1
|
Lauricella E, Vilisova S, Chaoul N, Giglio A, D'Angelo G, Porta C, Cives M. The current status of somatostatin analogs in the treatment of neuroendocrine tumors and future perspectives. Expert Rev Neurother 2024:1-14. [PMID: 39415322 DOI: 10.1080/14737175.2024.2417419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Somatostatin analogs (SSAs) were developed as antisecretory agents to palliate hormonal symptoms in patients with functioning neuroendocrine tumors (NETs). Their antiproliferative activity has been established in the phase 3 PROMID and CLARINET trials. SSAs currently represent the standard first-line therapy for the majority of well-differentiated G1/G2 gastroenteropancreatic NETs as well as for pulmonary NETs. AREAS COVERED An update on the clinical applications of established SSAs for the treatment of NETs is provided. Perspectives on emerging nonpeptide SSAs such as paltusotine and innovative formulations of octreotide (CAM2029) are included. EXPERT OPINION SSAs represent the cornerstone of treatment for both functioning and nonfunctioning NETs. While standard-dose SSAs have a defined place in the therapeutic algorithm of well-differentiated NETs, uncertainties remain on how to best integrate above-label doses of SSAs in the treatment sequence, particularly when tumor control is the goal. Octreotide and lanreotide appear to be clinically interchangeable, and no signs of superiority of one agent over the other has been observed so far. Whether SSAs may be exploited in the maintenance setting following more aggressive treatments, whether continuing SSAs beyond-progression after first-line therapy could be an effective treatment strategy, and whether new-generation SSAs such as pasireotide could overcome resistance to established SSAs are key areas of investigation.
Collapse
Affiliation(s)
- Eleonora Lauricella
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Sofija Vilisova
- Department of Oncology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Nada Chaoul
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Andrea Giglio
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Gabriella D'Angelo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Mauro Cives
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| |
Collapse
|
2
|
Huang LC, McKeown CR, He HY, Ta AC, Cline HT. BRCA1 and ELK-1 regulate neural progenitor cell fate in the optic tectum in response to visual experience in Xenopus laevis tadpoles. Proc Natl Acad Sci U S A 2024; 121:e2316542121. [PMID: 38198524 PMCID: PMC10801852 DOI: 10.1073/pnas.2316542121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
In developing Xenopus tadpoles, the optic tectum begins to receive patterned visual input while visuomotor circuits are still undergoing neurogenesis and circuit assembly. This visual input regulates neural progenitor cell fate decisions such that maintaining tadpoles in the dark increases proliferation, expanding the progenitor pool, while visual stimulation promotes neuronal differentiation. To identify regulators of activity-dependent neural progenitor cell fate, we profiled the transcriptomes of proliferating neural progenitor cells and newly differentiated neurons using RNA-Seq. We used advanced bioinformatic analysis of 1,130 differentially expressed transcripts to identify six differentially regulated transcriptional regulators, including Breast Cancer 1 (BRCA1) and the ETS-family transcription factor, ELK-1, which are predicted to regulate the majority of the other differentially expressed transcripts. BRCA1 is known for its role in cancers, but relatively little is known about its potential role in regulating neural progenitor cell fate. ELK-1 is a multifunctional transcription factor which regulates immediate early gene expression. We investigated the potential functions of BRCA1 and ELK-1 in activity-regulated neurogenesis in the tadpole visual system using in vivo time-lapse imaging to monitor the fate of GFP-expressing SOX2+ neural progenitor cells in the optic tectum. Our longitudinal in vivo imaging analysis showed that knockdown of either BRCA1 or ELK-1 altered the fates of neural progenitor cells and furthermore that the effects of visual experience on neurogenesis depend on BRCA1 and ELK-1 expression. These studies provide insight into the potential mechanisms by which neural activity affects neural progenitor cell fate.
Collapse
Affiliation(s)
- Lin-Chien Huang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA92037
| | - Caroline R. McKeown
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA92037
| | - Hai-Yan He
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA92037
| | - Aaron C. Ta
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA92037
| | - Hollis T. Cline
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
3
|
Xiao G, Gao X, Li L, Liu C, Liu Z, Peng H, Xia X, Yi X, Zhou R. An Immune-Related Prognostic Signature for Predicting Clinical Outcomes and Immune Landscape in IDH-Mutant Lower-Grade Gliomas. JOURNAL OF ONCOLOGY 2021; 2021:3766685. [PMID: 34961815 PMCID: PMC8710162 DOI: 10.1155/2021/3766685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND IDH mutation is the most common in diffuse LGGs, correlated with a favorable prognosis. However, the IDH-mutant LGGs patients with poor prognoses need to be identified, and the potential mechanism leading to a worse outcome and treatment options needs to be investigated. METHODS A six-gene immune-related prognostic signature in IDH-mutant LGGs was constructed based on two public datasets and univariate, multivariate, and LASSO Cox regression analysis. Patients were divided into low- and high-risk groups based on the median risk score in the training and validation sets. We analyzed enriched pathways and immune cell infiltration, applying the GSEA and the immune evaluation algorithms. RESULTS Stratification and multivariate Cox analysis unveiled that the six-gene signature was an independent prognostic factor. The signature (0.806/0.795/0.822) showed a remarkable prognostic performance, with 1-, 3-, and 5-year time-dependent AUC, higher than for grade (0.612/0.638/0.649) and 1p19q codeletion status (0.606/0.658/0.676). High-risk patients had higher infiltrating immune cells. However, the specific immune escape was observed in the high-risk group after immune activation, owing to increasing immunosuppressive cells, inhibitory cytokines, and immune checkpoint molecules. Moreover, a novel nomogram model was developed to evaluate the survival in IDH-mutant LGGs patients. CONCLUSION The six-gene signature could be a promising prognostic biomarker, which is promising to promote individual therapy and improve the clinical outcomes of IDH-mutant gliomas. The study also refined the current classification system of IDH-mutant gliomas, classifying patients into two subtypes with distinct immunophenotypes and overall survival.
Collapse
Affiliation(s)
- Gang Xiao
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- GenePlus- Shenzhen Clinical Laboratory, Shenzhen 518122, China
| | - Lifeng Li
- Geneplus-Beijing, Beijing 102205, China
| | - Chao Liu
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhiyuan Liu
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiqin Peng
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | - Xin Yi
- Geneplus-Beijing, Beijing 102205, China
| | - Rongrong Zhou
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Somatostatin Receptors in Human Meningiomas-Clinicopathological Aspects. Cancers (Basel) 2021; 13:cancers13225704. [PMID: 34830858 PMCID: PMC8616360 DOI: 10.3390/cancers13225704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Meningioma diagnostics and grading are currently based on subjective histopathological criteria given by the 2016 World Health Organization (WHO) classification. However, biomarkers may provide a more objective approach to diagnostics. This study was designed to elucidate the diagnostic and prognostic value of somatostatin receptors (SSTRs) as biomarkers in meningiomas, which could help to identify patients with a higher risk of recurrence and provide more personalized treatment. We have confirmed, in a population of 162 patients, that SSTRs have diagnostic value and may aid in the differentiation between WHO grade 1 and grade 2 tumors. Furthermore, SSTR1, SSTR2 and SSTR5 were associated with higher malignancy grades. SSTR2 expression was found to be characteristic in meningiomas. To maintain objectiveness, we scoped for a digital evaluation of immunoreactivity. We aim to impact and motivate researchers to further investigations towards more objective criteria in meningioma diagnostics, which in turn will improve patient care. Abstract Meningiomas have high recurrence rates despite frequently benign histopathological appearances. Somatostatin receptors (SSTRs) may be reliable biomarkers that could identify patients with increased risk of recurrence. Even though SSTRs are previously detected in meningiomas, their associations to clinicopathological features remain unclear. The aim of this study was to investigate the diagnostic and prognostic value of SSTRs in a large series of human meningiomas with long follow-up data. Immunohistochemistry was used to measure the expression of SSTR1-SSTR5 in tissue samples from 162 patients diagnosed with intracranial meningiomas of World Health Organization (WHO) grade 1 or 2. Digital scoring and a manual staining index were applied to assess immunoreactivity. All SSTRs, except SSTR4, were upregulated in our series of meningiomas. SSTR1 (p = 0.036), SSTR2 (p = 0.036) and SSTR5 (p = 0.029) were associated with a higher malignancy grade. SSTR2 presented as the most reliable marker. Only SSTR2 was associated with time to recurrence (TTR) in univariate Cox regression analyses. Manual staining index was strongly correlated with digital scoring for all SSTRs (r > 0.65, p < 0.001). SSTRs, and especially SSTR2, are useful in the diagnostics of meningiomas, even though their prognostic value appears limited. Digital scoring is valuable to ensure reproducibility.
