1
|
Chen SJ, Yue J, Zhang JX, Jiang M, Hu TQ, Leng WD, Xiang L, Li XY, Zhang L, Zheng F, Yuan Y, Guo LY, Pan YM, Yan YW, Wang JN, Chen SY, Tang JM. Continuous exposure of isoprenaline inhibits myoblast differentiation and fusion through PKA/ERK1/2-FOXO1 signaling pathway. Stem Cell Res Ther 2019; 10:70. [PMID: 30819239 PMCID: PMC6394105 DOI: 10.1186/s13287-019-1160-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
Aim The objective of this study is to determine if exuberant sympathetic nerve activity is involved in muscle satellite cell differentiation and myoblast fusion. Methods and results By using immunoassaying and western blot analyses, we found that β1 and β2-adrenergic receptors (AdR) were expressed in C2C12 cells. The differentiated satellite cells exhibited an increased expression of β2-AdR, as compared with the proliferating cells. Continuous exposure of isoprenaline (ISO), a β-AdR agonist, delayed C2C12 cell differentiation, and myoblast fusion in time- and dose-dependent manner. ISO also increased short myotube numbers while decreasing long myotube numbers, consistent with the greater reduction in MyHC1, MyHC2a, and MyHC2x expression. Moreover, continuous exposure of ISO gradually decreased the ratio of PKA RI/RII, and PKA RI activator efficiently reversed the ISO effect on C2C12 cell differentiation and myoblast fusion while PKA inhibitor H-89 deteriorated the effects. Continuous single-dose ISO increased β1-AdR expression in C2C12 cells. More importantly, the cells showed enhanced phospho-ERK1/2 levels, resulting in increasing phospho-β2-AdR levels while decreasing β2-AdR levels, and the specific effects could be abolished by ERK1/2 inhibitor. Furthermore, continuous exposure of ISO induced FOXO1 nuclear translocation and increased the levels of FOXO1 in nuclear extracts while reducing pAKT, p-p38MAPK, and pFOXO1 levels. Conversely, blockade of ERK1/2 signaling partially abrogated ISO effects on AKT, p38MAPK, and FOXO1signaling, which partially restored C2C12 cell differentiation and myoblast fusion, leading to an increase in the numbers of medium myotube along with the increased expression of MyHC1 and MyHC2a. Conclusion Continuous exposure of ISO impedes satellite cell differentiation and myoblast fusion, at least in part, through PKA-ERK1/2-FOXO1 signaling pathways, which were associated with the reduced β2-AdR and increased β1-AdR levels. Electronic supplementary material The online version of this article (10.1186/s13287-019-1160-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shao-Juan Chen
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jing Yue
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jing-Xuan Zhang
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Institute of biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Miao Jiang
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Tu-Qiang Hu
- Department of Stomatology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Wei-Dong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Li Xiang
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xin-Yuan Li
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Lei Zhang
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Institute of biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Fei Zheng
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Ye Yuan
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Lin-Yun Guo
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Institute of biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Ya-Mu Pan
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yu-Wen Yan
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jia-Ning Wang
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Institute of biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shi-You Chen
- Department of Physiology & Pharmacology, The University of Georgia, Athens, GA30602, USA
| | - Jun-Ming Tang
- Department of Cardiology, and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Institute of biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Garcia-Guerra L, Vila-Bedmar R, Carrasco-Rando M, Cruces-Sande M, Martín M, Ruiz-Gómez A, Ruiz-Gómez M, Lorenzo M, Fernández-Veledo S, Mayor F, Murga C, Nieto-Vázquez I. Skeletal muscle myogenesis is regulated by G protein-coupled receptor kinase 2. J Mol Cell Biol 2014; 6:299-311. [PMID: 24927997 DOI: 10.1093/jmcb/mju025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is an important serine/threonine-kinase regulating different membrane receptors and intracellular proteins. Attenuation of Drosophila Gprk2 in embryos or adult flies induced a defective differentiation of somatic muscles, loss of fibers, and a flightless phenotype. In vertebrates, GRK2 hemizygous mice contained less but more hypertrophied skeletal muscle fibers than wild-type littermates. In C2C12 myoblasts, overexpression of a GRK2 kinase-deficient mutant (K220R) caused precocious differentiation of cells into immature myotubes, which were wider in size and contained more fused nuclei, while GRK2 overexpression blunted differentiation. Moreover, p38MAPK and Akt pathways were activated at an earlier stage and to a greater extent in K220R-expressing cells or upon kinase downregulation, while the activation of both kinases was impaired in GRK2-overexpressing cells. The impaired differentiation and fewer fusion events promoted by enhanced GRK2 levels were recapitulated by a p38MAPK mutant, which was able to mimic the inhibitory phosphorylation of p38MAPK by GRK2, whereas the blunted differentiation observed in GRK2-expressing clones was rescued in the presence of a constitutively active upstream stimulator of the p38MAPK pathway. These results suggest that balanced GRK2 function is necessary for a timely and complete myogenic process.
Collapse
Affiliation(s)
- Lucia Garcia-Guerra
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, 28040 Madrid, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain CIBER de enfermedades neurodegenerativas (CIBERNED), 28049 Madrid, Spain
| | - Rocío Vila-Bedmar
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | | | - Marta Cruces-Sande
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | - Mercedes Martín
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
| | - Ana Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
| | - Margarita Lorenzo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, 28040 Madrid, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain Hospital Universitari de Tarragona Joan XXIII. IISPV. Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Federico Mayor
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | - Cristina Murga
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | - Iria Nieto-Vázquez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, 28040 Madrid, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| |
Collapse
|