1
|
Tao S, Yao Z, Li H, Wang Y, Qiao X, Yu Y, Li Y, Ning Y, Ge RS, Li S. Exposure to 4-nonylphenol compromises Leydig cell development in pubertal male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115612. [PMID: 37866035 DOI: 10.1016/j.ecoenv.2023.115612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Exposure to 4-nonyl phenol (4-NP) on Leydig cell (LC) development and function remains poorly understood. We explored the effects of 4-NP on LC development and elucidate the underlying mechanisms. Male (28-day-old) mice received orally 4-NP (0.125, 0.25, and 0.5 mg/kg/day) for 28 days. We found that 4-NP at ≥ 0.125 mg/kg markedly compromised serum testosterone levels and LC numbers. Gene and protein expression analysis demonstrated downregulation of key genes and their proteins involved in LC steroidogenesis, including Star, Cyp11a1, Cyp17a1, Hsd17b3, Hsd3b6, and Scarb1. Furthermore, exposure to 4-NP induced oxidative stress, as evidenced by elevated reactive oxygen species (ROS) and malondialdehyde (MDA), as well as reduced superoxide dismutase 1/2 and catalase (CAT). Apoptosis was also observed in LCs following exposure to 4-NP, as shown by an increased BAX/BCL2 ratio and caspase-3. A TM3 mouse LC line further confirmed that 4-NP induced ROS and the expression of apoptosis-related genes and proteins. In conclusion, this study demonstrates that 4-NP exposure compromises LC development through multiple mechanisms.
Collapse
Affiliation(s)
- Shanhui Tao
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Zhiang Yao
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Huitao Li
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Yiyan Wang
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Xinyi Qiao
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China
| | - Yang Yu
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China
| | - Yang Li
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China
| | - Yangyang Ning
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China
| | - Ren-Shan Ge
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China.
| | - Shijun Li
- Department of Pharmacy, Wenzhou University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
2
|
García-Pérez J, Lope V, Fernández de Larrea-Baz N, Molina AJ, Tardón A, Alguacil J, Pérez-Gómez B, Moreno V, Guevara M, Castaño-Vinyals G, Jiménez-Moleón JJ, Gómez-Acebo I, Molina-Barceló A, Martín V, Kogevinas M, Pollán M, Aragonés N. Risk of gastric cancer in the environs of industrial facilities in the MCC-Spain study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116854. [PMID: 33714062 DOI: 10.1016/j.envpol.2021.116854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Gastric cancer is the fifth most frequent tumor worldwide. In Spain, it presents a large geographic variability in incidence, suggesting a possible role of environmental factors in its etiology. Therefore, epidemiologic research focused on environmental exposures is necessary. OBJECTIVES To assess the association between risk of gastric cancer (by histological type and tumor site) and residential proximity to industrial installations, according to categories of industrial groups and specific pollutants released, in the context of a population-based multicase-control study of incident cancer conducted in Spain (MCC-Spain). METHODS In this study, 2664 controls and 137 gastric cancer cases from 9 provinces, frequency matched by province of residence, age, and sex were included. Distances from the individuals' residences to the 106 industries located in the study areas were computed. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95%CIs) for categories of distance (from 1 km to 3 km) to industries, adjusting for matching variables and potential confounders. RESULTS Overall, no excess risk of gastric cancer was observed in people living close to the industrial installations, with ORs ranging from 0.73 (at ≤2.5 km) to 0.93 (at ≤1.5 km). However, by industrial sector, excess risks (OR; 95%CI) were found near organic chemical industry (3.51; 1.42-8.69 at ≤2 km), inorganic chemical industry (3.33; 1.12-9.85 at ≤2 km), food/beverage sector (2.48; 1.12-5.50 at ≤2 km), and surface treatment using organic solvents (3.59; 1.40-9.22 at ≤3 km). By specific pollutant, a statistically significant excess risk (OR; 95%CI) was found near (≤3 km) industries releasing nonylphenol (6.43; 2.30-17.97) and antimony (4.82; 1.94-12.01). CONCLUSIONS The results suggest no association between risk of gastric cancer and living in the proximity to the industrial facilities as a whole. However, a few associations were detected near some industrial sectors and installations releasing specific pollutants.
