1
|
Tsukamura H. Kobayashi Award 2019: The neuroendocrine regulation of the mammalian reproduction. Gen Comp Endocrinol 2022; 315:113755. [PMID: 33711315 DOI: 10.1016/j.ygcen.2021.113755] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 02/05/2023]
Abstract
Mammalian reproductive function is a complex system of many players orchestrated by the hypothalamus-pituitary-gonadal (HPG) axis. The hypothalamic gonadotropin-releasing hormone (GnRH) and the consequent pituitary gonadotropin release show two modes of secretory patterns, namely the surge and pulse modes. The surge mode is triggered by the positive feedback action of estrogen secreted from the mature ovarian follicle to induce ovulation in females of most mammalian species. The pulse mode of GnRH release is required for stimulating tonic gonadotropin secretion to drive folliculogenesis, spermatogenesis and steroidogenesis and is negatively fine-tuned by the sex steroids. Accumulating evidence suggests that hypothalamic kisspeptin neurons are the master regulator for animal reproduction to govern the HPG axis. Specifically, kisspeptin neurons located in the anterior hypothalamus, such as the anteroventral periventricular nucleus (AVPV) in rodents and preoptic nucleus (POA) in ruminants, primates and others, and the neurons located in the arcuate nucleus (ARC) in posterior hypothalamus in most mammals are considered to play a key role in generating the surge and pulse modes of GnRH release, respectively. The present article focuses on the role of AVPV (or POA) kisspeptin neurons as a center for GnRH surge generation and of the ARC kisspeptin neurons as a center for GnRH pulse generation to mediate estrogen positive and negative feedback mechanisms, respectively, and discusses how the estrogen epigenetically regulates kisspeptin gene expression in these two populations of neurons. This article also provides the mechanism how malnutrition and lactation suppress GnRH/gonadotropin pulses through an inhibition of the ARC kisspeptin neurons. Further, the article discusses the programming effect of estrogen on kisspeptin neurons in the developmental brain to uncover the mechanism underlying the sex difference in GnRH/gonadotropin release as well as an irreversible infertility induced by supra-physiological estrogen exposure in rodent models.
Collapse
Affiliation(s)
- Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
2
|
Moriyama R, Iwamoto K, Hagiwara T, Yoshida S, Kato T, Kato Y. AMP-activated protein kinase activation reduces the transcriptional activity of the murine luteinizing hormone β-subunit gene. J Reprod Dev 2019; 66:97-104. [PMID: 31813919 PMCID: PMC7175385 DOI: 10.1262/jrd.2019-143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malnutrition is one of the factors that induces reproductive disorders. However, the underlying biological processes are unclear. AMP-activated protein kinase (AMPK) is an enzyme that plays crucial role as a cellular energy sensor. In the present study, we examined the effects of AMPK activation on the transcription of the murine gonadotropin subunit genes Cga, Lhb, and Fshb, and the gonadotropin-releasing hormone receptor Gnrh-r. Real-time PCR and transcription assay using LβT2 cells demonstrated that 5-amino-imidazole carboxamide riboside (AICAR), a cell-permeable AMP analog, repressed the expression of Lhb. Next, we examined deletion mutants of the upstream region of Lhb and found that the upstream regulatory region of Lhb (-2527 to -2198 b) was responsible for the repression by AICAR. Furthermore, putative transcription factors (SP1, STAT5a, and TEF) that might mediate transcriptional control of the Lhb repression induced by AICAR were identified. In addition, it was confirmed that both AICAR and a competitive inhibitor of glucose metabolism, 2-deoxy-D-glucose, induced AMPK phosphorylation in LβT2 cells. Therefore, the upstream region of Lhb is one of the target sites for glucoprivation inducing AMPK activation. In addition, AMPK plays a role in repressing Lhb expression through the distal -2527 to -2198 b region.