Collapse
|
5
|
Pecere T, Ponterio E, Di Iorio E, Carli M, Fassan M, Santoro L, Bissaro M, Bernabè G, Moro S, Castagliuolo I, Palù G. On the mechanism of tumor cell entry of aloe-emodin, a natural compound endowed with anticancer activity. Int J Cancer 2021; 149:1129-1136. [PMID: 33990938 PMCID: PMC8361998 DOI: 10.1002/ijc.33686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 01/17/2023]
Abstract
Aloe‐emodin (1,8‐dihydroxy‐3‐[hydroxymethyl]‐anthraquinone), AE, is one of the active constituents of a number of plant species used in traditional medicine. We have previously identified, for the first time, AE as a new antitumor agent and shown that its selective in vitro and in vivo killing of neuroblastoma cells was promoted by a cell‐specific drug uptake process. However, the molecular mechanism underlying the cell entry of AE has remained elusive as yet. In this report, we show that AE enters tumor cells via two of the five somatostatin receptors: SSTR2 and SSTR5. This observation was suggested by gene silencing, receptor competition, imaging and molecular modeling experiments. Furthermore, SSTR2 was expressed in all surgical neuroblastoma specimens we analyzed by immunohistochemistry. The above findings have strong implications for the clinical adoption of this natural anthraquinone molecule as an antitumor agent.
Collapse
Affiliation(s)
- Teresa Pecere
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Eleonora Ponterio
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Enzo Di Iorio
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Modesto Carli
- Hematology Oncology Division, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Matteo Fassan
- Department of Medicine, University of Padova, Padova, Italy
| | | | - Maicol Bissaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Octreotide and Pasireotide Combination Treatment in Somatotroph Tumor Cells: Predominant Role of SST 2 in Mediating Ligand Effects. Cancers (Basel) 2021; 13:cancers13081816. [PMID: 33920241 PMCID: PMC8069349 DOI: 10.3390/cancers13081816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary First-generation somatostatin receptor ligands, such as octreotide, are the first-line medical therapy in acromegaly. Octreotide shows preferential binding for somatostatin receptor subtype 2 (SST2), while the second-generation ligand, pasireotide, has high affinity for multiple SSTs. We aimed to elucidate whether pasireotide acts via other receptors than SST2 in somatotroph tumors, and to investigate the potential role of the combination therapy octreotide plus pasireotide. We found that octreotide and pasireotide are superimposable in reducing GH secretion in cultured somatotroph tumor cells, as well as in inhibiting cell proliferation and intracellular pathway activity in rat GH4C1 cells (a model of somatotroph tumors). We did not find any additive/synergistic effect for the combination treatment. Furthermore, we observed that co-incubation with a SST2-selective antagonist reversed the inhibitory effect of both compounds. Therefore, the two drugs act mainly via SST2 in somatotroph tumor cells, and their combination is not superior to single agent treatment. Abstract First-generation somatostatin receptor ligands (fg-SRLs), such as octreotide (OCT), represent the first-line medical therapy in acromegaly. Fg-SRLs show a preferential binding affinity for somatostatin receptor subtype-2 (SST2), while the second-generation ligand, pasireotide (PAS), has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). Whether PAS acts via SST2 in somatotroph tumors, or through other SSTs (e.g., SST5), is a matter of debate. In this light, the combined treatment OCT+PAS could result in additive/synergistic effects. We evaluated the efficacy of OCT and PAS (alone and in combination) on growth hormone (GH) secretion in primary cultures from human somatotroph tumors, as well as on cell proliferation, intracellular signaling and receptor trafficking in the rat GH4C1 cell line. The results confirmed the superimposable efficacy of OCT and PAS in reducing GH secretion (primary cultures), cell proliferation, cAMP accumulation and intracellular [Ca2+] increase (GH4C1 cells), without any additive effect observed for OCT+PAS. In GH4C1 cells, co-incubation with a SST2-selective antagonist reversed the inhibitory effect of OCT and PAS on cell proliferation and cAMP accumulation, while both compounds resulted in a robust internalization of SST2 (but not SST5). In conclusion, OCT and PAS seem to act mainly through SST2 in somatotroph tumor cells in vitro, without inducing any additive/synergistic effect when tested in combination.
Collapse
|
7
|
Patel M, Tena I, Jha A, Taieb D, Pacak K. Somatostatin Receptors and Analogs in Pheochromocytoma and Paraganglioma: Old Players in a New Precision Medicine World. Front Endocrinol (Lausanne) 2021; 12:625312. [PMID: 33854479 PMCID: PMC8039528 DOI: 10.3389/fendo.2021.625312] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroendocrine tumors overexpress somatostatin receptors, which serve as important and unique therapeutic targets for well-differentiated advanced disease. This overexpression is a well-established finding in gastroenteropancreatic neuroendocrine tumors which has guided new medical therapies in the administration of somatostatin analogs, both "cold", particularly octreotide and lanreotide, and "hot" analogs, chelated to radiolabeled isotopes. The binding of these analogs to somatostatin receptors effectively suppresses excess hormone secretion and tumor cell proliferation, leading to stabilization, and in some cases, tumor shrinkage. Radioisotope-labeled somatostatin analogs are utilized for both tumor localization and peptide radionuclide therapy, with 68Ga-DOTATATE and 177Lu-DOTATATE respectively. Benign and malignant pheochromocytomas and paragangliomas also overexpress somatostatin receptors, irrespective of embryological origin. The pattern of somatostatin receptor overexpression is more prominent in succinate dehydrogenase subunit B gene mutation, which is more aggressive than other subgroups of this disease. While the Food and Drug Administration has approved the use of 68Ga-DOTATATE as a radiopharmaceutical for somatostatin receptor imaging, the use of its radiotherapeutic counterpart still needs approval beyond gastroenteropancreatic neuroendocrine tumors. Thus, patients with pheochromocytoma and paraganglioma, especially those with inoperable or metastatic diseases, depend on the clinical trials of somatostatin analogs. The review summarizes the advances in the utilization of somatostatin receptor for diagnostic and therapeutic approaches in the neuroendocrine tumor subset of pheochromocytoma and paraganglioma; we hope to provide a positive perspective in using these receptors as targets for treatment in this rare condition.
Collapse
Affiliation(s)
- Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Isabel Tena
- Scientific Department, Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
- Section of Medical Oncology, Consorcio Hospitalario Provincial of Castellon, Castellon, Spain
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Karel Pacak,
| |
Collapse
|
8
|
Cai L, Tu L, Yang X, Zhang Q, Tian T, Gu R, Qu X, Wang Q, Tian J. HOTAIR Accelerates Dyskinesia in a MPTP-Lesioned Mouse Model of PD via SSTR1 Methylation-Mediated ERK1/2 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:140-152. [PMID: 32927363 PMCID: PMC7494946 DOI: 10.1016/j.omtn.2020.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022]
Abstract
Homeobox transcript antisense RNA (HOTAIR), has been associated with neuroprotective effects in Parkinson's disease (PD). However, the underlying mechanisms still remain unclear. Hence, this present study attempted to clarify the functional relevance of HOTAIR in PD. We established an in vivo mouse model of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and an in vitro cell model of PD by treating dopaminergic neuron MN9D cells with 1-methyl-4-phenylpyridinium species (MPP+). The expressions of somatostatin receptor 1 (SSTR1) and HOTAIR were altered to examine their effects on MN9D cell viability and apoptosis, as well as on movement impairments in MPTP-induced PD mouse model. The results indicated that HOTAIR expression was upregulated and SSTR1 was downregulated in in vivo and in vitro PD models. HOTAIR could bind to the promoter region of SSTR1, resulting in an increase of SSTR1 methylation through the recruitment of DNA methyltransferases in PD cell models. Notably, overexpression of HOTAIR and silencing of SSTR1 enhanced dopaminergic neuron apoptosis in MN9D cells and exacerbated dyskinesia in MPTP-induced PD mouse model. Collectively, overexpressed HOTAIR stimulates DNA methylation of SSTR1 to reduce SSTR1 expression, thereby accelerating dyskinesia and facilitating dopaminergic neuron apoptosis in a MPTP-lesioned PD mouse model via activation of the ERK1/2 axis.
Collapse
Affiliation(s)
- Lijun Cai
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P.R. China
| | - Li Tu
- Department of General Practice, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P.R. China
| | - Xiulin Yang
- Emergency Department of Internal Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Qian Zhang
- Emergency Department of Internal Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Tian Tian
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Rang Gu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Xiang Qu
- Emergency Department of Internal Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Qian Wang
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Jinyong Tian
- Emergency Department of Internal Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China.
| |
Collapse
|
9
|
Design, preparation and biological evaluation of a 177Lu-labeled somatostatin receptor antagonist for targeted therapy of neuroendocrine tumors. Bioorg Chem 2020; 94:103381. [DOI: 10.1016/j.bioorg.2019.103381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/26/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
10
|
Biological and Biochemical Basis of the Differential Efficacy of First and Second Generation Somatostatin Receptor Ligands in Neuroendocrine Neoplasms. Int J Mol Sci 2019; 20:ijms20163940. [PMID: 31412614 PMCID: PMC6720449 DOI: 10.3390/ijms20163940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Endogenous somatostatin shows anti-secretory effects in both physiological and pathological settings, as well as inhibitory activity on cell growth. Since somatostatin is not suitable for clinical practice, researchers developed synthetic somatostatin receptor ligands (SRLs) to overcome this limitation. Currently, SRLs represent pivotal tools in the treatment algorithm of neuroendocrine tumors (NETs). Octreotide and lanreotide are the first-generation SRLs developed and show a preferential binding affinity to somatostatin receptor (SST) subtype 2, while pasireotide, which is a second-generation SRL, has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). A number of studies demonstrated that first-generation and second-generation SRLs show distinct functional properties, besides the mere receptor affinity. Therefore, the aim of the present review is to critically review the current evidence on the biological effects of SRLs in pituitary adenomas and neuroendocrine tumors, by mainly focusing on the differences between first-generation and second-generation ligands.
Collapse
|
11
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2019; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
12
|
Dickinson PS, Armstrong MK, Dickinson ES, Fernandez R, Miller A, Pong S, Powers BW, Pupo-Wiss A, Stanhope ME, Walsh PJ, Wiwatpanit T, Christie AE. Three members of a peptide family are differentially distributed and elicit differential state-dependent responses in a pattern generator-effector system. J Neurophysiol 2018; 119:1767-1781. [PMID: 29384453 PMCID: PMC6008092 DOI: 10.1152/jn.00850.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/22/2022] Open
Abstract
C-type allatostatins (AST-Cs) are pleiotropic neuropeptides that are broadly conserved within arthropods; the presence of three AST-C isoforms, encoded by paralog genes, is common. However, these peptides are hypothesized to act through a single receptor, thereby exerting similar bioactivities within each species. We investigated this hypothesis in the American lobster, Homarus americanus, mapping the distributions of AST-C isoforms within relevant regions of the nervous system and digestive tract, and comparing their modulatory influences on the cardiac neuromuscular system. Immunohistochemistry showed that in the pericardial organ, a neuroendocrine release site, AST-C I and/or III and AST-C II are contained within distinct populations of release terminals. Moreover, AST-C I/III-like immunoreactivity was seen in midgut epithelial endocrine cells and the cardiac ganglion (CG), whereas AST-C II-like immunoreactivity was not seen in these tissues. These data suggest that AST-C I and/or III can modulate the CG both locally and hormonally; AST-C II likely acts on the CG solely as a hormonal modulator. Physiological studies demonstrated that all three AST-C isoforms can exert differential effects, including both increases and decreases, on contraction amplitude and frequency when perfused through the heart. However, in contrast to many state-dependent modulatory changes, the changes in contraction amplitude and frequency elicited by the AST-Cs were not functions of the baseline parameters. The responses to AST-C I and III, neither of which is COOH-terminally amidated, are more similar to one another than they are to the responses elicited by AST-C II, which is COOH-terminally amidated. These results suggest that the three AST-C isoforms are differentially distributed in the lobster nervous system/midgut and can elicit distinct behaviors from the cardiac neuromuscular system, with particular structural features, e.g., COOH-terminal amidation, likely important in determining the effects of the peptides. NEW & NOTEWORTHY Multiple isoforms of many peptides exert similar effects on neural circuits. In this study we show that each of the three isoforms of C-type allatostatin (AST-C) can exert differential effects, including both increases and decreases in contraction amplitude and frequency, on the lobster cardiac neuromuscular system. The distribution of effects elicited by the nonamidated isoforms AST-C I and III are more similar to one another than to the effects of the amidated AST-C II.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Brian W Powers
- Department of Biology, Bowdoin College , Brunswick, Maine
| | | | | | | | | | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa , Honolulu, Hawaii
| |
Collapse
|
13
|
Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget 2018; 7:38638-38657. [PMID: 27229535 PMCID: PMC5122417 DOI: 10.18632/oncotarget.9575] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype.
Collapse
|
14
|
Pedraza-Arévalo S, Hormaechea-Agulla D, Gómez-Gómez E, Requena MJ, Selth LA, Gahete MD, Castaño JP, Luque RM. Somatostatin receptor subtype 1 as a potential diagnostic marker and therapeutic target in prostate cancer. Prostate 2017; 77:1499-1511. [PMID: 28905400 DOI: 10.1002/pros.23426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is a highly prevalent neoplasia that is strongly influenced by the endocrine system. Somatostatin (SST) and its five receptors (sst1-5 encoded by SSTR1-5 genes) comprise a pleiotropic system present in most endocrine-related cancers, some of which are successfully treated with SST analogs. Interestingly, it has been reported that SSTR1 is overexpressed in PCa, but its regulation, functional role, and clinical implications are still poorly known. METHODS PCa specimens (n = 52) from biopsies and control prostates from cystoprostatectomies (n = 12), as well as in silico databases were used to evaluate SSTR1 and miRNAs expression. In vitro studies in 22Rv1 PCa cells were implemented to explore the regulation of SSTR1/sst1 by different miRNAs, and to evaluate the consequences of SSTR1/sst1 overexpression, silencing and/or activation [with the specific BIM-23926 sst1 agonist (IPSEN)] on cell-proliferation, migration, signaling-pathways, and androgen-signaling. RESULTS We found that SSTR1 is overexpressed in multiple cohorts of PCa samples, as compared with normal prostate tissues, wherein it correlates with androgen receptor (AR) expression, and appears to be associated with aggressiveness (metastasis). Furthermore, our data revealed that SSTR1/sst1 expression might be regulated by specific miRNAs in PCa, including miR-24, which is downregulated in PCa samples and correlates inversely with SSTR1 expression. In vitro studies indicated that treatment with the BIM-23926 sst1 agonist, as well as SSTR1 overexpression, decreased, whereas SSTR1 silencing increased, cell-proliferation in 22Rv1 cells, likely through the regulation of PI3K/AKT-CCND3 signaling-pathway. Importantly, sst1 action was also able to modulate androgen/AR activity, and reduced PSA secretion from PCa cell lines. CONCLUSIONS Altogether, our results indicate that SSTR1 is overexpressed in PCa, where it can exert a relevant pathophysiological role by decreasing cell-proliferation and PSA secretion. Therefore, sst1, possibly in combination with miR-24, could be used as a novel tool to explore therapeutic targets in PCa.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Cell Line, Tumor
- Humans
- Male
- Middle Aged
- Molecular Targeted Therapy
- Prostatic Neoplasms, Castration-Resistant/diagnosis
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/therapy
- Receptors, Somatostatin/biosynthesis
- Receptors, Somatostatin/genetics
Collapse
Affiliation(s)
- Sergio Pedraza-Arévalo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Daniel Hormaechea-Agulla
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Urology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - María J Requena
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Urology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, SA, 5005, Australia
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Raul M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| |
Collapse
|
15
|
Mei Z, Yang Y, Li Y, Yang F, Li J, Xing N, Xu ZQD. Galanin suppresses proliferation of human U251 and T98G glioma cells via its subtype 1 receptor. Biol Chem 2017; 398:1127-1139. [PMID: 28525358 DOI: 10.1515/hsz-2016-0320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Galanin is a neuropeptide with a widespread distribution throughout the nervous and endocrine systems, and recent studies have shown an anti-proliferative effect of galanin on several types of tumors. However, whether and how galanin and its receptors are involved in the regulation of cell proliferation in glioma cells remains unclear. In this study, the roles of galanin and its subtype 1 receptor (GAL1) in the proliferation of human U251 and T98G glioma cells were investigated. We found that galanin significantly suppressed the proliferation of U251 and T98G cells as well as tumor growth in nude mice. However, galanin did not exert apoptotic or cytotoxic effects on these two cell lines. In addition, we showed that galanin decreased the proliferation of U251 and T98G cells via its GAL1 receptor. Finally, we found that the GAL1 receptor was involved in the suppressive effects of galanin by activating ERK1/2.
