1
|
King JH, Kwan STC, Bae S, Klatt KC, Yan J, Malysheva OV, Jiang X, Roberson MS, Caudill MA. Maternal choline supplementation alters vitamin B-12 status in human and murine pregnancy. J Nutr Biochem 2019; 72:108210. [PMID: 31473512 DOI: 10.1016/j.jnutbio.2019.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/26/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022]
Abstract
Despite participation in overlapping metabolic pathways, the relationship between choline and vitamin B-12 has not been well characterized especially during pregnancy. We sought to determine the effects of maternal choline supplementation on vitamin B-12 status biomarkers in human and mouse pregnancy, hypothesizing that increased choline intake would improve vitamin B-12 status. Associations between common genetic variants in choline-metabolizing genes and vitamin B-12 status biomarkers were also explored in humans. Healthy third-trimester pregnant women (n=26) consumed either 480 or 930 mg choline/day as part of a 12-week controlled feeding study. Wild-type NSA and Dlx3 heterozygous (Dlx3+/-) mice, which display placental insufficiency, consumed a 1×, 2× or 4× choline diet and were sacrificed at gestational days 15.5 and 18.5. Serum vitamin B-12, methylmalonic acid (MMA) and homocysteine were measured in all samples; holotranscobalamin (in humans) and hepatic vitamin B-12 (in mice) were also measured. The 2× choline supplementation for 12 weeks in pregnant women yielded higher serum concentrations of holotranscobalamin, the bioactive form of vitamin B-12 (~24%, P=.01). Women with genetic variants in choline dehydrogenase (CHDH) and betaine-homocysteine S-methyltransferase (BHMT) had higher serum MMA concentrations (~31%, P=.03) and lower serum holotranscobalamin concentrations (~34%, P=.03), respectively. The 4× choline dose decreased serum homocysteine concentrations in both NSA and Dlx3+/- mice (~36% and~43% respectively, P≤.015). In conclusion, differences in choline supply due to supplementation or genetic variation modulate vitamin B-12 status during pregnancy, supporting a functional relationship between these nutrients.
Collapse
Affiliation(s)
- Julia H King
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | | | - Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Kevin C Klatt
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Jian Yan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Olga V Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Xinyin Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY; Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY
| | - Mark S Roberson
- Department of Biomedical Sciences, Cornell University, Ithaca, NY.
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY.
| |
Collapse
|
2
|
Dunn-Fletcher CE, Muglia LM, Pavlicev M, Wolf G, Sun MA, Hu YC, Huffman E, Tumukuntala S, Thiele K, Mukherjee A, Zoubovsky S, Zhang X, Swaggart KA, Lamm KYB, Jones H, Macfarlan TS, Muglia LJ. Anthropoid primate-specific retroviral element THE1B controls expression of CRH in placenta and alters gestation length. PLoS Biol 2018; 16:e2006337. [PMID: 30231016 PMCID: PMC6166974 DOI: 10.1371/journal.pbio.2006337] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/01/2018] [Accepted: 09/10/2018] [Indexed: 01/22/2023] Open
Abstract
Pregnancy and parturition are intricately regulated to ensure successful reproductive outcomes. However, the factors that control gestational length in humans and other anthropoid primates remain poorly defined. Here, we show the endogenous retroviral long terminal repeat transposon-like human element 1B (THE1B) selectively controls placental expression of corticotropin-releasing hormone (CRH) that, in turn, influences gestational length and birth timing. Placental expression of CRH and subsequently prolonged gestational length were found in two independent strains of transgenic mice carrying a 180-kb human bacterial artificial chromosome (BAC) DNA that contained the full length of CRH and extended flanking regions, including THE1B. Restricted deletion of THE1B silenced placental CRH expression and normalized birth timing in these transgenic lines. Furthermore, we revealed an interaction at the 5′ insertion site of THE1B with distal-less homeobox 3 (DLX3), a transcription factor expressed in placenta. Together, these findings suggest that retroviral insertion of THE1B into the anthropoid primate genome may have initiated expression of CRH in placental syncytiotrophoblasts via DLX3 and that this placental CRH is sufficient to alter the timing of birth. The proper timing of delivery is critical during pregnancy; if too early or too late, the baby will be at risk of serious health problems and even death. Corticotropin-releasing hormone (CRH) is a protein that can be detected in maternal blood, and its concentration correlates with the timing of birth. In humans and other anthropoid primates, CRH is made by the placenta, whereas in other mammals, it is produced in a specialized region of the brain. To understand the regulation and evolution of this key protein, we inserted the human CRH gene and nearby regions into the mouse genome, which resulted in human CRH expression in the mouse placenta. Mouse litters that make CRH in their placentas are born later than control mice, showing that CRH can directly affect birth timing. Using our mouse model, we then selectively deleted a remnant of an ancient retrovirus that is normally found in the DNA of anthropoid primates and demonstrated that this specific region controls expression of CRH in the placenta. Deletion of this region also restored normal birth timing in the mice by eliminating CRH production from the placenta. We propose that retroviral regulation of CRH in the placenta may be a mechanism of controlling birth timing in humans and other anthropoid primates.