Collapse
Affiliation(s)
- Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Koichi Iwamoto
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Teruki Hagiwara
- Laboratory of Molecular and Cellular Biology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan.,Laboratory of Molecular Biology and Gene Regulation, Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Takako Kato
- Laboratory of Molecular Biology and Gene Regulation, Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Yukio Kato
- Laboratory of Molecular Biology and Gene Regulation, Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| |
Collapse
|
3
|
Majarune S, Nima P, Sugimoto A, Nagae M, Inoue N, Tsukamura H, Uenoyama Y. Ad libitum feeding triggers puberty onset associated with increases in arcuate Kiss1 and Pdyn expression in growth-retarded rats. J Reprod Dev 2019; 65:397-406. [PMID: 31155522 PMCID: PMC6815743 DOI: 10.1262/jrd.2019-048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence shows that puberty onset is largely dependent on body weight rather than chronological age. To investigate the mechanism involved in the energetic control of puberty
onset, the present study examined effects of chronic food restriction during the prepubertal period and the resumption of ad libitum feeding for 24 and 48 h on estrous
cyclicity, Kiss1 (kisspeptin gene), Tac3 (neurokinin B gene) and Pdyn (dynorphin A gene) expression in the hypothalamus, luteinizing
hormone (LH) secretion and follicular development in female rats. When animals weighed 75 g, they were subjected to a restricted feeding to retard growth to 70–80 g by 49 days of age. Then,
animals were subjected to ad libitum feeding or remained food-restricted. The growth-retarded rats did not show puberty onset associated with suppression of both
Kiss1 and Pdyn expression in the arcuate nucleus (ARC). 24-h ad libitum feeding increased tonic LH secretion and the number of Graafian
and non-Graafian tertiary follicles with an increase in the numbers of ARC Kiss1- and Pdyn-expressing cells. 48-h ad libitum feeding
induced the vaginal proestrus and a surge-like LH increase with an increase in Kiss1-expressing cells in the anteroventral periventricular nucleus (AVPV). These results
suggest that the negative energy balance causes pubertal failure with suppression of ARC Kiss1 and Pdyn expression and then subsequent gonadotropin
secretion and ovarian function, while the positive energetic cues trigger puberty onset via an increase in ARC Kiss1 and Pdyn expression and thus
gonadotropin secretion and follicular development in female rats.
Collapse
Affiliation(s)
- Sutisa Majarune
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Pelden Nima
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Arisa Sugimoto
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Nagae
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Moriyama R, Yamazaki T, Kato T, Kato Y. Long-chain unsaturated fatty acids reduce the transcriptional activity of the rat follicle-stimulating hormone β-subunit gene. J Reprod Dev 2016; 62:195-9. [PMID: 26853521 PMCID: PMC4848577 DOI: 10.1262/jrd.2015-138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Here, we assessed the effects of long-chain fatty acids (LCFAs) and the LCFA receptor agonist GW9508 on the
transcription of the gonadotropin subunit genes Cga, Lhb and
Fshb because LCFA receptor GPR120 was observed in mouse gonadotropes in our recent study. A
transcription assay using LβT2 cells demonstrated that LCFAs, oleic acid, α-linolenic acid, docosahexaenoic
acid and palmitate, repressed the expression of Cga, Lhb, and
Fshb at concentrations between 50 and 100 µM. On the other hand, treatment with 10 µM
unsaturated LCFAs, oleic acid, α-linolenic acid and docosahexaenoic acid, repressed only Fshb
expression, while the same dose of a saturated LCFA, palmitate, had no effect on the expression of
gonadotropin subunit genes. Furthermore, GW9508 did not affect promoter activity. Next, we examined deletion
mutants of the upstream region of Fshb and found that the upstream regulatory region (-2824
to -2343 bp) of Fshb was responsible for the notable repression by 10 µM unsaturated LCFAs.
Our results suggest that the upstream region of Fshb is susceptible to unsaturated LCFAs. In
addition, unsaturated LCFAs play a role in repressing Fshb expression through the distal
-2824 to -2343 bp region, which might be independent of the LCFA receptor GPR120 pathway.
Collapse
Affiliation(s)
- Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kinki University, Osaka 577-8502, Japan
| | | | | | | |
Collapse
|
5
|
Regulation of gonadotropin secretion by monitoring energy availability. Reprod Med Biol 2014; 14:39-47. [PMID: 29259401 DOI: 10.1007/s12522-014-0194-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022] Open
Abstract
Nutrition is a principal environmental factor influencing fertility in animals. Energy deficit causes amenorrhea, delayed puberty, and suppression of copulatory behaviors by inhibiting gonadal activity. When gonadal activity is impaired by malnutrition, the signals originating from an undernourished state are ultimately conveyed to the gonadotropin-releasing hormone (GnRH) pulse generator, leading to suppressed secretion of GnRH and luteinizing hormone (LH). The mechanism responsible for energetic control of gonadotropin release is believed to involve metabolic signals, sensing mechanisms, and neuroendocrine pathways. The availabilities of blood-borne energy substrates such as glucose, fatty acids, and ketone bodies, which fluctuate in parallel with changes in nutritional status, act as metabolic signals that regulate the GnRH pulse generator activity and GnRH/LH release. As components of the specific sensing system, the ependymocytes lining the cerebroventricular wall in the lower brainstem integrate the information derived from metabolic signals to control gonadotropin release. One of the pathways responsible for the energetic control of gonadal activity consists of noradrenergic neurons from the solitary tract nucleus in the lower brainstem, projecting to the paraventricular nucleus of the hypothalamus. Further studies are needed to elucidate the mechanisms underlying energetic control of reproductive function.
Collapse
|
6
|
Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 2013; 64:702-28. [PMID: 23911282 DOI: 10.1016/j.yhbeh.2013.07.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin "resistance." The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative "satiety" or "hunger" hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
7
|
Andersson H, Rehm S, Stanislaus D, Wood CE. Scientific and Regulatory Policy Committee (SRPC) Paper. Toxicol Pathol 2013; 41:921-34. [DOI: 10.1177/0192623312466959] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hormonally mediated effects on the female reproductive system may manifest as pathologic changes of endocrine-responsive organs and altered reproductive function. Identification of these effects requires proper assessment, which may include investigative studies to profile female reproductive hormones. Here, we briefly describe normal hormonal patterns across the estrous or menstrual cycle and provide general guidance on measuring female reproductive hormones and characterizing hormonal disturbances in nonclinical toxicity studies. Although species used in standard toxicity studies share basic features of reproductive endocrinology, there are important species differences that affect both study design and interpretation of results. Diagnosing female reproductive hormone disturbances can be complicated by many factors, including estrous/menstrual cyclicity, diurnal variation, and age- and stress-related factors. Thus, female reproductive hormonal measurements should not generally be included in first-tier toxicity studies of standard design with groups of unsynchronized intact female animals. Rather, appropriately designed and statistically powered investigative studies are recommended in order to properly identify ovarian and/or pituitary hormone changes and bridge these effects to mechanistic evaluations and safety assessments. This article is intended to provide general considerations and approaches for these types of targeted studies.
Collapse
Affiliation(s)
- Håkan Andersson
- Pathology Sciences, Global Safety Assessment, AstraZeneca R&D Innovative Medicines, Mölndal, Sweden
| | | | - Dinesh Stanislaus
- Reproductive Toxicology, Safety Assessment, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Charles E. Wood
- National Health and Environmental Effects Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
8
|
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol Rev 2012; 92:1235-316. [DOI: 10.1152/physrev.00037.2010] [Citation(s) in RCA: 529] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.
Collapse
Affiliation(s)
- Leonor Pinilla
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Dieguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P. Millar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Schneider JE, Klingerman CM, Abdulhay A. Sense and nonsense in metabolic control of reproduction. Front Endocrinol (Lausanne) 2012; 3:26. [PMID: 22649413 PMCID: PMC3355988 DOI: 10.3389/fendo.2012.00026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/04/2012] [Indexed: 12/16/2022] Open
Abstract
An exciting synergistic interaction occurs among researchers working at the interface of reproductive biology and energy homeostasis. Reproductive biologists benefit from the theories, experimental designs, and methodologies used by experts on energy homeostasis while they bring context and meaning to the study of energy homeostasis. There is a growing recognition that identification of candidate genes for obesity is little more than meaningless reductionism unless those genes and their expression are placed in a developmental, environmental, and evolutionary context. Reproductive biology provides this context because metabolic energy is the most important factor that controls reproductive success and gonadal hormones affect energy intake, storage, and expenditure. Reproductive hormone secretion changes during development, and reproductive success is key to evolutionary adaptation, the process that most likely molded the mechanisms that control energy balance. It is likely that by viewing energy intake, storage, and expenditure in the context of reproductive success, we will gain insight into human obesity, eating disorders, diabetes, and other pathologies related to fuel homeostasis. This review emphasizes the metabolic hypothesis: a sensory system monitors the availability of oxidizable metabolic fuels and orchestrates behavioral motivation to optimize reproductive success in environments where energy availability fluctuates or is unpredictable.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University Bethlehem, PA, USA.
| | | | | |
Collapse
|
10
|
Szymanski LA, Schneider JE, Satragno A, Dunshea FR, Clarke IJ. Mesenteric infusion of a volatile fatty acid prevents body weight loss and transiently restores luteinising hormone pulse frequency in ovariectomised, food-restricted ewes. J Neuroendocrinol 2011; 23:699-710. [PMID: 21668532 DOI: 10.1111/j.1365-2826.2011.02173.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pulsatile luteinising hormone (LH) secretion is suppressed by food restriction and rapidly restored by return to ad lib. feeding concomitant with an increase in the oxidation of free fatty acids, although there is no increase in plasma leptin concentrations or body fat content in ovariectomised ewes. The ingestion of food may stimulate LH secretion by increasing availability of oxidisable metabolic substrates. Ruminal digestion is characterised by the production of volatile fatty acids and, of these, propionate is the major gluconeogenic substrate, and both glucose and propionate are oxidisable in a variety of tissues. To examine whether increases in mesenteric propionate concentrations are sufficient for restoration of pulsatile LH secretion during a period of food restriction, adult, food-restricted, hypogonadotrophic, ovariectomised ewes received mesenteric vein infusions of 5 μmol/min/kg body weight (BW) propionate or saline, whereas normal weight, ad lib.-fed ewes received mesenteric infusions of saline for 10 days. Blood samples were taken every 10 min for 5 h before the start of the 10-day infusion period, and continued throughout the first 5 h of infusion on the afternoon of day 1, and in the morning on days 2, 7 and 10. Propionate-infused, food-restricted and ad lib.-fed, saline-infused ewes showed a significantly higher LH pulse frequency compared to that of food-restricted-saline-infused ewes on postinfusion days 1 and 2 but not on days 7 and 10, and only the saline-infused, food-restricted group lost a significant amount of body weight. These results indicate that the reproductive system can respond acutely to infusion of metabolic fuels such as propionate, although a sustained recovery of pulsatile LH secretion requires more than an increase in this single metabolic substrate.
Collapse
Affiliation(s)
- L A Szymanski
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
11
|
Iwata K, Kinoshita M, Yamada S, Imamura T, Uenoyama Y, Tsukamura H, Maeda KI. Involvement of brain ketone bodies and the noradrenergic pathway in diabetic hyperphagia in rats. J Physiol Sci 2011; 61:103-13. [PMID: 21234734 PMCID: PMC10717331 DOI: 10.1007/s12576-010-0127-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/05/2010] [Indexed: 10/18/2022]
Abstract
Uncontrolled type 1 diabetes leads to hyperphagia and severe ketosis. This study was conducted to test the hypothesis that ketone bodies act on the hindbrain as a starvation signal to induce diabetic hyperphagia. Injection of an inhibitor of monocarboxylate transporter 1, a ketone body transporter, into the fourth ventricle normalized the increase in food intake in streptozotocin (STZ)-induced diabetic rats. Blockade of catecholamine synthesis in the hypothalamic paraventricular nucleus (PVN) also restored food intake to normal levels in diabetic animals. On the other hand, hindbrain injection of the ketone body induced feeding, hyperglycemia, and fatty acid mobilization via increased sympathetic activity and also norepinephrine release in the PVN. This result provides evidence that hyperphagia in STZ-induced type 1 diabetes is signaled by a ketone body sensed in the hindbrain, and mediated by noradrenergic inputs to the PVN.