Collapse
|
16
|
Hagimori M, Fuchigami Y, Kawakami S. Peptide-Based Cancer-Targeted DDS and Molecular Imaging. Chem Pharm Bull (Tokyo) 2017; 65:618-624. [DOI: 10.1248/cpb.c17-00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masayori Hagimori
- Department of Pharmaceutical Informatics, Nagasaki University Graduate School of Biomedical Sciences
| | - Yuki Fuchigami
- Department of Pharmaceutical Informatics, Nagasaki University Graduate School of Biomedical Sciences
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
17
|
Cives M, Strosberg J. The Expanding Role of Somatostatin Analogs in Gastroenteropancreatic and Lung Neuroendocrine Tumors. Drugs 2015; 75:847-58. [DOI: 10.1007/s40265-015-0397-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Ruta graveolens L. induces death of glioblastoma cells and neural progenitors, but not of neurons, via ERK 1/2 and AKT activation. PLoS One 2015; 10:e0118864. [PMID: 25785932 PMCID: PMC4364962 DOI: 10.1371/journal.pone.0118864] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/07/2015] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy) five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138) widely used to test novel drugs in preclinical studies. Ruta graveolens’ effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1) obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue’s noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.
Collapse
|
19
|
Hennigs JK, Müller J, Adam M, Spin JM, Riedel E, Graefen M, Bokemeyer C, Sauter G, Huland H, Schlomm T, Minner S. Loss of somatostatin receptor subtype 2 in prostate cancer is linked to an aggressive cancer phenotype, high tumor cell proliferation and predicts early metastatic and biochemical relapse. PLoS One 2014; 9:e100469. [PMID: 25010045 PMCID: PMC4091868 DOI: 10.1371/journal.pone.0100469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/26/2014] [Indexed: 01/03/2023] Open
Abstract
Somatostatin receptor subtype 2 (SSTR2) is the most frequently expressed SSTR subtype in normal human tissues. SSTR2 expression is differentially regulated in various tumor types and therapeutic somatostatin analogs binding to SSTR2 are in clinical use. In prostate cancers highly contradictory results in terms of SSTR2 expression and its consequences have been published over the past years. The aim of this study was to clarify prevalence and clinical significance of SSTR2 expression in prostate cancer. Therefore, quantitative immunohistochemistry (IHC) using a tissue microarray containing samples from 3,261 prostate cancer patients with extensive clinical and molecular cancer characteristics and oncological follow-up data was performed. IHC data was compared to publicly available Gene Expression Omnibus datasets of human prostate cancer gene expression arrays. While membranous SSTR2 staining was always seen in normal prostate epithelium, SSTR2 staining was absent in more than half (56.1%) of 2,195 interpretable prostate cancer samples. About 13% of all analyzed prostate cancers showed moderate to strong cytoplasmic and membranous SSTR2 staining. Staining intensities were inversely correlated with high Gleason grade, advanced pT category, high tumor cell proliferation (p<0.0001 each), high pre-operative PSA levels, (p = 0.0011) and positive surgical margins (p = 0.006). In silico analysis confirmed lower SSTR2 gene expression in prostate cancers vs. normal adjacent tissue (p = 0.0424), prostate cancer metastases vs. primary cancers (p = 0.0011) and recurrent vs. non-recurrent prostate cancers (p = 0.0438). PSA-free survival gradually declined with SSTR2 staining intensity (p<0.0001). SSTR2-negative cancers were more likely to develop metastases over time (p<0.05). In conclusion, most prostate cancers are indeed SSTR2-negative and loss of SSTR2 strongly predicts an unfavorable tumor phenotype and poor prognosis. Therefore, SSTR2 expression seems an important factor in the pathogenesis of prostate cancer and re-introduction of the receptor in SSTR2-negative prostate cancers may feature a promising target for novel gene therapy approaches.
Collapse
Affiliation(s)
- Jan K. Hennigs
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Internal Medicine II - Oncology, Hematology, BMT with Section Pneumology, Hubertus-Wald-Tumorzentrum/University Cancer Center Hamburg (UCCH) University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Julia Müller
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matti Adam
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University – School of Medicine, Stanford, California, United States of America
| | - Joshua M. Spin
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University – School of Medicine, Stanford, California, United States of America
| | - Emilia Riedel
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Internal Medicine II - Oncology, Hematology, BMT with Section Pneumology, Hubertus-Wald-Tumorzentrum/University Cancer Center Hamburg (UCCH) University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- Martini Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Barbieri F, Albertelli M, Grillo F, Mohamed A, Saveanu A, Barlier A, Ferone D, Florio T. Neuroendocrine tumors: insights into innovative therapeutic options and rational development of targeted therapies. Drug Discov Today 2014; 19:458-68. [DOI: 10.1016/j.drudis.2013.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/02/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
|
21
|
Ruscica M, Magni P, Steffani L, Gatto F, Albertelli M, Rametta R, Valenti L, Ameri P, Magnaghi V, Culler MD, Minuto F, Ferone D, Arvigo M. Characterization and sub-cellular localization of SS1R, SS2R, and SS5R in human late-stage prostate cancer cells: effect of mono- and bi-specific somatostatin analogs on cell growth. Mol Cell Endocrinol 2014; 382:860-70. [PMID: 24211300 DOI: 10.1016/j.mce.2013.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 01/10/2023]
Abstract
Somatostatin (SST) and SST receptors (SS1R, SS2R, SS3R, SS4R and SS5R) appear to play a significant role in the progression of human prostate cancer (PCa), which is associated with heterogeneity of SSRs expression and specific cell localization as we already demonstrated in the LNCaP cell line, an in vitro model of human androgen-dependent PCa. In this study, PC-3 and DU-145 human castration-resistant PCa cells were found to express all SSRs, while LNCaP expressed all but SS4R. A 48-h treatment with BIM-23244 (SS2R/SS5R) or BIM-23926 (SS1R) SST analogs was more effective in inhibiting cell proliferation, compared to BIM-23120 (SS2R), BIM-23206 (SS5R) and BIM-23704 (SS1R/SS2R). BIM-23926 (SS1R) treatment increased the amount of p21 and decreased phosphorylated (p) ERK1/2. BIM-23244 (SS2R/SS5R) led to p21 increment only in PC-3 cells, and to pERK1/2 reduction in both cell lines. SS1R/SS2R and SS2R/SS5R receptor dimers were natively present on cell membrane and their amount was increased by BIM-23704 (SS1R/SS2R) or BIM-23244 (SS2R/SS5R) treatment, respectively. SS1R, SS2R and SS5R were differently distributed among nuclear, lysosomal and microsomal compartment, according to their different recycling dynamics. These results show that, in PC-3, DU-145 and LNCaP cells, activation of SS1R and SS2R/SS5R leads to relevant antiproliferative effects.
Collapse
Affiliation(s)
- M Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - P Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - L Steffani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - F Gatto
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| | - M Albertelli
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| | - R Rametta
- Pathophysiology and Transplantation, Università degli Studi di Milano, UO Medicina Interna 1B, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - L Valenti
- Pathophysiology and Transplantation, Università degli Studi di Milano, UO Medicina Interna 1B, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - P Ameri
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| | - V Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M D Culler
- Biomeasure Incorporated/IPSEN, Milford, MA, USA
| | - F Minuto
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| | - D Ferone
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy.
| | - M Arvigo
- Department of Internal Medicine and Medical Specialities & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, Università di Genova, Italy
| |
Collapse
|
22
|
New molecules and old drugs as emerging approaches to selectively target human glioblastoma cancer stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:126586. [PMID: 24527434 PMCID: PMC3909978 DOI: 10.1155/2014/126586] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
Despite relevant progress obtained by multimodal treatment, glioblastoma (GBM), the most aggressive primary brain tumor, is still incurable. The most encouraging advancement of GBM drug research derives from the identification of cancer stem cells (CSCs), since these cells appear to represent the determinants of resistance to current standard therapies. The goal of most ongoing studies is to identify drugs able to affect CSCs biology, either inducing selective toxicity or differentiating this tumor cell population into nontumorigenic cells. Moreover, the therapeutic approach for GBM could be improved interfering with chemo- or radioresistance mechanisms, microenvironment signals, and the neoangiogenic process. During the last years, molecular targeted compounds such as sorafenib and old drugs, like metformin, displayed interesting efficacy in preclinical studies towards several tumors, including GBM, preferentially affecting CSC viability. In this review, the latest experimental results, controversies, and prospective application concerning these promising anticancer drugs will be discussed.
Collapse
|
23
|
Uehara T, Kanazawa T, Mizukami H, Uchibori R, Tsukahara T, Urabe M, Kume A, Misawa K, Carey TE, Suzuki M, Ichimura K, Ozawa K. Novel anti-tumor mechanism of galanin receptor type 2 in head and neck squamous cell carcinoma cells. Cancer Sci 2013; 105:72-80. [PMID: 24168112 PMCID: PMC4317884 DOI: 10.1111/cas.12315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/23/2013] [Accepted: 10/27/2013] [Indexed: 12/21/2022] Open
Abstract
Galanin and its receptors, GALR1 and GALR2, are known tumor suppressors and potential therapeutic targets in head and neck squamous cell carcinoma (HNSCC). Previously, we demonstrated that, in GALR1-expressing HNSCC cells, the addition of galanin suppressed tumor proliferation via upregulation of ERK1/2 and cyclin-dependent kinase inhibitors, whereas, in GALR2-expressing cells, the addition of galanin not only suppressed proliferation, but also induced apoptosis. In this study, we first transduced HEp-2 and KB cell lines using a recombinant adeno-associated virus (rAAV)-green fluorescent protein (GFP) vector and confirmed a high GFP expression rate (>90%) in both cell lines at the standard vector dose. Next, we demonstrated that GALR2 expression in the presence of galanin suppressed cell viability to 40-60% after 72 h in both cell lines. Additionally, the annexin V-positive rate and sub-G0/G1 phase population were significantly elevated in HEp-2 cells (mock vs GALR2: 12.3 vs 25.0% (P < 0.01) and 9.1 vs 32.0% (P < 0.05), respectively) after 48 h. These changes were also observed in KB cells, although to a lesser extent. Furthermore, in HEp-2 cells, GALR2-mediated apoptosis was caspase-independent, involving downregulation of ERK1/2, followed by induction of the pro-apoptotic Bcl-2 protein, Bim. These results illustrate that transient GALR2 expression in the presence of galanin induces apoptosis via diverse pathways and serves as a platform for suicide gene therapy against HNSCC.
Collapse
Affiliation(s)
- Takayuki Uehara
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan; Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan; Department of Otolaryngology, Head and Neck Surgery, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Theodoropoulou M, Stalla GK. Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol 2013; 34:228-52. [PMID: 23872332 DOI: 10.1016/j.yfrne.2013.07.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/13/2013] [Accepted: 07/12/2013] [Indexed: 02/08/2023]
Abstract
Somatostatin is a peptide with a potent and broad antisecretory action, which makes it an invaluable drug target for the pharmacological management of pituitary adenomas and neuroendocrine tumors. Somatostatin receptors (SSTR1, 2A and B, 3, 4 and 5) belong to the G protein coupled receptor family and have a wide expression pattern in both normal tissues and solid tumors. Investigating the function of each SSTR in several tumor types has provided a wealth of information about the common but also distinct signaling cascades that suppress tumor cell proliferation, survival and angiogenesis. This provided the rationale for developing multireceptor-targeted somatostatin analogs and combination therapies with signaling-targeted agents such as inhibitors of the mammalian (or mechanistic) target of rapamycin (mTOR). The ability of SSTR to internalize and the development of rabiolabeled somatostatin analogs have improved the diagnosis and treatment of neuroendocrine tumors.
Collapse
Affiliation(s)
- Marily Theodoropoulou
- Department of Endocrinology, Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany.
| | | |
Collapse
|
25
|
Acute ethanol administration inhibits Toll-like receptor 4 signaling pathway in rat intestinal epithelia. Alcohol 2013; 47:231-9. [PMID: 23428594 DOI: 10.1016/j.alcohol.2013.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 01/17/2013] [Accepted: 01/19/2013] [Indexed: 12/24/2022]
Abstract
Excess alcohol intake, as in binge drinking, increases susceptibility to microbial pathogens. Alcohol impairs macrophage function by suppression of the Toll-like receptor 4 (TLR4) pathway. This study investigated the effects of acute ethanol intake on the TLR4 pathway in rat intestinal epithelia, which usually encounters luminal antigens at first and participates in the development of intestinal immunity. Twenty Wistar rats were randomly assigned to an ethanol group given ethanol as a 25% (v/v) solution in water at 7.5 g/kg, or a control group given saline, by oral gavage daily for 3 days. The epithelial histology and ultrastructure, the intestinal microflora, peripheral and portal venous plasma lipopolysaccharide (LPS) levels, and somatostatin (SST) levels in the peripheral plasma and small intestine were evaluated. Somatostatin receptor 2 (SSTR2), TLR4, TANK binding kinase-1 (TBK1), activated nuclear factor-κB (NF-κB), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in the intestinal mucosa were assayed. LPS responsiveness with or without SST pretreatment was assayed in vitro by quantification of TLR4, TBK1, activated NF-κB, IFN-γ and TNF-α in isolated intestinal epithelia. Mucosal damage was observed in the ethanol group by light and electron microscopy. Escherichia coli cultures were unchanged in rat intestine of the ethanol group compared with controls, but lactobacilli cultures were reduced (p < 0.05). LPS levels increased in peripheral and portal venous plasma (p < 0.05), but mucosal TLR4, TBK1, nuclear NF-κB, IFN-γ and TNF-α were unchanged in the ethanol group. LPS treatment in vitro up-regulated the level of TLR4, TBK1 and nuclear NF-κB as well as the production of IFN-γ and TNF-α in isolated intestinal epithelia in the control (p < 0.05), but not the ethanol group. The stimulatory effects of LPS on intestinal epithelia isolated from the control group were significantly inhibited by SST pretreatment (p < 0.05). The peripheral plasma and intestinal levels of SST and the mucosal expression of SSTR2 in the ethanol group were significantly higher than in the control group (p < 0.05). These findings suggest the hyposensitivity of intestinal epithelial TLR4 to LPS induced by acute alcohol abuse probably through ethanol per se and ethanol-enhanced intestinal mucosal SST pathway may be a novel mechanism for increased susceptibility to intestinal pathogens.
Collapse
|
26
|
Peptide receptor targeting in cancer: the somatostatin paradigm. INTERNATIONAL JOURNAL OF PEPTIDES 2013; 2013:926295. [PMID: 23476673 PMCID: PMC3582104 DOI: 10.1155/2013/926295] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/10/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023]
Abstract
Peptide receptors involved in pathophysiological processes represent promising therapeutic targets. Neuropeptide somatostatin (SST) is produced by specialized cells in a large number of human organs and tissues. SST primarily acts as inhibitor of endocrine and exocrine secretion via the activation of five G-protein-coupled receptors, named sst1–5, while in central nervous system, SST acts as a neurotransmitter/neuromodulator, regulating locomotory and cognitive functions. Critical points of SST/SST receptor biology, such as signaling pathways of individual receptor subtypes, homo- and heterodimerization, trafficking, and cross-talk with growth factor receptors, have been extensively studied, although functions associated with several pathological conditions, including cancer, are still not completely unraveled. Importantly, SST exerts antiproliferative and antiangiogenic effects on cancer cells in vitro, and on experimental tumors in vivo. Moreover, SST agonists are clinically effective as antitumor agents for pituitary adenomas and gastro-pancreatic neuroendocrine tumors. However, SST receptors being expressed by tumor cells of various tumor histotypes, their pharmacological use is potentially extendible to other cancer types, although to date no significant results have been obtained. In this paper the most recent findings on the expression and functional roles of SST and SST receptors in tumor cells are discussed.
Collapse
|
27
|
Synthesis, characterization, conformational analysis of a cyclic conjugated octreotate peptide and biological evaluation of (99m)Tc-HYNIC-His(3)-Octreotate as novel tracer for the imaging of somatostatin receptor-positive tumors. Amino Acids 2012; 44:933-46. [PMID: 23090293 DOI: 10.1007/s00726-012-1423-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/12/2012] [Indexed: 11/27/2022]
Abstract
Peptides are attracting increasing interest in nuclear oncology for targeted tumor diagnosis and therapy. We therefore synthesized new cyclic octapeptides conjugated with HYNIC by Fmoc solid-phase peptide synthesis. These were purified and analyzed by RP-HPLC, MALDI mass, (1)H NMR, (13)C NMR, HSQC, HMBC, COSY and IR spectroscopy. Conformational analysis of the peptides was performed by circular dichroism spectroscopy, in pure water and trifluoroethanol-water (1:1), revealed the presence of strong secondary structural features like β-sheet and random coils. Labeling was performed with (99m)Tc using Tricine and EDDA as coligands by SnCl(2) method to get products with excellent radiochemical purity >99.5 %. Metabolic stability analysis did not show any evidence of breaking of the labeled compounds and formation of free (99m)Tc. Internalization studies were done and IC(50) values were determined in somatostatin receptor-expressing C6 glioma cell line and rat brain cortex membrane, and the results compared with HYNIC-TOC as standard. The IC(50) values of (99m)Tc-HYNIC-His(3)-Octreotate (21 ± 0.93 nM) and (99m)Tc-HYNIC-TOC (2.87 ± 0.41 nM) proved to be comparable. Biodistribution and image study on normal rat under gamma camera showed very high uptake in kidney and urine, indicating kidney as primary organ for metabolism and route of excretion. Biodistribution and image study on rats bearing C6 glioma tumor found high uptake in tumor (1.27 ± 0.15) and pancreas (1.71 ± 0.03). Using these findings, new derivatives can be prepared to develop (99m)Tc radiopharmaceuticals for imaging somatostatin receptor-positive tumors.
Collapse
|
28
|
Florio T, Barbieri F. The status of the art of human malignant glioma management: the promising role of targeting tumor-initiating cells. Drug Discov Today 2012; 17:1103-10. [PMID: 22704957 DOI: 10.1016/j.drudis.2012.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/17/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
Glioblastoma is the most prevalent and malignant form of brain cancer, but the current available multimodality treatments yield poor survival improvement. Thus, innovative therapeutic strategies represent the challenging topic for glioblastoma management. Multidisciplinary advances, supporting current standard of care therapies and investigational trials that reveal potential drug targets for glioblastoma are reviewed. A radical change in glioblastoma therapeutic approaches could arise from the identification of cancer stem cells, putative tumor-initiating cells involved in tumor initiation, progression and resistance, as innovative drug target. Still controversial identification of markers and molecular regulators in glioma tumor-initiating cells and novel approaches targeting these cells are discussed.
Collapse
Affiliation(s)
- Tullio Florio
- Section of Pharmacology, Department of Internal Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | | |
Collapse
|
29
|
Annunziata M, Luque RM, Durán-Prado M, Baragli A, Grande C, Volante M, Gahete MD, Deltetto F, Camanni M, Ghigo E, Castaño JP, Granata R. Somatostatin and somatostatin analogues reduce PDGF-induced endometrial cell proliferation and motility. Hum Reprod 2012; 27:2117-29. [PMID: 22588000 DOI: 10.1093/humrep/des144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Endometriosis is characterized by ectopic implantation of endometrial cells, which show increased proliferation and migration. Somatostatin (SST) and its analogues inhibit normal and cancer cell growth and motility through the SST receptors, sst1-5. Cortistatin (CST), which displays high structural and functional homology with SST, binds all ssts, as well as MrgX2. Our objective was to investigate the gene expression of the SST/CST system and to determine the effect of SST and its analogues on platelet-derived growth factor (PDGF)-induced proliferation and motility in telomerase-immortalized human endometrial stromal cell (T HESC) line and in primary endometrial stromal cell (ESCs) isolated from human endometriotic tissues. METHODS Ectopic endometrial tissues were collected from women (n= 23) undergoing laparoscopic surgery for endometriosis (Stage III/IV). Gene expression was evaluated by real-time PCR, cell motility by wound healing assay, protein expression and β-actin rearrangement by immunofluorescence, cell proliferation by the Alamar blue assay and ERK1/2 and Akt phosphorylation by western blot. RESULTS Human endometriotic tissues, primary ESCs and T HESCs expressed SST, CST and ssts. SST, its analogues SOM230 and octreotide, as well as CST, counteracted PDGF-induced proliferation and migration in both ESCs and T HESCs. SST also inhibited vascular endothelial growth factor and metalloprotease-2 mRNA expression, and reduced basal and PDGF-induced ERK1/2 phosphorylation. CONCLUSION These results indicate that the SST/CST system is expressed in endometriotic tissues and cells. The inhibitory effects of SST and its analogues on PDGF-induced proliferation and motility suggest that these peptides may represent promising tools in the treatment of endometriosis.
Collapse
Affiliation(s)
- Marta Annunziata
- Laboratory of Molecular and Cellular Endocrinology, Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim JK, Kwon O, Kim J, Kim EK, Park HK, Lee JE, Kim KL, Choi JW, Lim S, Seok H, Lee-Kwon W, Choi JH, Kang BH, Kim S, Ryu SH, Suh PG. PDZ domain-containing 1 (PDZK1) protein regulates phospholipase C-β3 (PLC-β3)-specific activation of somatostatin by forming a ternary complex with PLC-β3 and somatostatin receptors. J Biol Chem 2012; 287:21012-24. [PMID: 22528496 DOI: 10.1074/jbc.m111.337865] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase C-β (PLC-β) is a key molecule in G protein-coupled receptor (GPCR)-mediated signaling. Many studies have shown that the four PLC-β subtypes have different physiological functions despite their similar structures. Because the PLC-β subtypes possess different PDZ-binding motifs, they have the potential to interact with different PDZ proteins. In this study, we identified PDZ domain-containing 1 (PDZK1) as a PDZ protein that specifically interacts with PLC-β3. To elucidate the functional roles of PDZK1, we next screened for potential interacting proteins of PDZK1 and identified the somatostatin receptors (SSTRs) as another protein that interacts with PDZK1. Through these interactions, PDZK1 assembles as a ternary complex with PLC-β3 and SSTRs. Interestingly, the expression of PDZK1 and PLC-β3, but not PLC-β1, markedly potentiated SST-induced PLC activation. However, disruption of the ternary complex inhibited SST-induced PLC activation, which suggests that PDZK1-mediated complex formation is required for the specific activation of PLC-β3 by SST. Consistent with this observation, the knockdown of PDZK1 or PLC-β3, but not that of PLC-β1, significantly inhibited SST-induced intracellular Ca(2+) mobilization, which further attenuated subsequent ERK1/2 phosphorylation. Taken together, our results strongly suggest that the formation of a complex between SSTRs, PDZK1, and PLC-β3 is essential for the specific activation of PLC-β3 and the subsequent physiologic responses by SST.