Collapse
Affiliation(s)
- Caitlin E. Dunn-Fletcher
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (CED); (LJM)
| | - Lisa M. Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Mihaela Pavlicev
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ming-An Sun
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Elizabeth Huffman
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Shivani Tumukuntala
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Katri Thiele
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Amrita Mukherjee
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Sandra Zoubovsky
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Xuzhe Zhang
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kayleigh A. Swaggart
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Katherine Y. Bezold Lamm
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Helen Jones
- Division of Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Todd S. Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, United States of America
| | - Louis J. Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (CED); (LJM)
| |
Collapse
|
3
|
Expression of Homeobox Gene HLX and its Downstream Target Genes are Altered in Placentae From Discordant Twin Pregnancies. Twin Res Hum Genet 2017; 21:42-50. [PMID: 29212571 DOI: 10.1017/thg.2017.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A discordant twin gestation, in which one fetus is significantly growth restricted, compared to the other normal twin, is a unique model that can be used to elucidate the mechanism(s) by which the intrauterine environment affects fetal growth. In many model systems, placental transcription factor genes regulate fetal growth. Transcription factors regulate growth through their activation or repression of downstream target genes that mediate important cell functions. The objective of this study was to determine the expression of the placental HLX homeobox gene transcription factor and its downstream target genes in dizygotic twins with growth discordance. In this cross-sectional study, HLX and its downstream target genes' retinoblastoma 1 (RB1) and cyclin kinase D (CDKN1C) expression levels were determined in placentae obtained from dichorionic diamniotic twin pregnancies (n = 23) where one of the twins was growth restricted. Fetal growth restriction (FGR) was defined as small for gestational age with abnormal umbilical artery Doppler indices when compared with the normal control co-twin. Homeobox gene HLX expression was significantly decreased at both the mRNA and protein levels in FGR twin placentae compared with the normal control co-twin placentae (p < .05). Downstream target genes CDKN1C and RB1 were also significantly decreased and increased, respectively, at both the mRNA and protein levels in FGR twin placentae compared with normal control co-twin placentae (p < .05). Together, these observations suggest an important association between HLX transcription factor expression and abnormal human placental development in discordant twin pregnancies.
Collapse
|
4
|
DLX3 interacts with GCM1 and inhibits its transactivation-stimulating activity in a homeodomain-dependent manner in human trophoblast-derived cells. Sci Rep 2017; 7:2009. [PMID: 28515447 PMCID: PMC5435702 DOI: 10.1038/s41598-017-02120-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/06/2017] [Indexed: 11/25/2022] Open
Abstract
The placental transcription factors Distal-less 3 (DLX3) and Glial cell missing-1 (GCM1) have been shown to coordinate the specific regulation of PGF in human trophoblast cell lines. While both factors independently have a positive effect on PGF gene expression, when combined, DLX3 acts as an antagonist to GCM. Despite this understanding, potential mechanisms accounting for this regulatory interaction remain unexplored. We identify physical and functional interactions between specific domains of DLX3 and GCM1 in human trophoblast-derived cells by performing immunoprecipitation and mammalian one hybrid assays. Studies revealed that DLX3 binding reduced the transcriptional activity of GCM1, providing a mechanistic explanation of their functional antagonism in regulating PGF promoter activity. The DLX3 homeodomain (HD) was essential for DLX3-GCM1 interaction, and that the HD together with the DLX3 amino- or carboxyl-terminal domains was required for maximal inhibition of GCM1. Interestingly, a naturally occurring DLX3 mutant that disrupts the carboxyl-terminal domain leading to tricho-dento-osseous syndrome in humans displayed activities indistinguishable from wild type DLX3 in this system. Collectively, our studies demonstrate that DLX3 physically interacts with GCM1 and inhibits its transactivation activity, suggesting that DLX3 and GCM1 may form a complex to functionally regulate placental cell function through modulation of target gene expression.
Collapse
|
5
|
Li S, Roberson MS. Dlx3 and GCM-1 functionally coordinate the regulation of placental growth factor in human trophoblast-derived cells. J Cell Physiol 2017; 232:2900-2914. [PMID: 27996093 DOI: 10.1002/jcp.25752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 11/08/2022]
Abstract
Placental growth factor (PGF) is abundantly expressed by trophoblast cells within human placentae and is important for trophoblast development and placental vascularization. Circulating maternal serum levels of PGF are dynamically upregulated across gestation in normal pregnancies, whereas low circulating levels and placental production of PGF have been implicated in the pathogenesis of preeclampsia and other gestational diseases. However, the underlying molecular mechanism of regulating PGF expression in the human placenta remains poorly understood. In this study, we demonstrated that transcription factors Distal-less 3 (DLX3) and Glial cell missing-1 (GCM1) were both sufficient and required for PGF expression in human trophoblast-derived cells by overexpression and knockdown approaches. Surprisingly, while DLX3 and GCM1 were both positive regulators of PGF, co-overexpression of DLX3 and GCM1 led to an antagonist effect on PGF expression on the endogenous gene and a luciferase reporter. Further, deletion and site-directed mutagenesis studies identified a novel regulatory element on the PGF promoter mediating both DLX3- and GCM1-dependent PGF expression. This regulatory region was also found to be essential for the basal activity of the PGF promoter. Finally, Chromatin-immunoprecipitation (ChIP) assays revealed colocalization of DLX3 and GCM1 at the identified regulatory region on the PGF promoter. Taken together, our studies provide important insights into intrinsic regulation of human placental PGF expression through the functional coordination of DLX3 and GCM1, and are likely to further the understanding of pathogenesis of PGF dysregulation in preeclampsia and other disease conditions.
Collapse
Affiliation(s)
- Sha Li
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Mark S Roberson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
6
|
Chen CY, Chan CH, Chen CM, Tsai YS, Tsai TY, Wu Lee YH, You LR. Targeted inactivation of murine Ddx3x: essential roles of Ddx3x in placentation and embryogenesis. Hum Mol Genet 2016; 25:2905-2922. [PMID: 27179789 DOI: 10.1093/hmg/ddw143] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/30/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
The X-linked DEAD-box RNA helicase DDX3 (DDX3X) is a multifunctional protein that has been implicated in gene regulation, cell cycle control, apoptosis, and tumorigenesis. However, the precise physiological function of Ddx3x during development remains unknown. Here, we show that loss of Ddx3x results in an early post-implantation lethality in male mice. The size of the epiblast marked by Oct3/4 is dramatically reduced in embryonic day 6.5 (E6.5) Ddx3x-/Y embryos. Preferential paternal X chromosome inactivation (XCI) in extraembryonic tissues of Ddx3x heterozygous (Ddx3x-/+) female mice with a maternally inherited null allele leads to placental abnormalities and embryonic lethality during development. In the embryonic tissues, Ddx3x exhibits developmental- and tissue-specific differences in escape from XCI. Targeted Ddx3x ablation in the epiblast leads to widespread apoptosis and abnormal growth, which causes embryonic lethality in the Sox2-cre/+;Ddx3xflox/Y mutant around E11.5. The observation of significant increases in γH2AX and p-p53Ser15 indicates DNA damage, which suggests that loss of Ddx3x leads to higher levels of genome damage. Significant upregulation of p21WAF1/Cip1 and p15Ink4b results in cell cycle arrest and apoptosis in Ddx3x-deficient cells. These results have uncovered that mouse Ddx3x is essential for both embryo and extraembryonic development.
Collapse
Affiliation(s)
| | | | - Chun-Ming Chen
- Department of Life Sciences and Institute of Genome Sciences.,VYM Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | - Yan-Hwa Wu Lee
- Institute of Biochemistry and Molecular Biology .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology .,VYM Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
7
|
Chui A, Kalionis B, Abumaree M, Cocquebert M, Fournier T, Evain-Brion D, Brennecke SP, Murthi P. Downstream targets of the homeobox gene DLX3 are differentially expressed in the placentae of pregnancies affected by human idiopathic fetal growth restriction. Mol Cell Endocrinol 2013; 377:75-83. [PMID: 23831639 DOI: 10.1016/j.mce.2013.06.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Human idiopathic fetal growth restriction (FGR) is associated with placental insufficiency. Previously, we reported that the expression of homeobox gene Distal-less 3 (DLX3) is increased in idiopathic FGR placentae and is a regulator of villous trophoblast differentiation. Here, we identify the downstream targets of DLX3 in trophoblast-derived cell lines. We modelled the high levels of DLX3 in FGR using an over-expression plasmid construct and complemented this using short-interference RNA (siRNA) for inactivation in cultured cells. Using a real-time PCR-based gene profiling, candidate target genes of DLX3 over-expression and inactivation were identified as regulators of trophoblast differentiation; GATA2 and PPARγ. The expression of GATA2 and PPARγ were further assessed in placental tissues and showed increased mRNA and protein levels in FGR-affected tissues compared with gestation-matched controls. We conclude that DLX3 orchestrates the expression of multiple regulators of trophoblast differentiation and that expression of these regulatory genes is abnormal in FGR.
Collapse
Affiliation(s)
- Amy Chui
- Department of Perinatal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Clark PA, Xie J, Li S, Zhang X, Coonrod S, Roberson MS. Matrix metalloproteinase 9 is a distal-less 3 target-gene in placental trophoblast cells. Am J Physiol Cell Physiol 2013; 305:C173-81. [PMID: 23657566 DOI: 10.1152/ajpcell.00205.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are enzymes that regulate extracellular matrix composition and contribute to cell migration. Microarray studies in mouse placenta suggested that MMP-9 transcript abundance was dependent on distal-less 3 (Dlx3), a placental-specific transcriptional regulator; however, it was not clear if this was a direct or indirect effect. Here we investigate mechanism(s) for Dlx3-dependent MMP-9 gene transcription and gelatinase activity in placental trophoblasts. Initial studies confirmed that MMP-9 activity was reduced in placental explants from Dlx3(-/-) mice and that murine MMP-9 promoter activity was induced by Dlx3 overexpression. Two binding sites within a murine MMP-9 promoter fragment bound Dlx3, and mutations in both elements reduced basal MMP-9-luciferase reporter activity and abolished regulation by Dlx3. Chromatin immunoprecipitation studies in JEG3 cells confirmed Dlx3 binding to the endogenous human MMP-9 promoter at three distinct sites and knockdown of human Dlx3 resulted in reduced endogenous MMP-9 transcripts and secreted activity. These studies provide novel evidence that Dlx3 is involved directly in the transcriptional regulation of mouse and human MMP-9 gene expression in placental trophoblasts.
Collapse
Affiliation(s)
- Patricia A Clark
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
9
|
Clark PA, Brown JL, Li S, Woods AK, Han L, Sones JL, Preston RL, Southard TL, Davisson RL, Roberson MS. Distal-less 3 haploinsufficiency results in elevated placental oxidative stress and altered fetal growth kinetics in the mouse. Placenta 2012; 33:830-8. [PMID: 22819041 DOI: 10.1016/j.placenta.2012.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/18/2012] [Accepted: 06/28/2012] [Indexed: 12/26/2022]
Abstract
Distal-less 3 (Dlx3)(-/-) mice die at E9.5 presumably due to an abnormal placental phenotype including reduced placental vasculature and secretion of placental growth factor. To examine the role of Dlx3 specifically within the epiblast, Dlx3 conditional knockout mice were generated using an epiblast-specific Meox2(CreSor) allele. Dlx3(-/fl), Meox2(CreSor) animals were born at expected frequencies and survived to weaning providing indirect evidence that loss of Dlx3 within the trophoectoderm plays a critical role in fetal survival in the Dlx3(-/-) mouse. We next examined the hypothesis that loss of a single Dlx3 allele would have a negative impact on placental and fetal fitness. Dlx3(+/-) mice displayed reduced fetal growth beginning at E12.5 compared with Dlx3(+/+) controls. Altered fetal growth trajectory occurred coincident with elevated oxidative stress and apoptosis within Dlx3(+/-) placentas. Oral supplementation with the superoxide dismutase mimetic, Tempol, rescued the fetal growth and placental cell death phenotypes in Dlx3(+/-) mice. To determine the potential mechanisms associated with elevated oxidative stress on the Dlx3(+/-) placentas, we next examined vascular characteristics within the feto-placental unit. Studies revealed reduced maternal spiral artery luminal area in the Dlx3(+/-) mice receiving water; Dlx3(+/-) mice receiving Tempol displayed maternal spiral artery luminal area similar to control Dlx3(+/+) mice. We conclude that reduced Dlx3 gene dose results in diminished fetal fitness associated with elevated placental cell oxidative stress and apoptosis coincident with altered vascular remodeling. Administration of antioxidant therapy ameliorated this feto-placental phenotype, suggesting that Dlx3 may be required for adaptation to oxidative stresses within the intrauterine environment.
Collapse
Affiliation(s)
- P A Clark
- Department of Biomedical Sciences, T4-018 Veterinary Research Tower, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The role of placental homeobox genes in human fetal growth restriction. J Pregnancy 2011; 2011:548171. [PMID: 21547091 PMCID: PMC3087155 DOI: 10.1155/2011/548171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/17/2011] [Indexed: 12/04/2022] Open
Abstract
Fetal growth restriction (FGR) is an adverse pregnancy outcome associated with significant perinatal and paediatric morbidity and mortality, and an increased risk of chronic disease later in adult life. One of the key causes of adverse pregnancy outcome is fetal growth restriction (FGR). While a number of maternal, fetal, and environmental factors are known causes of FGR, the majority of FGR cases remain idiopathic. These idiopathic FGR pregnancies are frequently associated with placental insufficiency, possibly as a result of placental maldevelopment. Understanding the molecular mechanisms of abnormal placental development in idiopathic FGR is, therefore, of increasing importance. Here, we review our understanding of transcriptional control of normal placental development and abnormal placental development associated with human idiopathic FGR. We also assess the potential for understanding transcriptional control as a means for revealing new molecular targets for the detection, diagnosis, and clinical management of idiopathic FGR.
Collapse
|
11
|
Kang HG, Oh CS, Sato M, Katagiri F, Glazebrook J, Takahashi H, Kachroo P, Martin GB, Klessig DF. Endosome-associated CRT1 functions early in resistance gene-mediated defense signaling in Arabidopsis and tobacco. THE PLANT CELL 2010; 22:918-36. [PMID: 20332379 PMCID: PMC2861469 DOI: 10.1105/tpc.109.071662] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 02/10/2010] [Accepted: 03/09/2010] [Indexed: 05/18/2023]
Abstract
Resistance gene-mediated immunity confers protection against pathogen infection in a wide range of plants. A genetic screen for Arabidopsis thaliana mutants compromised for recognition of turnip crinkle virus previously identified CRT1, a member of the GHKL ATPase/kinase superfamily. Here, we demonstrate that CRT1 interacts with various resistance proteins from different structural classes, and this interaction is disrupted when these resistance proteins are activated. The Arabidopsis mutant crt1-2 crh1-1, which lacks CRT1 and its closest homolog, displayed compromised resistance to avirulent Pseudomonas syringae and Hyaloperonospora arabidopsidis. Additionally, resistance-associated hypersensitive cell death was suppressed in Nicotiana benthamiana silenced for expression of CRT1 homolog(s). Thus, CRT1 appears to be a general factor for resistance gene-mediated immunity. Since elevation of cytosolic calcium triggered by avirulent P. syringae was compromised in crt1-2 crh1-1 plants, but cell death triggered by Nt MEK2(DD) was unaffected in CRT1-silenced N. benthamiana, CRT1 likely functions at an early step in this pathway. Genome-wide transcriptome analysis led to identification of CRT1-Associated genes, many of which are associated with transport processes, responses to (a)biotic stress, and the endomembrane system. Confocal microscopy and subcellular fractionation revealed that CRT1 localizes to endosome-like vesicles, suggesting a key process in resistance protein activation/signaling occurs in this subcellular compartment.
