1
|
Nikseresht M, Shahrebabaki AM, Mohammad-Sadeghipour M, Hajizadeh MR, Zarei S, Hosseiniara R, Mortazavi M, Vatankhah H, Sayadi AR, Mahmoodi M. Comparison of serum levels of IL-10 and IL-11 and mRNA expression of IL-10, IL-11, COX-2, BCL6, and ZEB Family in peripheral blood mononuclear cells (PBMC) of women with polycystic ovary syndrome and healthy individuals. J Reprod Immunol 2024; 164:104281. [PMID: 38941927 DOI: 10.1016/j.jri.2024.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND The roles of IL-10, IL-11, COX-2, BCL6, ZEB1, and ZEB2 genes in the potential correlation between polycystic ovary syndrome (PCOS), inflammation, and cancer remain controversial. AIMS This study aimed to compare serum levels of IL-10 and IL-11 and gene expression of IL-10, IL-11, COX-2, BCL6, ZEB1, and ZEB2 in PBMCs of women with PCOS and healthy controls. METHODS A case-control study included 40 women with PCOS as the case group and 40 healthy women as controls. Group matching for age and BMI was performed. Serum levels of IL-10 and IL-11 were assessed using ELISA, while gene expression was measured using real-time PCR. Parameters were compared between groups, and correlations among gene expression and serum levels were explored. RESULTS In comparison to healthy women, women with PCOS exhibited a significant decrease in the expression of COX-2 and IL-10 genes (p<0.001), alongside a significant increase in ZEB2 gene expression (p<0.001). There were no significant differences observed in the expression of IL-11, BCL6, and ZEB1 genes. Furthermore, the serum level of IL-10 was significantly lower in women with PCOS compared to the control group (p<0.001), while no significant difference was found in IL-11 levels. Additionally, no significant correlations were identified between gene expression and serum levels. CONCLUSION In women with PCOS, reduced IL-10 gene expression may indicate inflammation and serve as a diagnostic biomarker. However, conflicting findings on COX-2 expression complicate understanding. Elevated ZEB2 expression in PCOS women may lead to infertility, epithelial-mesenchymal transition, and aggressive phenotypes.
Collapse
Affiliation(s)
- Mahsa Nikseresht
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amin Morshedi Shahrebabaki
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Hajizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Hosseiniara
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mortazavi
- Department of Obstetrics and Gynecology, School of Medicine, Nicknafs Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hajar Vatankhah
- Department of Obstetrics and Gynecology, School of Medicine, Nicknafs Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmad Reza Sayadi
- Department of Psychiatric Nursing, School of Nursing and Midwifery, Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Xu Y, Wu F, Qin C, Lin Y. Paradoxical role of phosphorylated STAT3 in normal fertility and the pathogenesis of adenomyosis and endometriosis†. Biol Reprod 2024; 110:5-13. [PMID: 37930185 DOI: 10.1093/biolre/ioad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), when phosphorylated at tyrosine 705, plays an important role in endometrial stromal cell decidualization and the receptivity of the endometrial epithelium during embryo implantation. However, the function of phosphorylated STAT3 (p-STAT3) in normal uterine receptivity is distinct from that in adenomyosis and endometriosis. In normal pregnancy, STAT3 phosphorylation in the endometrial epithelium determines the success of embryo implantation by regulating uterine receptivity. Additionally, p-STAT3 promotes cellular proliferation and differentiation during endometrial decidualization, which is crucial for embryonic development. In contrast, excessive STAT3 phosphorylation occurs in adenomyosis and endometriosis, which may lead to disease progression. Therefore, achieving a delicate balance in STAT3 activation is crucial. This review aimed to focus on the current understanding and knowledge gaps regarding the control of p-STAT3 activity in normal and pathological endometrial processes. This topic is important because precise control of p-STAT3 production could alleviate the symptoms of adenomyosis and endometriosis, improve endometrial receptivity, and potentially mitigate infertility without compromising normal fertility processes.