Collapse
Affiliation(s)
- Jung Kuk Kim
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhou G, Gingras MC, Liu SH, Li D, Li Z, Catania RL, Stehling KM, Li M, Paganelli G, Gibbs RA, DeMayo F, Fisher WE, Brunicardi FC. The hypofunctional effect of P335L single nucleotide polymorphism on SSTR5 function. World J Surg 2011; 35:1715-24. [PMID: 21249361 PMCID: PMC4137969 DOI: 10.1007/s00268-010-0939-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Somatostatin receptor subtype 5 (SSTR5) mediates the inhibitory effect of somatostatin on insulin expression/secretion and cell proliferation. A number of single nucleotide polymorphisms (SNPs) of SSTR5 have been identified, including P335L, a nonsynonymous SNP located in the protein C-terminal region and encrypted by the codon CCG (proline) or the codon CTG (leucine). In the present study we sought to determine the distribution of the SSTR5 P335L SNP in a cohort of pancreatic cancer patients and whether the P335L SNP affected cellular function of SSTR5 in human pancreatic cancer. METHODS The P335L germline genotype of 246 patients with pancreatic cancer (213 Caucasians, 16 Hispanics, and 17 African Americans) and 17 human pancreatic cell lines was determined with the TaqMan SNP Genotyping assay. Human SSTR5 leucine variant (L335) was generated by performing site-directed mutagenesis using SSTR5 proline variant (P335) as a template. Transient transfections were performed in HEK293, Mia PaCa-2, and β-TC-6 cells using Lipofectamine 2000. The expression of SSTR5 L335 was determined with a mouse monoclonal anti-SSTR5 L335 antibody generated in our laboratory. The cell proliferation rate was measured by performing MTS assays. Insulin concentration was measured by performing ELISA assays. RESULTS Genotyping of the patients' blood indicated that the frequency of the T allele (CT and TT genotypes) in codon 335 of SSTR5 in Caucasians, Hispanics, and African Americans was 52, 69, and 35%, respectively, which was race-dependent. Statistical analysis indicated that association between the frequency of the T allele and the existence of pancreatic cancer in each race missed significance perhaps due to limited sample size. In 17 tested human pancreatic cancer cell lines, 5 (Capan-2, HPAF-II, Panc03.27, Panc-1, and -3) were homozygous (TT genotype) and 9, including Mia PaCa-2, were heterozygous (CT genotype). Overexpression of SSTR5 L335 in Mia PaCa-2 cells enhanced cell proliferation compared to overexpression of SSTR5 P335. Overexpression of SSTR5 P335 enhanced the inhibitory effect of SSTR5 agonist RPL-1980 on cell proliferation of Mia PaCa-2 cells and glucose-stimulated insulin secretion from mouse insulinoma cells, while overexpression of SSTR5 L335 blocked the inhibitory effect of RPL-1980. Overexpression of SSTR5 L335 enhanced PDX-1 expression in Mia PaCa-2 cells. A specific monoclonal antibody was generated to detect SSTR5 P335L. CONCLUSION SSTR5 P335L SNP widely exists in the human population, in patients with pancreatic cancer, and is race-dependent. The SNP is also present in selected human pancreatic cancer cell lines. In contrast to SSTR5 P335, overexpression of the SSTR5 L335 variant resulted in cellular proliferation and PDX-1 overexpression in human pancreatic cancer cells. Its overexpression blocked the inhibitory effect of an SSTR5-specific analog on human pancreatic cancer cell proliferation and on glucose-stimulated insulin secretion from mouse insulinoma cells. These data suggest that SSTR5 P335L is a hypofunctional protein with a potentially harmful effect on function, as well as potential latent effect, and therefore it could affect the clinical response to somatostatin analog therapy for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Guisheng Zhou
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Marie-Claude Gingras
- Human Genome Sequencing Center; Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Shi-He Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Donghui Li
- Departments of Gastrointestinal Medical and Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA
| | - Zhijun Li
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Robbi L. Catania
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Kelly M. Stehling
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Min Li
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Giovanni Paganelli
- Division of Nuclear Medicine, European Institute of Oncology, Via Ripamonti 435 20141, Milan, Italy
| | - Richard A Gibbs
- Human Genome Sequencing Center; Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - Franco DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - William E. Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| | - F. Charles Brunicardi
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,USA
| |
Collapse
|
32
|
Hasskarl J, Kaufmann M, Schmid HA. Somatostatin receptors in non-neuroendocrine malignancies: the potential role of somatostatin analogs in solid tumors. Future Oncol 2011; 7:895-913. [PMID: 21732759 DOI: 10.2217/fon.11.66] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Somatostatin receptors (sstrs) are G-protein-coupled receptors that mediate various physiological effects when activated by the neuropeptide somatostatin or its synthetic analogs. In addition to the well-documented antisecretory effects of sstr2-preferential somatostatin analogs octreotide and lanreotide, ligand binding to sstr initiates an inhibitory action on tumor growth. This effect may result from both indirect actions (suppression of growth factors and growth-promoting hormones [e.g., GH/IGF-1 axis] and inhibition of angiogenesis) and direct actions (activation of antigrowth activities [e.g., apoptosis]). As solid tumor cells express multiple sstrs, there is a rationale to evaluate the potential antitumor effects of pasireotide (SOM230), a multireceptor-targeted somatostatin analog with high binding affinity for sstr1–3 and sstr5. Pasireotide reduces systemic IGF-1 levels more potently than currently available somatostatin analogs and has been well tolerated in clinical trials.
Collapse
Affiliation(s)
| | - Martina Kaufmann
- Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland
| | - Herbert A Schmid
- Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
33
|
Cakir M, Dworakowska D, Grossman A. Somatostatin receptor biology in neuroendocrine and pituitary tumours: part 1--molecular pathways. J Cell Mol Med 2011; 14:2570-84. [PMID: 20629989 PMCID: PMC4373477 DOI: 10.1111/j.1582-4934.2010.01125.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuroendocrine tumours (NETs) may occur at many sites in the body although the majority occur within the gastroenteropancreatic axis. Non-gastroenteropancreatic NETs encompass phaeochromocytomas and paragangliomas, medullary thyroid carcinoma, anterior pituitary tumour, broncho-pulmonary NETs and parathyroid tumours. Like most endocrine tumours, NETs also express somatostatin (SST) receptors (subtypes 1–5) whose ligand SST is known to inhibit endocrine and exocrine secretions and have anti-tumour effects. In the light of this knowledge, the idea of using SST analogues in the treatment of NETs has become increasingly popular and new studies have centred upon the development of new SST analogues. We attempt to review SST receptor (SSTR) biology primarily in neuroendocrine tissues, focusing on pituitary tumours. A full data search was performed through PubMed over the years 2000–2009 with keywords ‘somatostatin, molecular biology, somatostatin receptors, somatostatin signalling, NET, pituitary’ and all relevant publications have been included, together with selected publications prior to that date. SSTR signalling in non-neuroendocrine solid tumours is beyond the scope of this review. SST is a potent anti-proliferative and anti-secretory agent for some NETs. The successful therapeutic use of SST analogues in the treatment of these tumours depends on a thorough understanding of the diverse effects of SSTR subtypes in different tissues and cell types. Further studies will focus on critical points of SSTR biology such as homo- and heterodimerization of SSTRs and the differences between post-receptor signalling pathways of SSTR subtypes.