Collapse
Affiliation(s)
- Hong-Gu Kang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Chang-Sik Oh
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Masanao Sato
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Fumiaki Katagiri
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jane Glazebrook
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Hideki Takahashi
- Department of Life Science, Tohoku University, Sendai 981-8555, Japan
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
12
|
Shaut CAE, Keene DR, Sorensen LK, Li DY, Stadler HS. HOXA13 Is essential for placental vascular patterning and labyrinth endothelial specification. PLoS Genet 2008; 4:e1000073. [PMID: 18483557 PMCID: PMC2367452 DOI: 10.1371/journal.pgen.1000073] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 04/11/2008] [Indexed: 12/26/2022] Open
Abstract
In eutherian mammals, embryonic growth and survival is dependent on the formation of the placenta, an organ that facilitates the efficient exchange of oxygen, nutrients, and metabolic waste between the maternal and fetal blood supplies. Key to the placenta's function is the formation of its vascular labyrinth, a series of finely branched vessels whose molecular ontogeny remains largely undefined. In this report, we demonstrate that HOXA13 plays an essential role in labyrinth vessel formation. In the absence of HOXA13 function, placental endothelial cell morphology is altered, causing a loss in vessel wall integrity, edema of the embryonic blood vessels, and mid-gestational lethality. Microarray analysis of wild-type and mutant placentas revealed significant changes in endothelial gene expression profiles. Notably, pro-vascular genes, including Tie2 and Foxf1, exhibited reduced expression in the mutant endothelia, which also exhibited elevated expression of genes normally expressed in lymphatic or sinusoidal endothelia. ChIP analysis of HOXA13–DNA complexes in the placenta confirmed that HOXA13 binds the Tie2 and Foxf1 promoters in vivo. In vitro, HOXA13 binds sequences present in the Tie2 and Foxf1 promoters with high affinity (Kd = 27–42 nM) and HOXA13 can use these bound promoter regions to direct gene expression. Taken together, these findings demonstrate that HOXA13 directly regulates Tie2 and Foxf1 in the placental labyrinth endothelia, providing a functional explanation for the mid-gestational lethality exhibited by Hoxa13 mutant embryos as well as a novel transcriptional program necessary for the specification of the labyrinth vascular endothelia. Defects in placental development are a common cause of mid-gestational lethality. Key to the placenta's function is its vascular labyrinth, a series of finely branched vessels that facilitate the efficient exchange of gases, nutrients, and metabolic waste between the maternal and fetal blood supplies. In this study, we identify a novel role for the transcription factor HOXA13 in formation of the placental vascular labyrinth. In the absence of HOXA13 function, labyrinth vessel branching and endothelial specification is compromised, causing mid-gestational lethality due to placental insufficiency. Analysis of the genes affected by the loss of HOXA13 function revealed significant reductions in the expression of several pro-vascular genes, including Tie2 and Foxf1. Analysis of the Tie2 and Foxf1 promoters confirmed that HOXA13 binds sites present in each promoter with high affinity in the placenta, and in vitro, HOXA13 can use these bound sequences to regulate gene expression. These results suggest that Tie2 and Foxf1 are direct transcriptional targets of HOXA13 in the developing placental labyrinth, providing a novel transcriptional pathway to consider when examining pathologies of the placenta and placental insufficiency, as well as the evolutionary mechanisms required for the emergence of the vascular placenta in eutherian mammals.
Collapse
Affiliation(s)
- Carley A. E. Shaut
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Heart Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Douglas R. Keene
- Shriners Hospital for Children Research Division, Portland, Oregon, United States of America
| | - Lise K. Sorensen
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Dean Y. Li
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - H. Scott Stadler
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Shriners Hospital for Children Research Division, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
Tooth number is abnormal in about 20% of the human population. The most common defect is agenesis of the third molars, followed by loss of the lateral incisors and loss of the second premolars. Tooth loss appears as both a feature of multi-organ syndromes and as a non-syndromic isolated character. Apart from tooth number, abnormalities are also observed in tooth size, shape, and structure. Many of the genes that underlie dental defects have been identified, and several mouse models have been created to allow functional studies to understand, in greater detail, the role of particular genes in tooth development. The ability to manipulate the mouse embryo using explant culture and genome targeting provides a wealth of information that ultimately may pave the way for better diagnostics, treatment or even cures for human dental disorders. This review aims to summarize recent knowledge obtained in mouse models, which can be used to gain a better understanding of the molecular basis of human dental abnormalities.
Collapse
Affiliation(s)
- Jana Fleischmannova
- Laboratory of Animal Embryology, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic.
| | | | | | | |
Collapse
|
14
|
Choi SJ, Song IS, Ryu OH, Choi SW, Suzanne Hart P, Wu WW, Shen RF, Hart TC. A 4 bp deletion mutation in DLX3 enhances osteoblastic differentiation and bone formation in vitro. Bone 2008; 42:162-71. [PMID: 17950683 PMCID: PMC2253671 DOI: 10.1016/j.bone.2007.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 08/02/2007] [Accepted: 08/31/2007] [Indexed: 12/29/2022]
Abstract
A 4 base-pair deletion mutation in the Distal-less 3 (DLX3) gene is etiologic for Tricho-Dento-Osseous syndrome (TDO). A cardinal feature of TDO is an increased thickness and density of bone. We tested the effects of the DLX3 gene mutation responsible for TDO on the osteoblastic differentiation of preosteoblastic MC3T3E1 cells and multipontent mesenchymal C2C12 cells. Differential expression analysis of C2C12 cells transfected with wild type DLX3 or mutant DLX3 was performed and desmin gene expression, an early myoblastic differentiation marker in mesenchymal cells, was evaluated by RT-PCR, western blot analysis, and desmin promoter transcriptional activity. Transfection of wild type DLX3 into MC3T3E1 and C2C12 cells increased alkaline phosphatase-2 activity, mineral deposition, and promoter activities of the osteocalcin and type 1 collagen genes compared to empty vector transfected cells. Transfection of mutant DLX3 into these cells further enhanced alkaline phosphatase activity, mineral deposition, and osteocalcin promoter activities, but did not further enhance type 1 collagen promoter activity. Transfection of mutant DLX3 into C2C12 cells markedly down regulated desmin gene expression, and protein expression of desmin and MyoD, while increasing protein expression of osterix and Runx2. These results demonstrate that the DLX3 deletion mutation associated with TDO enhances mesenchymal cell differentiation to an osteoblastic lineage rather than a myoblastic lineage by changing the fate of mesenchymal cells. This DLX3 mutation also accelerates the differentiation of osteoprogenitor cells to osteoblasts at later stages of osteogenesis.
Collapse
Affiliation(s)
- Sun Jin Choi
- Human Craniofacial Genetics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - In Sun Song
- Human Craniofacial Genetics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Ok Hee Ryu
- Human Craniofacial Genetics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Sung Won Choi
- Human Craniofacial Genetics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - P. Suzanne Hart
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health
| | - Wells W. Wu
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Rong-Fong Shen
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Thomas C. Hart
- Human Craniofacial Genetics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health
- *Corresponding author; Thomas C Hart, 10 Center Drive, Building 10, Room 5-2531, Bethesda, MD, 20892. Tel. 301-402-1706, Fax: 1-301-480-4455, E-mail address:
| |
Collapse
|