Collapse
Affiliation(s)
- Yichi Xu
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wu
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanmei Qin
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Bourdon M, Maget AS, Jeljeli M, Doridot L, Marcellin L, Thomas M, Chêne C, Chouzenoux S, Batteux F, Chapron C, Santullli P. Reduced fertility in an adenomyosis mouse model is associated with an altered immune profile in the uterus during the implantation period. Hum Reprod 2024; 39:119-129. [PMID: 38011900 DOI: 10.1093/humrep/dead246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
STUDY QUESTION Does a reduction in fertility and/or systemic immune cell change occur during the early implantation period in a mouse model of adenomyosis? SUMMARY ANSWER A reduction in fertility was observed in mice with adenomyosis, coinciding with local and systemic immune changes observed during the implantation period. WHAT IS KNOWN ALREADY Adenomyosis is a pathology responsible for impaired fertility in humans, with a still unclear pathophysiology. One hypothesis is that changes in immune cells observed in adenomyosis-affected uteri may alter fertility, notably the physiological immune environment necessary for successful implantation and a healthy pregnancy. STUDY DESIGN, SIZE, DURATION Randomly selected CD-1 female neonatal pups were orally dosed by administration of tamoxifen to induce adenomyosis (TAM group), while others received solvent only (control group). From 6 weeks of life, CD-1 mice of both groups were mated to study impaired fertility and related local and/or systemic immune cell changes during the early implantation period. PARTICIPANTS/MATERIALS, SETTINGS, METHODS To evaluate fertility and pregnancy outcomes, ultrasound imaging was performed at E (embryonic day) 7.5 and E11.5 to count the number of gestational sacs and the number of resorptions in eight mice of the TAM group and 16 mice of the control group. The mice were sacrificed at E18.5, and morphometric, functional (quantitative reverse transcription PCR; RT-qPCR), and histological analyses were performed on the placentas. To identify local and/or systemic immune changes during the early implantation period, 8 mice of the TAM group and 12 mice of the control group were sacrificed at E4.5. Uterine horns and spleens were collected for flow cytometry and RT-qPCR analyses to study the immune cell populations. To investigate the profile of the cytokines secreted during the early implantation period at the systemic level, supernatants from stimulated spleen cells were analyzed by multiplex immunoassay analysis. MAIN RESULTS AND THE ROLE OF CHANCE By ultrasound imaging, we observed a lower number of implantation sites (P < 0.005) and a higher number of resorptions (P < 0.001) in the TAM group, leading to smaller litters (average number of fetuses per litter: 1.00 [0.00; 5.25] in the TAM group versus 12.00 [9.50; 13.75] in the control group (P < 0.001). Histological and morphometric analyses of the placentas at E18.5 showed a higher junctional/labyrinthine area ratio in the TAM group (P = 0.005). The expression levels of genes that play a role in vascularization and placental growth (Vegf (P < 0.001), Plgf (P < 0.005), Pecam (P < 0.0001), and Igf2 (P = 0.002)) were reduced in the TAM group. In the TAM group, the percentages of macrophages, natural killer (NK) cells, and dendritic cells (DC) were significantly decreased in the uterus around the implantation period. However, the number of M1 macrophages was increased. Both macrophages and DC had an increased activation profile (higher expression of MCHII, P = 0.012; CD80, P = 0.015; CCR7, P = 0.043 for macrophages, and higher expression of CD206, P = 0.018; CXCR4, P = 0.010; CCR7, P = 0.006, MCHII, P = 0.010; and CD80, P = 0.012 for DC). In spleen, an increase in the activation of macrophages (CCR7, P = 0.002; MCHII, P = 0.001; and CD80, P = 0.034) and DC was observed in the TAM group (CCR7, P = 0.001; MCHII, P = 0.001; Ly6C, P = 0.015). In the uteri and the spleen, we observed increased percentages of CD4+ T lymphocytes (P = 0.0237 and P = 0.0136, respectively) in the TAM group and, in the uteri, an increased number of regulatory T cells (P = 0.036) compared with the controls. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION This study is limited by the use of an animal model and the lack of intervention. WIDER IMPLICATIONS OF THE FINDINGS These data support involvement of innate and adaptive immune cells in the implantation failure and the increased rate of resorption observed in the mouse model of adenomyosis. This substantiates the need for additional research in this domain, with the goal of addressing fertility challenges in women affected by this condition. STUDY FUNDING/COMPETING INTEREST(S) None.
Collapse
Affiliation(s)
- M Bourdon
- Department of Gynaecology Obstetrics and Reproductive Medicine, Assistance Publique-Hopitaux de Paris (AP-HP), Centre Hospitalier Universitaire (CHU), Université Paris Cité, Paris, France
- Institut Cochin, INSERM, CNRS, Paris, France
| | - A S Maget
- Department of Gynaecology Obstetrics and Reproductive Medicine, Assistance Publique-Hopitaux de Paris (AP-HP), Centre Hospitalier Universitaire (CHU), Université Paris Cité, Paris, France
- Institut Cochin, INSERM, CNRS, Paris, France
| | - M Jeljeli
- Institut Cochin, INSERM, CNRS, Paris, France
- Department of Immunology, Assistance Publique-Hopitaux de Paris (AP-HP), Centre Hospitalier Universitaire (CHU), Université Paris Cité, Paris, France
| | - L Doridot
- Institut Cochin, INSERM, CNRS, Paris, France
| | - L Marcellin
- Department of Gynaecology Obstetrics and Reproductive Medicine, Assistance Publique-Hopitaux de Paris (AP-HP), Centre Hospitalier Universitaire (CHU), Université Paris Cité, Paris, France
- Institut Cochin, INSERM, CNRS, Paris, France
| | - M Thomas
- Institut Cochin, INSERM, CNRS, Paris, France
| | - C Chêne
- Institut Cochin, INSERM, CNRS, Paris, France
| | | | - F Batteux
- Institut Cochin, INSERM, CNRS, Paris, France
- Department of Immunology, Assistance Publique-Hopitaux de Paris (AP-HP), Centre Hospitalier Universitaire (CHU), Université Paris Cité, Paris, France
| | - C Chapron
- Department of Gynaecology Obstetrics and Reproductive Medicine, Assistance Publique-Hopitaux de Paris (AP-HP), Centre Hospitalier Universitaire (CHU), Université Paris Cité, Paris, France
- