1
|
Mukherjee K, Unniappan S. Mouse gastric mucosal endocrine cells are sources and sites of action of Phoenixin-20. Peptides 2021; 141:170551. [PMID: 33862165 DOI: 10.1016/j.peptides.2021.170551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Energy homeostasis is is determined by food intake and energy expenditure, which are partly regulated by the cross-talk between central and peripheral hormonal signals. Phoenixin (PNX) is a recently discovered pleiotropic neuropeptide with isoforms of 14 (PNX-14) and 20 (PNX-20) amino acids. It is a potent reproductive peptide in vertebrates, regulating the hypothalamo-pituitary-gonadal axis (HPG). It has been identified as a regulator of food intake during light phase when injected intracerebroventricularly in rats. In addition, plasma levels of PNX also increased after food intake in rats, suggesting that it might have possible roles in energy homeostasis. We hypothesized that gut is a source and site of action of PNX in mice. Immunoreactivity for PNX and its putative receptor, super-conserved receptor expressed in brain (SREB3; also known as the G-protein coupled receptor 173/GPR 173) was found in the stomach and intestine of male C57/BL6 J mice, and in MGN3-1 (mouse stomach endocrine) cells and STC-1 (mouse enteroendocrine) cells. In MGN3-1 cells, PNX-20 significantly upregulated ghrelin (10 nM) and ghrelin-O-acyl transferase (GOAT) mRNAs (1000 nM) at 6 h. In STC-1 cells, it significantly suppressed CCK (100 nM) at 2 h. No effects were found on other intestinal hormones tested (glucagon like peptide-1, glucose dependent insulinotropic polypeptide, and peptide YY). Together, these results indicate that PNX-20 is produced in the gut, and it could act directly on gut cells to regulate metabolic hormones.
Collapse
Affiliation(s)
- Kundanika Mukherjee
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
2
|
Voigt K, Giddens E, Stark R, Frisch E, Moskovsky N, Kakoschke N, Stout JC, Bellgrove MA, Andrews ZB, Verdejo-Garcia A. The Hunger Games: Homeostatic State-Dependent Fluctuations in Disinhibition Measured with a Novel Gamified Test Battery. Nutrients 2021; 13:nu13062001. [PMID: 34200678 PMCID: PMC8230368 DOI: 10.3390/nu13062001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Food homeostatic states (hunger and satiety) influence the cognitive systems regulating impulsive responses, but the direction and specific mechanisms involved in this effect remain elusive. We examined how fasting, and satiety, affect cognitive mechanisms underpinning disinhibition using a novel framework and a gamified test-battery. Thirty-four participants completed the test-battery measuring three cognitive facets of disinhibition: attentional control, information gathering and monitoring of feedback, across two experimental sessions: one after overnight fasting and another after a standardised meal. Homeostatic state was assessed using subjective self-reports and biological markers (i.e., blood-derived liver-expressed antimicrobial protein 2 (LEAP-2), insulin and leptin). We found that participants who experienced greater subjective hunger during the satiety session were more impulsive in the information gathering task; results were not confounded by changes in mood or anxiety. Homeostatic state did not significantly influence disinhibition mechanisms linked to attentional control or feedback monitoring. However, we found a significant interaction between homeostatic state and LEAP-2 on attentional control, with higher LEAP-2 associated with faster reaction times in the fasted condition only. Our findings indicate lingering hunger after eating increases impulsive behaviour via reduced information gathering. These findings identify a novel mechanism that may underpin the tendency to overeat and/or engage in broader impulsive behaviours.
Collapse
Affiliation(s)
- Katharina Voigt
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Emily Giddens
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Romana Stark
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (R.S.); (Z.B.A.)
| | - Emma Frisch
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Neda Moskovsky
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Naomi Kakoschke
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Julie C. Stout
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Mark A. Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Zane B. Andrews
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (R.S.); (Z.B.A.)
| | - Antonio Verdejo-Garcia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
- Correspondence: ; Tel.: +61-3-9905-5374
| |
Collapse
|
3
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Is Ghrelin Synthesized in the Central Nervous System? Int J Mol Sci 2017; 18:ijms18030638. [PMID: 28294994 PMCID: PMC5372651 DOI: 10.3390/ijms18030638] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.
Collapse
|
5
|
Abstract
OBJECTIVES Inflammation plays a key role in pancreatitis. Earlier studies from our laboratory showed that experimental pancreatitis activated the pancreatic apelin-APJ axis robustly in mice. Apelin signaling reduced neutrophil invasion and the activation of pancreatic nuclear factor (NF)-κB in mice with experimental pancreatitis. METHODS The aim of this study was to assess whether apelin-induced inhibition of pancreatic NF-κB activation was linked mechanistically to apelin's inhibition of pancreatic inflammatory mediator up-regulation in mice with cerulein-induced chronic pancreatitis (CP). Whether apelin's inhibitory effects were associated with the inhibition of NF-κB binding to the promoter region of IL-1β was examined. The effects of apelin exposure on pancreatic IκB degradation/replenishment and membrane levels of phosphorylated protein kinase C were measured. RESULTS Results demonstrated that apelin inhibited the up-regulation of pancreatic tumor necrosis factor α, macrophage inflammatory protein-1 α/β, and IL-1β expression significantly in mice with CP. Chromatin immunoprecipitation assay findings showed that apelin inhibited NF-κB binding to a putative NF-κB binding site in the IL-1β promoter. Apelin exposure reduced the pancreatic membrane levels of phosphorylated protein kinase C-δ and enhanced the replenishment of pancreatic IκB proteins. CONCLUSIONS Together, these findings indicated that the inhibition of NF-κB activation by apelin was a mechanism behind the reduced pancreatic levels of inflammatory mediators in CP mice exposed to apelin.
Collapse
|
6
|
Shiimura Y, Ohgusu H, Sato T, Kojima M. Regulation of the Human Ghrelin Promoter Activity by Transcription Factors, NF-κB and Nkx2.2. Int J Endocrinol 2015; 2015:580908. [PMID: 25699080 PMCID: PMC4324914 DOI: 10.1155/2015/580908] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/24/2014] [Indexed: 11/24/2022] Open
Abstract
To examine the gene expression of ghrelin, a growth hormone releasing and appetite stimulating hormone from stomach, we constructed human ghrelin promoter-reporter vectors and analyzed the promoter activity. The ghrelin promoter activity was high when cultured cells that express ghrelin mRNA endogenously like TT or ECC10 cells were used, indicating that these cells contain factors necessary for full expression of the human ghrelin gene. The human ghrelin promoter contains both positive and negative regulatory regions. A transient decrease of the promoter activity was found when the reporter vector with the -1600 fragment of the human ghrelin promoter was transfected into cultured cells. We then examined the effect of several transcription factors on the ghrelin promoter activity and found that NF-κB suppressed and that Nkx2.2, a homeodomain-containing transcription factor that is important for ghrelin cell development in pancreas, activates the promoter activity. These transcription factors may be possible targets for the control of ghrelin gene expression.
Collapse
Affiliation(s)
- Yuki Shiimura
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0864, Japan
| | - Hideko Ohgusu
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0864, Japan
| | - Takahiro Sato
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0864, Japan
| | - Masayasu Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0864, Japan
- *Masayasu Kojima:
| |
Collapse
|
7
|
Chopin LK, Seim I, Walpole CM, Herington AC. The ghrelin axis--does it have an appetite for cancer progression? Endocr Rev 2012; 33:849-91. [PMID: 22826465 DOI: 10.1210/er.2011-1007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHSR), is a peptide hormone with diverse physiological roles. Ghrelin regulates GH release, appetite and feeding, gut motility, and energy balance and also has roles in the cardiovascular, immune, and reproductive systems. Ghrelin and the GHSR are expressed in a wide range of normal and tumor tissues, and a fluorescein-labeled, truncated form of ghrelin is showing promise as a biomarker for prostate cancer. Plasma ghrelin levels are generally inversely related to body mass index and are unlikely to be useful as a biomarker for cancer, but may be useful as a marker for cancer cachexia. Some single nucleotide polymorphisms in the ghrelin and GHSR genes have shown associations with cancer risk; however, larger studies are required. Ghrelin regulates processes associated with cancer, including cell proliferation, apoptosis, cell migration, cell invasion, inflammation, and angiogenesis; however, the role of ghrelin in cancer is currently unclear. Ghrelin has predominantly antiinflammatory effects and may play a role in protecting against cancer-related inflammation. Ghrelin and its analogs show promise as treatments for cancer-related cachexia. Further studies using in vivo models are required to determine whether ghrelin has a role in cancer progression.
Collapse
Affiliation(s)
- Lisa K Chopin
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Queensland University of Technology and Australian Prostate Cancer Research Centre-Queensland, Brisbane, Queensland 4001, Australia.
| | | | | | | |
Collapse
|
8
|
Suda A, Kaiya H, Nikaido H, Shiozawa S, Mishiro K, Ando H. Identification and gene expression analyses of ghrelin in the stomach of Pacific bluefin tuna (Thunnus orientalis). Gen Comp Endocrinol 2012; 178:89-97. [PMID: 22569173 DOI: 10.1016/j.ygcen.2012.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/07/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
Abstract
Full length cDNA and gene encoding ghrelin precursor and mature ghrelin peptide were identified from the stomach of Pacific bluefin tuna, Thunnus orientalis, which has unique metabolic physiology and high commercial value at fishery markets. Quantitative expression analysis was conducted for the gastric ghrelin and pepsinogen 2 genes during the early stage of somatic growth from the underyearling to yearling fish. The full length cDNA of bluefin tuna ghrelin precursor has a length of 470bp and the deduced precursor is composed of 107 amino acids. The ghrelin gene is 1.9kbp in length and has a 4 exon-3 intron structure. The major form of mature ghrelin in the stomach was an octanoylated 20-amino acid peptide with C-terminal amidation, while overall 12 different forms of ghrelin peptides, including short form of 18-amino acid peptide and seven kinds of acyl modifications were identified. The expression profiles of the gastric ghrelin and pepsinogen 2 genes showed no significant changes related to the early growth stages. The present results suggest that digestive physiology has already been functional in this growth stage of the juvenile bluefin tuna and ghrelin may have a role in the sustained digestive and metabolic activities.
Collapse
Affiliation(s)
- Atsushi Suda
- Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Veldhuis JD, Bowers CY. Integrating GHS into the Ghrelin System. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010:879503. [PMID: 20798846 PMCID: PMC2925380 DOI: 10.1155/2010/879503] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/30/2009] [Indexed: 12/21/2022]
Abstract
Oligopeptide derivatives of metenkephalin were found to stimulate growth-hormone (GH) release directly by pituitary somatotrope cells in vitro in 1977. Members of this class of peptides and nonpeptidyl mimetics are referred to as GH secretagogues (GHSs). A specific guanosine triphosphatate-binding protein-associated heptahelical transmembrane receptor for GHS was cloned in 1996. An endogenous ligand for the GHS receptor, acylghrelin, was identified in 1999. Expression of ghrelin and homonymous receptor occurs in the brain, pituitary gland, stomach, endothelium/vascular smooth muscle, pancreas, placenta, intestine, heart, bone, and other tissues. Principal actions of this peptidergic system include stimulation of GH release via combined hypothalamopituitary mechanisms, orexigenesis (appetitive enhancement), insulinostasis (inhibition of insulin secretion), cardiovascular effects (decreased mean arterial pressure and vasodilation), stimulation of gastric motility and acid secretion, adipogenesis with repression of fat oxidation, and antiapoptosis (antagonism of endothelial, neuronal, and cardiomyocyte death). The array of known and proposed interactions of ghrelin with key metabolic signals makes ghrelin and its receptor prime targets for drug development.
Collapse
Affiliation(s)
- Johannes D. Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Cyril Y. Bowers
- Division of Endocrinology, Department of Internal Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Hill JT, Chao CS, Anderson KR, Kaufman F, Johnson CW, Sussel L. Nkx2.2 activates the ghrelin promoter in pancreatic islet cells. Mol Endocrinol 2009; 24:381-90. [PMID: 19965928 DOI: 10.1210/me.2009-0360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nkx2.2 is an essential regulator of pancreatic endocrine differentiation. Nkx2.2-null mice are completely devoid of beta-ells and have a large reduction of alpha- and PP cells. In the place of these islet populations, there is a corresponding increase in the ghrelin-positive epsilon-cells. Molecular studies have indicated that Nkx2.2 functions as an activator and repressor to regulate islet cell fate decisions. To determine whether Nkx2.2 is solely important for islet cell fate decisions or also has the capability to control ghrelin at the promoter level, we studied the transcriptional regulation of the ghrelin promoter within the pancreas, in vitro and in vivo. These studies demonstrate that both of the previously identified transcriptional start sites in the ghrelin promoter are active within the embryonic pancreas; however, the long transcript is preferentially up-regulated in the Nkx2.2-null pancreas. We also show that the promoter region between -619 and -488 bp upstream of the translational start site is necessary for repression of ghrelin in alphaTC1 and betaTC6 cells. Surprisingly, we also show that Nkx2.2 is able to bind to and activate the ghrelin promoter in several cell lines that do or do not express endogenous ghrelin. Together, these results suggest that the up-regulation of ghrelin expression in the Nkx2.2-null mice is not due to loss of repression of the ghrelin promoter in the nonghrelin islet populations. Furthermore, Nkx2.2 may contribute to the activation of ghrelin in mature islet epsilon-cells.
Collapse
Affiliation(s)
- Jonathon T Hill
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
11
|
Seim I, Carter SL, Herington AC, Chopin LK. The proximal first exon architecture of the murine ghrelin gene is highly similar to its human orthologue. BMC Res Notes 2009; 2:85. [PMID: 19426541 PMCID: PMC2689246 DOI: 10.1186/1756-0500-2-85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 05/09/2009] [Indexed: 11/10/2022] Open
Abstract
Background The murine ghrelin gene (Ghrl), originally sequenced from stomach tissue, contains five exons and a single transcription start site in a short, 19 bp first exon (exon 0). We recently isolated several novel first exons of the human ghrelin gene and found evidence of a complex transcriptional repertoire. In this report, we examined the 5' exons of the murine ghrelin orthologue in a range of tissues using 5' RACE. Findings 5' RACE revealed two transcription start sites (TSSs) in exon 0 and four TSSs in intron 0, which correspond to 5' extensions of exon 1. Using quantitative, real-time RT-PCR (qRT-PCR), we demonstrated that extended exon 1 containing Ghrl transcripts are largely confined to the spleen, adrenal gland, stomach, and skin. Conclusion We demonstrate that multiple transcription start sites are present in exon 0 and an extended exon 1 of the murine ghrelin gene, similar to the proximal first exon organisation of its human orthologue. The identification of several transcription start sites in intron 0 of mouse ghrelin (resulting in an extension of exon 1) raises the possibility that developmental-, cell- and tissue-specific Ghrl mRNA species are created by employing alternative promoters and further studies of the murine ghrelin gene are warranted.
Collapse
Affiliation(s)
- Inge Seim
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | | | | | | |
Collapse
|
12
|
Ghrelin is dispensable for embryonic pancreatic islet development and differentiation. ACTA ACUST UNITED AC 2009; 157:51-6. [PMID: 19268691 DOI: 10.1016/j.regpep.2009.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 02/17/2009] [Indexed: 11/20/2022]
Abstract
Ghrelin is a peptide hormone that has been implicated in the regulation of food intake and energy homeostasis. Ghrelin is predominantly produced in the stomach, but is also expressed in many other tissues where its functions are not well characterized. In the rodent and human pancreas, ghrelin levels peak at late gestation and gradually decline postnatally. Several studies have suggested that ghrelin regulates beta cell function during embryonic development and in the adult. In addition, in a number of mouse models, ghrelin cells appear to replace insulin- and glucagon-producing cells in the islet. In this analysis, we investigated whether the absence or overexpression of ghrelin influenced the development and differentiation of the pancreatic islet during embryonic development. These studies revealed that ghrelin is dispensable for normal pancreas development during gestation. Conversely, we demonstrated that elevated ghrelin in the Nkx2.2 null islets is not responsible for the absence of insulin- and glucagon-producing cells. Finally, we have also determined that in the absence of insulin, ghrelin cells form in their normal numbers and ghrelin is expressed at wild type levels.
Collapse
|
13
|
Yin X, Li Y, Xu G, An W, Zhang W. Ghrelin fluctuation, what determines its production? Acta Biochim Biophys Sin (Shanghai) 2009; 41:188-97. [PMID: 19280057 DOI: 10.1093/abbs/gmp001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ghrelin, a 28 amino acid gut brain peptide, acts as an endogenous ligand for its receptor, the growth hormone secretagogue receptor, to exercise a variety of functions ranging from stimulation of growth hormone secretion, regulation of appetite and energy metabolism, and cell protection to modulation of inflammation. This review summarizes the advance in the regulation of ghrelin expression and secretion. We introduce the structure of ghrelin promoter, the processing and modification of ghrelin precursor, and the regulation mechanism in these processes. Then we discuss factors found to be important in the regulation of ghrelin production, including nutrients, hormones, and autonomic nervous system. Finally, we outline the alteration in the level of ghrelin in certain physiological and pathological status.
Collapse
Affiliation(s)
- Xuefeng Yin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | |
Collapse
|
14
|
Ayd[idot]n S, Ozercan HI, Aydın S, Ozkan Y, Dagl[idot] F, Oguzoncul F, Geckil H. Biological rhythm of saliva ghrelin in humans. BIOL RHYTHM RES 2008. [DOI: 10.1080/09291010600576860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | | | - Suna Aydın
- c Department of Cardiovascular Surgery ,
| | | | | | - Ferdane Oguzoncul
- e Department of Health Science, School of Medicine , Firat University , Elazig, Turkey
| | - Hikmet Geckil
- f Department of Molecular Biology , Inonu University , Malalya, Turkey
| |
Collapse
|
15
|
Soares JB, Leite-Moreira AF. Ghrelin, des-acyl ghrelin and obestatin: three pieces of the same puzzle. Peptides 2008; 29:1255-70. [PMID: 18396350 DOI: 10.1016/j.peptides.2008.02.018] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 02/24/2008] [Accepted: 02/26/2008] [Indexed: 12/26/2022]
Abstract
The major active product of ghrelin gene is a 28-amino acid peptide acylated at the serine 3 position with an octanoyl group, called simply ghrelin. Ghrelin has a multiplicity of physiological functions, affecting GH release, food intake, energy and glucose homeostasis, gastrointestinal, cardiovascular, pulmonary and immune function, cell proliferation and differentiation and bone physiology. Nevertheless, recent developments have shown that ghrelin gene can generate various bioactive molecules besides ghrelin, mainly des-acyl ghrelin and obestatin, obtained from alternative splicing or from extensive post-translational modification. Although their receptors have not yet been identified, they have already proven to be active, having intriguingly subtle but opposite physiological actions to ghrelin. This suggests the existence of a novel endocrine system with multiple effector elements which not only may have opposite actions but may regulate the action of each other. In this review, we summarize the steps which lead to the production of the different ghrelin gene products and examine the most significant differences between them in terms of structure and actions.
Collapse
Affiliation(s)
- João-Bruno Soares
- Department of Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | | |
Collapse
|
16
|
Ghrelin: A multifunctional hormone in non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2008; 149:109-28. [DOI: 10.1016/j.cbpa.2007.12.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 12/28/2022]
|
17
|
Pazos Y, Alvarez CJP, Camiña JP, Casanueva FF. Lysophosphatidic acid inhibits ghrelin secretion in the human gastric adenocarcinoma AGS cell line − role of mitogenic activated protein kinase signaling pathway. FEBS J 2007; 274:5714-26. [DOI: 10.1111/j.1742-4658.2007.06091.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Seim I, Collet C, Herington AC, Chopin LK. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts. BMC Genomics 2007; 8:298. [PMID: 17727735 PMCID: PMC2014779 DOI: 10.1186/1471-2164-8-298] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 08/30/2007] [Indexed: 12/04/2022] Open
Abstract
Background Ghrelin is a multifunctional peptide hormone expressed in a range of normal tissues and pathologies. It has been reported that the human ghrelin gene consists of five exons which span 5 kb of genomic DNA on chromosome 3 and includes a 20 bp non-coding first exon (20 bp exon 0). The availability of bioinformatic tools enabling comparative analysis and the finalisation of the human genome prompted us to re-examine the genomic structure of the ghrelin locus. Results We have demonstrated the presence of an additional novel exon (exon -1) and 5' extensions to exon 0 and 1 using comparative in silico analysis and have demonstrated their existence experimentally using RT-PCR and 5' RACE. A revised exon-intron structure demonstrates that the human ghrelin gene spans 7.2 kb and consists of six rather than five exons. Several ghrelin gene-derived splice forms were detected in a range of human tissues and cell lines. We have demonstrated ghrelin gene-derived mRNA transcripts that do not code for ghrelin, but instead may encode the C-terminal region of full-length preproghrelin (C-ghrelin, which contains the coding region for obestatin) and a transcript encoding obestatin-only. Splice variants that differed in their 5' untranslated regions were also found, suggesting a role of these regions in the post-transcriptional regulation of preproghrelin translation. Finally, several natural antisense transcripts, termed ghrelinOS (ghrelin opposite strand) transcripts, were demonstrated via orientation-specific RT-PCR, 5' RACE and in silico analysis of ESTs and cloned amplicons. Conclusion The sense and antisense alternative transcripts demonstrated in this study may function as non-coding regulatory RNA, or code for novel protein isoforms. This is the first demonstration of putative obestatin and C-ghrelin specific transcripts and these findings suggest that these ghrelin gene-derived peptides may also be produced independently of preproghrelin. This study reveals several novel aspects of the ghrelin gene and suggests that the ghrelin locus is far more complex than previously recognised.
Collapse
Affiliation(s)
- Inge Seim
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Chris Collet
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Adrian C Herington
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Lisa K Chopin
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
19
|
Katayama T, Shimamoto S, Oda H, Nakahara K, Kangawa K, Murakami N. Glucagon receptor expression and glucagon stimulation of ghrelin secretion in rat stomach. Biochem Biophys Res Commun 2007; 357:865-70. [PMID: 17462598 DOI: 10.1016/j.bbrc.2007.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 04/02/2007] [Indexed: 11/23/2022]
Abstract
The present study was performed to evaluate the role of glucagon in the regulation of ghrelin secretion from the rat stomach. mRNA for ghrelin and glucagon receptor was expressed predominantly in the lower body and pylorus of stomach, but little or not in the upper body and cardia. Ghrelin- and glucagon receptor-immunoreactive cells were detected in lamina propria mucosae of stomach and some cells expressed both. Intravenous administration of glucagon caused transient increases in both acyl- and desacyl-ghrelin levels in the gastric vein within 10 min, which was followed by gradual increases in desacyl-ghrelin levels until 60 min. Steady state levels of ghrelin mRNA in the stomach were increased by 1.9-fold 20 min after glucagon administration, but not at 5 or 120 min. These results suggest that glucagon stimulates acute release of both forms of ghrelin and thereafter upregulates synthesis and release of desacyl-ghrelin in the rat stomach.
Collapse
Affiliation(s)
- Tetsuro Katayama
- Frontier Science Research Center, Kibana Campus, University of Miyazaki, Miyazaki 889-2192, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Kim HK, Park WS, Kang SH, Warda M, Kim N, Ko JH, Prince AEB, Han J. Mitochondrial alterations in human gastric carcinoma cell line. Am J Physiol Cell Physiol 2007; 293:C761-71. [PMID: 17537807 DOI: 10.1152/ajpcell.00043.2007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We compared mitochondrial function, morphology, and proteome in the rat normal gastric cell line RGM-1 and the human gastric cancer cell line AGS. Total numbers and cross-sectional sizes of mitochondria were smaller in AGS cells. Mitochondria in AGS cells were deformed and consumed less oxygen. Confocal microscopy indicated that the mitochondrial inner membrane potential was hyperpolarized and the mitochondrial Ca(2+) concentration was elevated in AGS cells. Interestingly, two-dimensional electrophoresis proteomics on the mitochondria-enriched fraction revealed high expression of four mitochondrial proteins in AGS cells: ubiquinol-cytochrome c reductase, mitochondrial short-chain enoyl-coenzyme A hydratase-1, heat shock protein 60, and mitochondria elongation factor Tu. The results provide clues as to the mechanism of the mitochondrial changes in cancer at the protein level and may serve as potential cancer biomarkers in mitochondria.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- Mitochondrial Signaling Laboratory, Mitochondria Research Group, Dept of Physiology and Biophysics, College of Medicine, Biohealth Products Research Center, Cardiovascular and Metabolic Disease Center, Inje University, Busanjin-Gu, Busan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Baessler A, Fischer M, Mayer B, Koehler M, Wiedmann S, Stark K, Doering A, Erdmann J, Riegger G, Schunkert H, Kwitek AE, Hengstenberg C. Epistatic interaction between haplotypes of the ghrelin ligand and receptor genes influence susceptibility to myocardial infarction and coronary artery disease. Hum Mol Genet 2007; 16:887-99. [PMID: 17324965 DOI: 10.1093/hmg/ddm033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Data from both experimental models and humans provide evidence that ghrelin and its receptor, the growth hormone secretagogue receptor (ghrelin receptor, GHSR), possess a variety of cardiovascular effects. Thus, we hypothesized that genetic variants within the ghrelin system (ligand ghrelin and its receptor GHSR) are associated with susceptibility to myocardial infarction (MI) and coronary artery disease (CAD). Seven single nucleotide polymorphisms (SNPs) covering the GHSR region as well as eight SNPs across the ghrelin gene (GHRL) region were genotyped in index MI patients (864 Caucasians, 'index MI cases') from the German MI family study and in matched controls without evidence of CAD (864 Caucasians, 'controls', MONICA Augsburg). In addition, siblings of these MI patients with documented severe CAD (826 'affected sibs') were matched likewise with controls (n = 826 Caucasian 'controls') and used for verification. The effect of interactions between genetic variants of both genes of the ghrelin system was explored by conditional classification tree models. We found association of several GHSR SNPs with MI [best SNP odds ratio (OR) 1.7 (1.2-2.5); P = 0.002] using a recessive model. Moreover, we identified a common GHSR haplotype which significantly increases the risk for MI [multivariate adjusted OR for homozygous carriers 1.6 (1.1-2.5) and CAD OR 1.6 (1.1-2.5)]. In contrast, no relationship between genetic variants and the disease could be revealed for GHRL. However, the increase in MI/CAD frequency related to the susceptible GHSR haplotype was abolished when it coincided with a common GHRL haplotype. Multivariate adjustments as well as permutation-based methods conveyed the same results. These data are the first to demonstrate an association of SNPs and haplotypes within important genes of the ghrelin system and the susceptibility to MI, whereas association with MI/CAD could be identified for genetic variants across GHSR, no relationship could be revealed for GHRL itself. However, we found an effect of GHRL dependent upon the presence of a common, MI and CAD susceptible haplotype of GHSR. Thus, our data suggest that specific haplotypes of the ghrelin ligand and its receptor act epistatically to affect susceptibility or tolerance to MI and/or CAD.
Collapse
Affiliation(s)
- Andrea Baessler
- Clinic for Internal Medicine II, University of Regensburg Franz-Josef-Stauss Allee 11, 93053 Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Since its discovery in 1999, the stomach-derived hormone ghrelin has been studied intensively. Proghrelin is 94 amino acids long in mammals and this undergoes proteolytic processing to produce ghrelin [residues 1-28 of proghrelin(1-94)] and the C-terminal peptide C-ghrelin, which likely contains the entire 66 amino acids of the prohormone C-terminus. The accumulating data identifies ghrelin as having important roles in growth hormone (GH) release, appetite, metabolism, energy balance, cardiovascular function, reproduction, and bone growth. The most striking feature of ghrelin is that it can be acylated at its third amino acid residue (usually Ser), usually in the form of n-octanoyl group (C8:0). Approximately 10-20% of circulating ghrelin is acylated and this feature confers its GH releasing ability, mediated by the GH secretagogue receptor (GHSR). In contrast, the remaining 80-90% of circulating ghrelin is desacylated. Desacyl ghrelin was initially thought to be inactive, but recent in vivo and in vitro evidences have identified biological actions for this peptide, independent of GHSR. Whether C-ghrelin has bioactivity remains to be determined, but it is known that plasma concentrations of this peptide respond to endocrine and metabolic manipulations in the same fashion as ghrelin itself. A third putative proghrelin peptide, termed "obestatin" has been mooted, but confirmatory biochemical and functional evidences supporting the existence of this peptide have not been forthcoming, suggesting it to be a biochemical miscalculation. This chapter will address biochemical aspects of proghrelin peptides and point to potential avenues for future work.
Collapse
|
23
|
Wang G, Qi X, Wei W, Englander EW, Greeley GH. Characterization of the 5'‐regulatory regions of the rat and human apelin genes and regulation of breast apelin by USF. FASEB J 2006; 20:2639-41. [PMID: 17060400 DOI: 10.1096/fj.06-6315fje] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apelin, a peptide widely expressed in the body, is the endogenous ligand for the APJ receptor. To investigate how the apelin gene is regulated transcriptionally, we cloned and characterized approximately 3000 and approximately 4000 bp 5'-upstream fragments of the rat and human apelin genes. Putative CAAT-like box, but not TATA-box sites were identified. The rat (-207/-1 bp) and human (-100/+74 bp) core promoter sequences contain putative binding sites for upstream stimulatory factor (USF)-1/-2. Mutagenesis and overexpression assays showed that USF up-regulates basal and inducible apelin transcription. EMSA and supershift experiments indicated binding of USF-1/-2 to the rat (-114/-109 bp) and human (-84/-79 bp) apelin promoters. ChIP experiments show that USF is recruited to the putative USF binding site in the human apelin promoter in cultured breast cells. In concert with increased breast apelin expression during pregnancy and lactation in rats, EMSAs demonstrate an elevated binding of pregnant and lactating rat breast nuclear proteins to a consensus USF oligonucleotide. In vivo ChIP assays verified increased USF binding to the apelin promoter in breast of lactating rats. Together, our findings show that USF exerts a stimulatory role in regulation of breast apelin expression during pregnancy and lactation.
Collapse
Affiliation(s)
- Guiyun Wang
- Department of Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the pertinent literature published in the past year regarding the regulation of gastric exocrine and endocrine secretion. RECENT FINDINGS Gastric acid aids protein digestion; facilitates the absorption of iron, calcium, and vitamin B12; thwarts enteric infection; and prevents bacterial overgrowth. When levels of acid and proteolytic enzymes overwhelm the mucosal defense mechanisms, ulcers occur. To avoid damage under these harsh conditions, gastric acid must be finely regulated by overlapping neural (e.g. orexin, pituitary adenylate cyclase-activating polypeptide, nitric oxide, and galanin), hormonal (e.g. gastrin, cholecystokinin, and ghrelin), paracrine (e.g. histamine and somatostatin), and autocrine (e.g. transforming growth factor-alpha) pathways. The precise mechanisms whereby Helicobacter pylori induces perturbations in acid secretion are not known, but they seem to involve changes in somatostatin and perhaps ghrelin secretion. Acid secretion by parietal cells involves intracellular elevation of calcium and/or cyclic AMP, followed by a cascade that triggers translocation of the proton pump, HK-adenosine triphosphatase, from cytoplasmic tubulovesicles to the secretory canaliculi. SUMMARY An improved understanding of the pathways and mechanisms regulating gastric acid secretion may lead to the development of new strategies to prevent and treat acid peptic disorders as well as circumvent the adverse effects of currently prescribed antisecretory medications.
Collapse
|