Collapse
Affiliation(s)
- Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Virginia Lope
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Nerea Fernández de Larrea-Baz
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Antonio J Molina
- The Research Group in Gene - Environment and Health Interactions (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, Campus Universitario de Vegazana, 24071, León, Spain; Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de León, Campus Universitario de Vegazana, 24071, León, Spain.
| | - Adonina Tardón
- Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Facultad de Medicina, Campus de El Cristo B, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Av. Roma S/n, 33011, Oviedo, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Juan Alguacil
- Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente, Universidad de Huelva, Campus Universitario de El Carmen, 21071, Huelva, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Beatriz Pérez-Gómez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Víctor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Hospital Duran I Reynals, Avinguda de La Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Avinguda de La Gran Via de L'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Carrer de Casanova 143, 08036, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Marcela Guevara
- Navarra Public Health Institute, Calle Leyre, 15, 31003, Pamplona, Navarra, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain; Navarra Institute for Health Research (IdiSNA), Calle Leyre 15, 31003, Pamplona, Spain.
| | - Gemma Castaño-Vinyals
- ISGlobal, Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Campus Del Mar, Carrer Del Dr. Aiguader 80, 08003, Barcelona, Spain; IMIM (Hospital Del Mar Medical Research Institute), Carrer Del Dr. Aiguader 80, 08003, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - José J Jiménez-Moleón
- Department of Preventive Medicine and Public Health, School of Medicine, University of Granada, Av. de La Investigación 11, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Doctor Azpitarte 4 4(a) Planta, Edificio Licinio de La Fuente, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Inés Gómez-Acebo
- Universidad de Cantabria - IDIVAL, Avenida Cardenal Herrera Oria S/n, 39011, Santander, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Ana Molina-Barceló
- Cancer and Public Health Area, FISABIO - Public Health, Avda. de Catalunya 21, 46020, Valencia, Spain.
| | - Vicente Martín
- The Research Group in Gene - Environment and Health Interactions (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, Campus Universitario de Vegazana, 24071, León, Spain; Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de León, Campus Universitario de Vegazana, 24071, León, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Manolis Kogevinas
- ISGlobal, Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Campus Del Mar, Carrer Del Dr. Aiguader 80, 08003, Barcelona, Spain; IMIM (Hospital Del Mar Medical Research Institute), Carrer Del Dr. Aiguader 80, 08003, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Nuria Aragonés
- Epidemiology Section, Public Health Division, Department of Health of Madrid, C/San Martín de Porres, 6, 28035, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| |
Collapse
|
3
|
Lloyd V, Morse M, Purakal B, Parker J, Benard P, Crone M, Pfiffner S, Szmyd M, Dinda S. Hormone-Like Effects of Bisphenol A on p53 and Estrogen Receptor Alpha in Breast Cancer Cells. Biores Open Access 2019; 8:169-184. [PMID: 31681507 PMCID: PMC6823605 DOI: 10.1089/biores.2018.0048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bisphenol A (BPA) is a polymerizing agent commonly found in plastics that has been linked to xenoestrogenic activity. In this study, we analyzed the estrogen-like effects of BPA on the expression of estrogen receptor (ER)α and p53 with hormonal and antihormonal treatments in T-47D and MCF-7 cells. Cells were cultured in medium containing 5% charcoal-stripped fetal bovine serum for 6 days to deplete any endogenous steroids or effectors. The cells were then treated for 24 h with 600 nM BPA, which was determined to be the optimal value by a concentration study of BPA from 1 nM to 2 μM. Extracted cellular proteins were quantified and subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)/Western blot analysis. The cell proliferation assays were quantified upon exposure to BPA. Laser confocal microscopy was performed to determine the cytolocalization of p53 and ERα upon treatment with BPA. Western blot analysis revealed that BPA caused an increase in the cellular protein p53 in a concentration-dependent manner. While treatment with BPA did not affect the cytolocalization of p53, an increase in cell proliferation was observed. Our studies provide interesting leads to delineate the possible mechanistic relationship among BPA, ER, and tumor suppressor proteins in breast cancer cells.
Collapse
Affiliation(s)
- Victoria Lloyd
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Mia Morse
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Betsy Purakal
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Jordan Parker
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Paige Benard
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Michael Crone
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Samantha Pfiffner
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Monica Szmyd
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| | - Sumi Dinda
- Department of Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center of Biomedical Research, Oakland University, Rochester, Michigan
| |
Collapse
|
4
|
Jallow F, Brockman JL, Helzer KT, Rugowski DE, Goffin V, Alarid ET, Schuler LA. 17 β-Estradiol and ICI182,780 Differentially Regulate STAT5 Isoforms in Female Mammary Epithelium, With Distinct Outcomes. J Endocr Soc 2018; 2:293-309. [PMID: 29594259 PMCID: PMC5842396 DOI: 10.1210/js.2017-00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
Prolactin (PRL) and estrogen cooperate in lobuloalveolar development of the mammary gland and jointly regulate gene expression in breast cancer cells in vitro. Canonical PRL signaling activates STAT5A/B, homologous proteins that have different target genes and functions. Although STAT5A/B are important for physiological mammary function and tumor pathophysiology, little is known about regulation of their expression, particularly of STAT5B, and the consequences for hormone action. In this study, we examined the effect of two estrogenic ligands, 17β-estradiol (E2) and the clinical antiestrogen, ICI182,780 (ICI, fulvestrant) on expression of STAT5 isoforms and resulting crosstalk with PRL in normal and tumor murine mammary epithelial cell lines. In all cell lines, E2 and ICI significantly increased protein and corresponding nascent and mature transcripts for STAT5A and STAT5B, respectively. Transcriptional regulation of STAT5A and STAT5B by E2 and ICI, respectively, is associated with recruitment of estrogen receptor alpha and increased H3K27Ac at a common intronic enhancer 10 kb downstream of the Stat5a transcription start site. Further, E2 and ICI induced different transcripts associated with differentiation and tumor behavior. In tumor cells, E2 also significantly increased proliferation, invasion, and stem cell-like activity, whereas ICI had no effect. To evaluate the role of STAT5B in these responses, we reduced STAT5B expression using short hairpin (sh) RNA. shSTAT5B blocked ICI-induced transcripts associated with metastasis and the epithelial mesenchymal transition in both cell types. shSTAT5B also blocked E2-induced invasion of tumor epithelium without altering E2-induced transcripts. Together, these studies indicate that STAT5B mediates a subset of protumorigenic responses to both E2 and ICI, underscoring the need to understand regulation of its expression and suggesting exploration as a possible therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Fatou Jallow
- Endocrinology/Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jennifer L Brockman
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kyle T Helzer
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Debra E Rugowski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vincent Goffin
- Inserm Unit 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Elaine T Alarid
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
5
|
Garcia-Reyero N, Jayasinghe BS, Kroll KJ, Sabo-Attwood T, Denslow ND. Estrogen signaling through both membrane and nuclear receptors in the liver of fathead minnow. Gen Comp Endocrinol 2018; 257:50-66. [PMID: 28733229 DOI: 10.1016/j.ygcen.2017.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/04/2017] [Accepted: 07/16/2017] [Indexed: 11/24/2022]
Abstract
Estradiol is a potent sex steroid hormone that controls reproduction and other cellular pathways in fish. It is known to regulate important proteins such as vitellogenin, the egg yolk precursor protein, and zona radiata proteins that form the eggshell for fish eggs. These proteins are made in the liver and transported out into the blood from where they are taken up into the ovary during oogenesis. Estradiol can exert its influence directly through soluble nuclear receptors (there are three in fish) or indirectly through membrane receptors and a phosphorylation cascade. Often there is coordination through both genomic and non-genomic pathways. We have used a toxicogenomics approach to determine the contribution of genomic and non-genomic regulation in the liver of fathead minnows exposed to 5ng ethinylestradiol per liter or to a mixture of 5ng ethinylestradiol and 100ng ZM189,154 (ZM) per liter. ZM has previously been shown to be a "perfect" antagonist for the fish nuclear estrogen receptors but has displayed agonistic activities for membrane receptors. We find that both nuclear and membrane receptors contribute to the biosynthesis of vitellogenin 1 and estrogen receptor one (Esr1), among others. In addition, lipid metabolism pathways appear to require both activities.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - B Sumith Jayasinghe
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32611, USA
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Ryan N, Chorley B, Tice RR, Judson R, Corton JC. Moving Toward Integrating Gene Expression Profiling Into High-Throughput Testing: A Gene Expression Biomarker Accurately Predicts Estrogen Receptor α Modulation in a Microarray Compendium. Toxicol Sci 2016; 151:88-103. [PMID: 26865669 DOI: 10.1093/toxsci/kfw026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microarray profiling of chemical-induced effects is being increasingly used in medium- and high-throughput formats. Computational methods are described here to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through chromatin immunoprecipitation coupled with DNA sequencing analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression datasets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including "very weak" agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals, the balanced accuracies were 95% and 98% for activation or suppression, respectively. These results demonstrate that the ERα gene expression biomarker can accurately identify ERα modulators in large collections of microarray data derived from MCF-7 cells.
Collapse
Affiliation(s)
- Natalia Ryan
- *Oak Ridge Institute for Science and Education (ORISE) Integrated Systems Toxicology Division, US-EPA
| | | | - Raymond R Tice
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences
| | - Richard Judson
- National Center for Computational Toxicology, US-EPA, Research Triangle Park, North Carolina 27711
| | | |
Collapse
|
7
|
Baldini E, Sorrenti S, Tuccilli C, Prinzi N, Coccaro C, Catania A, Filippini A, Bononi M, De Antoni E, D'Armiento M, Ulisse S. Emerging molecular markers for the prognosis of differentiated thyroid cancer patients. Int J Surg 2014; 12 Suppl 1:S52-6. [PMID: 24862669 DOI: 10.1016/j.ijsu.2014.05.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/03/2014] [Indexed: 01/08/2023]
Abstract
Epithelial thyroid cancers are represented by the differentiated papillary and follicular thyroid carcinomas which, following dedifferentiation, are thought to give rise to the highly aggressive and incurable anaplastic thyroid carcinomas. Although derived from the same cell type, the different thyroid tumors show specific histological features, biological behavior and degree of differentiation as a consequence of different genetic alterations. Over the last few years, our knowledge regarding the molecular alterations underlying thyroid cell malignant transformation and cancer progression has considerably increased; however, the prognosis of differentiated thyroid cancer patients still relies on high-risk clinic-pathological variables. In particular, the actual staging systems provides only a rough prediction for cancer mortality and risk of recurrences, including in each risk group patients with highly different tumor-specific progression, disease-free interval and survival time. In order to improve DTC patient's risk stratification, both the European and the American Thyroid Associations proposed practical guidelines to integrate the actual staging systems with additional clinical features such as the tumor histological variant, the results of post-ablative whole body scan and the serum thyroglobulin levels. Despite that, patients within the same risk group still show a very heterogeneous behavior in terms of disease-free interval. As a consequence, the identification of new prognostic molecular biomarkers able to testify tumor aggressiveness is highly required. Here we'll review recently characterized new molecular markers potentially able to ameliorate the prognosis in DTC patients.
Collapse
Affiliation(s)
- Enke Baldini
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | | | - Chiara Tuccilli
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Natalie Prinzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Carmela Coccaro
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Antonio Catania
- Department of Surgical Sciences, "Sapienza" University of Rome, Italy
| | - Angelo Filippini
- Department of Surgical Sciences, "Sapienza" University of Rome, Italy
| | - Marco Bononi
- Department of Surgery "Pietro Valdoni", "Sapienza" University of Rome, Italy
| | - Enrico De Antoni
- Department of Surgical Sciences, "Sapienza" University of Rome, Italy
| | - Massimino D'Armiento
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Salvatore Ulisse
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
8
|
Bridging hypoxia, inflammation and estrogen receptors in thyroid cancer progression. Biomed Pharmacother 2013; 68:1-5. [PMID: 24286852 DOI: 10.1016/j.biopha.2013.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/29/2013] [Indexed: 12/22/2022] Open
Abstract
Thyroid cancer is a common endocrine-related cancer with a higher incidence in women than in men. Thyroid tumors are classified on the basis of their histopathology as papillary, follicular, medullary, and undifferentiated or anaplastic. Epidemiological and in vitro or in vivo studies have suggested a correlation between incidence of thyroid malignancies and hormones. In particular, growing evidence indicates a role of estrogens and estrogen receptors (ERs) in thyroid tumorigenesis, reprogramming and progression. In this scenario, estrogens are hypothesized to contribute to the observed female predominance of thyroid cancer in reproductive years. However, the precise contribution of estrogens in thyroid proliferative disease initiation and progression is not well understood. HIF-1α and NF-κB are two transcription factors very frequently activated in tumors and involved in tumor growth, progression and resistance to chemotherapy. In fact, HIF-1α and NF-κB together regulate transcription of over a thousand genes that, in turn, control vital cellular processes such as adaptation to the hypoxia, metabolic and differentiation reprogramming, inflammatory-reparative response, extracellular matrix digestion, migration and invasion, adhesion, etc. Because of this wide involvement, they could control in an integrated manner the origin of the malignant phenotype. Interestingly, hypoxia and inflammation have been sequentially bridged in tumors by the discovery that alarmin receptors genes such as RAGE, P2X7 and some TLRs are activated by HIF-1α; and that, in turn, alarmin receptors strongly activate NF-κB and proinflammatory gene expression, evidencing all the hallmarks of the malignant phenotype. Recently, a large number of drugs have been identified that inhibit one or both transcription factors with promising results in terms of controlling tumor progression. In addition, many of these inhibitors are natural compounds or off-label drugs already used to cure other pathologies. Some of them are undergoing clinical trials and soon they will be used alone or in combination with standard anti-tumoral agents to achieve a better treatment of tumors to achieve a reduction of metastasis formation and, more importantly, a net increase in survival. This review highlights the central role of HIF-1α activated in hypoxic regions of the tumor, of NF-κB activation and proinflammatory gene expression in transformed thyroid cells to understand their progression toward malignancy. The role of ER-α will be underlined, considering also its role in reprogramming cancer cells.