Collapse
Affiliation(s)
- Mehtap Cakir
- Selcuk University, Meram School of Medicine, Division of Endocrinology and Metabolism, Konya, Turkey.
| | | | | |
Collapse
|
34
|
War SA, Somvanshi RK, Kumar U. Somatostatin receptor-3 mediated intracellular signaling and apoptosis is regulated by its cytoplasmic terminal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:390-402. [PMID: 21194548 DOI: 10.1016/j.bbamcr.2010.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/25/2010] [Accepted: 12/13/2010] [Indexed: 12/25/2022]
Abstract
In the present study, we describe the role of cytoplasmic terminal (C-tail) domain in regulating coupling to adenylyl cyclase, signaling, and apoptosis in human embryonic kidney (HEK-293) cells transfected with wild type (wt)-hSSTR3 and C-tail deleted mutants. Cells transfected with wt-hSSTR3 and C-tail mutants show comparable membrane expression; however, display decreased expression in presence of agonist. wt-hSSTR3 exists as preformed homodimer at cell surface in basal conditions and decreases in response to agonist. Cells expressing C-tail mutants also show evidence of homodimerization with the same intensity as wt-hSSTR3. The agonist-dependent inhibition of cyclic adenosine monophosphate (cAMP) was lost in cells expressing C-tail mutants. Agonist treatment in cells expressing wt-hSSTR3 resulted in inhibition of cell proliferation, increased expression of PARP-1, and TUNEL positivity in proliferating cell nuclear antigen (PCNA)-positive cells. The agonist mediated increase in membrane expression of protein tyrosine phosphatase (PTP) seen with wt-hSSTR3 was diminished in C-tail mutants, which was accompanied with the loss of receptor's ability to induce apoptosis. Taken together, our data provide new insights into C-tail-dependent regulation of cell signaling and apoptosis by hSSTR3.
Collapse
Affiliation(s)
- Sajad A War
- Faculty of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, The University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | | | | |
Collapse
|
35
|
Zhang H, Moroz MA, Serganova I, Ku T, Huang R, Vider J, Maecke HR, Larson SM, Blasberg R, Smith-Jones PM. Imaging Expression of the Human Somatostatin Receptor Subtype-2 Reporter Gene with 68Ga-DOTATOC. J Nucl Med 2010; 52:123-31. [DOI: 10.2967/jnumed.110.079004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Massone S, Vassallo I, Fiorino G, Castelnuovo M, Barbieri F, Borghi R, Tabaton M, Robello M, Gatta E, Russo C, Florio T, Dieci G, Cancedda R, Pagano A. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis 2010; 41:308-17. [PMID: 20888417 DOI: 10.1016/j.nbd.2010.09.019] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/16/2010] [Accepted: 09/23/2010] [Indexed: 12/31/2022] Open
Abstract
Alternative splicing is a central component of human brain complexity; nonetheless, its regulatory mechanisms are still largely unclear. In this work, we describe a novel non-coding (nc) RNA (named 17A) RNA polymerase (pol) III-dependent embedded in the human G-protein-coupled receptor 51 gene (GPR51, GABA B2 receptor). The stable expression of 17A in SHSY5Y neuroblastoma cells induces the synthesis of an alternative splicing isoform that abolish GABA B2 intracellular signaling (i.e., inhibition of cAMP accumulation and activation of K(+) channels). Indeed, 17A is expressed in human brain, and we report that it is upregulated in cerebral tissues derived from Alzheimer disease patients. We demonstrate that 17A expression in neuroblastoma cells enhances the secretion of amyloid β peptide (Aβ) and the Aβ x-42/Αβ x-40 peptide ratio and that its synthesis is induced in response to inflammatory stimuli. These data correlate, for the first time, the activity of a novel pol III-dependent ncRNA to alternative splicing events and, possibly, to neurodegeneration induced by abnormal GABA B function. We anticipate that further analysis of pol III-dependent regulation of alternative splicing will disclose novel regulatory pathways associated to brain physiology and/or pathology.
Collapse
Affiliation(s)
- Sara Massone
- Oncology Biology and Genetics Department (DOBiG), University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Haiyan D, Wensheng L, Haoran L. Comparative analyses of sequence structure, evolution, and expression of four somatostatin receptors in orange-spotted grouper (Epinephelus coioides). Mol Cell Endocrinol 2010; 323:125-36. [PMID: 20347929 DOI: 10.1016/j.mce.2010.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 03/16/2010] [Accepted: 03/19/2010] [Indexed: 11/27/2022]
Abstract
Somatostatins (SSs) and somatostatin receptors (SSTRs) play important roles in the growth, development and metabolism of vertebrates. In the present study, four SSTRs were isolated from orange-spotted grouper (Epinephelus coioides), a coral fish of high commercial value cultivated in Southeast Asia. Phylogenetic tree analysis grouped the four SSTRs as two distinct groups of SSTR1 and SSTR2/3/5. Four SSTRs exhibited high homology across the vertebrates. The expression of four grouper SSTR mRNAs was studied in 11 tissues. The highest level of SSTR1 mRNA was found in forebrain. The mRNAs of SSTR2 and SSTR3 were highly expressed in pituitary, forebrain and liver. The levels of SSTR5 mRNA were low in most tissues except for pituitary and intestine. The expression of four grouper SSTR mRNAs was investigated in seven embryonic stages and five early larval development stages. The highest levels of SSTR1 and 2 mRNAs appeared during hatching, while the highest levels of SSTR3 and 5 mRNAs were found in brain vesicle stage. Intraperitoneal injection of SS14 significantly increased the levels of all four SSTR mRNAs in pituitary and SSTR1, 3 mRNAs in liver in a dose-dependent manner, but no effect on SSTR2 and 5 in liver. These observations contribute to the understanding of the evolution of SSTR family and offer information on structure, distribution and function of fish SSTRs.
Collapse
Affiliation(s)
- Dong Haiyan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | |
Collapse
|
38
|
Barbieri F, Pattarozzi A, Gatti M, Aiello C, Quintero A, Lunardi G, Bajetto A, Ferrari A, Culler MD, Florio T. Differential efficacy of SSTR1, -2, and -5 agonists in the inhibition of C6 glioma growth in nude mice. Am J Physiol Endocrinol Metab 2009; 297:E1078-88. [PMID: 19706788 DOI: 10.1152/ajpendo.00292.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Somatostatin receptors (SSTR1-5) mediate antiproliferative effects. In C6 rat glioma cells, somatostatin is cytostatic in vitro via phosphotyrosine phosphatase-dependent inhibition of ERK1/2 activity mediated by SSTR1, -2, and -5. Here we analyzed the effects of SSTR activation on C6 glioma growth in vivo and the intracellular mechanisms involved, comparing somatostatin effects with selective agonists for SSTR1, -2, and -5 (BIM-23745, BIM-23120, BIM-23206) or receptor biselective compounds (SSTR1 and -2, BIM-23704; and SSTR2 and -5, BIM-23190). Nude mice subcutaneously xenografted with C6 cells were treated with somatostatin, SSTR agonists (50 μg, twice/day), or vehicle. Tumor growth was evaluated every 3 days for 19 days. The intracellular pathways responsible of SSTR effects in vivo were evaluated measuring Ki-67, phospho-ERK1/2, and p27(kip1) expression by immunohistochemistry in sections from explanted tumors. Somatostatin and SSTR1, -2, and -5 agonists strongly inhibited in vivo C6 tumor growth, intratumoral neovessel formation, Ki-67 expression, and ERK1/2 phosphorylation and induced upregulation of p27(Kip1), whereas only a modest activation of caspase-3 was observed. Somatostatin (acting on SSTR1, -2, and -5) displayed the highest efficacy; SSTR5 selective agonist showed a stronger effect than SSTR1 agonist, and SSTR2 agonist was less effective. On the other hand, SSTR1 and -2 agonists maximally reduced tumor neovascularization. The combined activation of SSTR1 and -2 showed a synergistic activity, reaching a higher efficacy than BIM-23206, whereas the simultaneous activation of SSTR2 and -5 resulted in a response resembling SSTR5 effects. Thus the simultaneous activation of different SSTRs inhibits glioma cell proliferation in vivo through both direct cytotostatic and antiangiogenic effects.
Collapse
Affiliation(s)
- Federica Barbieri
- Laboratory of Pharmacology, Dept. of Oncology, Biology, and Genetics, Univ. of Genoa, Viale Benedetto XV, 2, 16132 Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|