: 28076754 DOI: 10.1016/j.cbd.2016.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 11/20/2022]
Abstract
Forkheadbox L2 (FOXL2) is a transcription factor involved in mammalian ovarian development, especially in granulosa cell differentiation. However, this factor's function in mature chicken ovary is unclear. To explore the function of FOXL2 in chicken granulosa cells, we performed RNA-seq to compare the transcriptomes of pre-hierarchical (phGCs) and pre-ovulatory granulosa cells (poGCs) by FOXL2 overexpression. We observed that focal adhesion might be one of the key pathways activated during the differentiation of granulosa cells, and FOXL2 might be involved in follicle selection by regulating the expression of cytokines and the concentration of cyclic adenosine monophosphate (cAMP). Interestingly, we observed that FOXL2 played different roles in phGCs and poGCs, which might contribute to homeostasis in the chicken follicle by inducing differentiation of granulosa cells in pre-hierarchal follicles and preventing premature ovulation in pre-ovulatory follicles. Taken together, the results of our study establish a framework for understanding the potential functions of FOXL2 in the chicken granulosa cell.
Collapse
|
49
|
Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH. Premature Ovarian Insufficiency: New Perspectives on Genetic Cause and Phenotypic Spectrum. Endocr Rev 2016; 37:609-635. [PMID: 27690531 DOI: 10.1210/er.2016-1047] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Premature ovarian insufficiency (POI) is one form of female infertility, defined by loss of ovarian activity before the age of 40 and characterized by amenorrhea (primary or secondary) with raised gonadotropins and low estradiol. POI affects up to one in 100 females, including one in 1000 before the age of 30. Substantial evidence suggests a genetic basis for POI; however, the majority of cases remain unexplained, indicating that genes likely to be associated with this condition are yet to be discovered. This review discusses the current knowledge of the genetic basis of POI. We highlight genes typically known to cause syndromic POI that can be responsible for isolated POI. The role of mouse models in understanding POI pathogenesis is discussed, and a thorough list of candidate POI genes is provided. Identifying a genetic basis for POI has multiple advantages, such as enabling the identification of presymptomatic family members who can be offered counseling and cryopreservation of eggs before depletion, enabling personalized treatment based on the cause of an individual's condition, and providing better understanding of disease mechanisms that ultimately aid the development of improved treatments.
Collapse
Affiliation(s)
- Elena J Tucker
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Sonia R Grover
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Anne Bachelot
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Philippe Touraine
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Andrew H Sinclair
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| |
Collapse
|
50
|
Hirano M, Wada-Hiraike O, Fu H, Akino N, Isono W, Sakurabashi A, Fukuda T, Morita Y, Tanikawa M, Miyamoto Y, Nishi Y, Yanase T, Harada M, Oishi H, Yano T, Koga K, Oda K, Kawana K, Fujii T, Osuga Y. The Emerging Role of FOXL2 in Regulating the Transcriptional Activation Function of Estrogen Receptor β. Reprod Sci 2016; 24:133-141. [DOI: 10.1177/1933719116651150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mana Hirano
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Houju Fu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nana Akino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wataru Isono
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayako Sakurabashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Morita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Nishi
- Department of Physiology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hajime Oishi
- Department of Obstetrics and Gynecology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsu Yano
- Department of Obstetrics and Gynecology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|