Collapse
|
9
|
De Maria R, Divari S, Spada F, Oggero C, Mulasso C, Maniscalco L, Cannizzo FT, Bianchi M, Barbarino G, Brina N, Biolatti B. Progesterone receptor gene expression in the accessory sex glands of veal calves. Vet Rec 2010; 167:291-6. [PMID: 20729516 DOI: 10.1136/vr.b4879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study investigated progesterone receptor (PR) cDNA expression in the testes, prostate and bulbourethral glands of prepubertal calves treated experimentally with high and low doses of 17beta-oestradiol and with testosterone. Tissue samples were examined histologically and immunohistochemically for PR. Western blot analysis and quantitative PCR against PR was performed on cDNA and protein extracted from the same tissues. Bulbourethral glands from animals treated with low and high dosages of 17beta-oestradiol had 39- and 429-fold increases of PR transcript, respectively, compared with controls. In the prostate there were 7.5- and 16-fold increases, respectively. Animals treated with testosterone showed no increases in PR transcript. The results demonstrate that 17beta-oestradiol specifically induces marked overexpression of the PR gene and protein, particularly in the bulbourethral gland.
Collapse
Affiliation(s)
- R De Maria
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Turin, Via L da Vinci, Grugliasco (TO), Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Garcia-Reyero N, Kroll KJ, Liu L, Orlando EF, Watanabe KH, Sepúlveda MS, Villeneuve DL, Perkins EJ, Ankley GT, Denslow ND. Gene expression responses in male fathead minnows exposed to binary mixtures of an estrogen and antiestrogen. BMC Genomics 2009; 10:308. [PMID: 19594897 PMCID: PMC2713996 DOI: 10.1186/1471-2164-10-308] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 07/13/2009] [Indexed: 12/31/2022] Open
Abstract
Background Aquatic organisms are continuously exposed to complex mixtures of chemicals, many of which can interfere with their endocrine system, resulting in impaired reproduction, development or survival, among others. In order to analyze the effects and mechanisms of action of estrogen/anti-estrogen mixtures, we exposed male fathead minnows (Pimephales promelas) for 48 hours via the water to 2, 5, 10, and 50 ng 17α-ethinylestradiol (EE2)/L, 100 ng ZM 189,154/L (a potent antiestrogen known to block activity of estrogen receptors) or mixtures of 5 or 50 ng EE2/L with 100 ng ZM 189,154/L. We analyzed gene expression changes in the gonad, as well as hormone and vitellogenin plasma levels. Results Steroidogenesis was down-regulated by EE2 as reflected by the reduced plasma levels of testosterone in the exposed fish and down-regulation of genes in the steroidogenic pathway. Microarray analysis of testis of fathead minnows treated with 5 ng EE2/L or with the mixture of 5 ng EE2/L and 100 ng ZM 189,154/L indicated that some of the genes whose expression was changed by EE2 were blocked by ZM 189,154, while others were either not blocked or enhanced by the mixture, generating two distinct expression patterns. Gene ontology and pathway analysis programs were used to determine categories of genes for each expression pattern. Conclusion Our results suggest that response to estrogens occurs via multiple mechanisms, including canonical binding to soluble estrogen receptors, membrane estrogen receptors, and other mechanisms that are not blocked by pure antiestrogens.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|