Collapse
Affiliation(s)
- Kinuyo Iwata
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Mika Kinoshita
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Shunji Yamada
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Takuya Imamura
- Laboratory for Biodiversity, Global COE Program, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Yoshihisa Uenoyama
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Hiroko Tsukamura
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Kei-ichiro Maeda
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| |
Collapse
|
12
|
Acosta-Martínez M. PI3K: An Attractive Candidate for the Central Integration of Metabolism and Reproduction. Front Endocrinol (Lausanne) 2011; 2:110. [PMID: 22654843 PMCID: PMC3356143 DOI: 10.3389/fendo.2011.00110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/13/2011] [Indexed: 12/19/2022] Open
Abstract
In neurons, as in a variety of other cell types, the enzyme phosphatidylinositol-3-kinase (PI3K) is a key intermediate that is common to the signaling pathways of a number of peripheral metabolic cues, including insulin and leptin, which are well known to regulate both metabolic and reproductive functions. This review article will explore the possibility that PI3K is a key integrator of metabolic and neural signals regulating gonadotropin releasing hormone (GnRH)/luteinizing hormone (LH) release and explore the hypothesis that this enzyme is pivotal in many disorders where gonadotropin release is at risk. Although the mechanisms mediating the influence of metabolism and nutrition on fertility are currently unclear, the strong association between metabolic disorders and infertility is undeniable. For example, women suffering from anorectic disorders experience amenorrhea as a consequence of malnutrition-induced impairment of LH release, and at the other extreme, obesity is also commonly co-morbid with menstrual dysfunction and infertility. Impaired hypothalamic insulin and leptin receptor signaling is thought to be at the core of reproductive disorders associated with metabolic dysfunction. While low levels of leptin and insulin characterize states of negative energy balance, prolonged nutrient excess is associated with insulin and leptin resistance. Metabolic models known to alter GnRH/LH release such as diabetes, diet-induced obesity, and caloric restriction are also accompanied by impairment of PI3K signaling in insulin and leptin sensitive tissues including the hypothalamus. However, a clear link between this signaling pathway and the control of GnRH release by peripheral metabolic cues has not been established. Investigating the role of the signaling pathways shared by metabolic cues that are critical for a normal reproductive state can help identify possible targets in the treatment of metabolic and reproductive disorders such as polycystic ovarian syndrome.
Collapse
Affiliation(s)
- Maricedes Acosta-Martínez
- Department of Physiology and Biophysics, Medical Center, Stony Brook UniversityStony Brook, NY, USA
- *Correspondence: Maricedes Acosta-Martínez, Department of Physiology and Biophysics, Medical Center, Stony Brook University, Stony Brook, NY 11794-8661, USA. e-mail:
| |
Collapse
|
13
|
IWATA K, KINOSHITA M, SUSAKI N, UENOYAMA Y, TSUKAMURA H, MAEDA KI. Central Injection of Ketone Body Suppresses Luteinizing Hormone Release via the Catecholaminergic Pathway in Female Rats. J Reprod Dev 2011; 57:379-84. [DOI: 10.1262/jrd.11-001s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kinuyo IWATA
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Mika KINOSHITA
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Naoki SUSAKI
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Yoshihisa UENOYAMA
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Hiroko TSUKAMURA
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Kei-ichiro MAEDA
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
14
|
Castellano JM, Bentsen AH, Mikkelsen JD, Tena-Sempere M. Kisspeptins: bridging energy homeostasis and reproduction. Brain Res 2010; 1364:129-38. [PMID: 20800054 DOI: 10.1016/j.brainres.2010.08.057] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 11/25/2022]
Abstract
Body energy reserves and metabolic state are relevant modifiers of puberty onset and fertility; forms of metabolic stress ranging from persistent energy insufficiency to morbid obesity are frequently linked to reproductive disorders. The mechanisms for such a close connection between energy balance and reproduction have been the subject of considerable attention; however, our understanding of the neurobiological basis for this phenomenon is still incomplete. In mid 1990s, the adipose-hormone, leptin, was proven as an essential signal for transmitting metabolic information onto the centers governing puberty and reproduction; yet, the ultimate mode of action of leptin on GnRH neurons has remained contentious for years. More recently, kisspeptins, a family of neuropeptides encoded by the Kiss1 gene, have emerged as conduits for the metabolic regulation of reproduction and putative effectors of leptin actions on GnRH neurons. This review recapitulates the experimental evidence obtained to date, mostly in laboratory rodents, supporting the function of kisspeptins in bridging energy balance and reproduction, with special emphasis on recent developments in this field, such as the recognition of mTOR (mammalian target of rapamycin) and Crtc1 (Creb1-regulated transcription coactivator-1) as putative mediators for leptin regulation of Kiss1 expression, as well as the identification of other potential metabolic modulators of kisspeptin signaling, such as ghrelin, neuropeptide Y (NPY) and melanin-concentrating hormone (MCH).
Collapse
Affiliation(s)
- Juan M Castellano
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain
| | | | | | | |
Collapse
|
15
|
Brill DS, Moenter SM. Androgen receptor antagonism and an insulin sensitizer block the advancement of vaginal opening by high-fat diet in mice. Biol Reprod 2009; 81:1093-8. [PMID: 19605781 DOI: 10.1095/biolreprod.109.079301] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Reduced hypothalamic sensitivity to steroid negative feedback may contribute to the onset of puberty. In high fat-fed rodents, the timing of vaginal opening (VO) is advanced, suggesting that puberty begins earlier. Because obesity can increase androgens, which interfere with normal steroid feedback in adult females, we hypothesized that androgens reduce hypothalamic sensitivity to negative feedback during puberty and that blocking androgen action would prevent advanced VO in high fat-fed mice. Age at VO was examined in mice fed high-fat or low-fat diets from weaning and treated with the androgen receptor antagonist flutamide or vehicle (controls). VO was advanced in high-fat vs. low-fat controls, and flutamide blocked this advancement. VO was also delayed in low fat-fed flutamide-treated females, suggesting involvement of androgens in the timing of normal puberty. We next investigated if high-fat diet-induced insulin resistance contributes to early VO, as elevated insulin can stimulate androgen production. VO was examined in mice on either diet treated with the insulin sensitizer metformin. Metformin blocked high-fat advancement of VO but did not alter the timing of VO in low fat-fed mice. Insulin was elevated in high fat-fed females that had undergone VO compared with age-matched low fat-fed or metformin-treated animals on either diet that had not undergone VO. Together, these data suggest a model in which metabolic changes induced by high-fat diet, including transient increased circulating insulin, act in part by increasing androgen action to influence the timing of puberty in females.
Collapse
Affiliation(s)
- Diana S Brill
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
16
|
MATSUYAMA S, OHKURA S, IWATA K, UENOYAMA Y, TSUKAMURA H, MAEDA KI, KIMURA K. Food Deprivation Induces Monocarboxylate Transporter 2 Expression in the Brainstem of Female Rat. J Reprod Dev 2009; 55:256-61. [DOI: 10.1262/jrd.20214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shuichi MATSUYAMA
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization
| | - Satoshi OHKURA
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Kinuyo IWATA
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Yoshihisa UENOYAMA
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Hiroko TSUKAMURA
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Kei-ichiro MAEDA
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Koji KIMURA
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization
| |
Collapse
|
17
|
Swithers SE, McCurley M, Hamilton E, Doerflinger A. Influence of ovarian hormones on development of ingestive responding to alterations in fatty acid oxidation in female rats. Horm Behav 2008; 54:471-7. [PMID: 18586247 PMCID: PMC2596962 DOI: 10.1016/j.yhbeh.2008.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/09/2008] [Accepted: 05/14/2008] [Indexed: 11/23/2022]
Abstract
Adult male rats have been demonstrated to increase food intake in response to administration of drugs that interfere with oxidation of fatty acids (e.g. methyl palmoxirate and mercaptoacetate [MA]), effects that are larger in animals maintained on a high-fat diet. In contrast, while administration of MA has been reported to stimulate food intake in pre-pubertal female rats, food intake is not stimulated by MA in adult female rats. Instead, administration of MA to adult females results in changes in reproductive behavior and physiology. The present experiments were designed to examine the effects of administration of MA on food intake in adult female rats. The results demonstrated that, as previously reported, food intake was stimulated by MA in adult male rats on low-fat and high-fat diets, but food intake was not stimulated by MA in gonadally-intact adult female rats on either low-fat or high-fat diet. Further, MA did not stimulate food intake in female rats ovariectomized as adults. However, when females were ovariectomized prior to the onset of puberty (postnatal day 25-28), food intake was stimulated by administration of MA in adulthood. Finally, cyclic injections of 17-beta-estradiol benzoate given to females ovariectomized prior to the onset of puberty abolished the stimulatory effects of MA on food intake in adult females. Taken together, the data suggest that exposure to estrogens during the time of puberty in female rats can persistently alter adult ingestive responding to signals related to changes in energy utilization.
Collapse
Affiliation(s)
- Susan E Swithers
- Department of Psychological Sciences and Ingestive Behavior Research Center, Purdue University, West Lafayette, IN 47907-1364, USA.
| | | | | | | |
Collapse
|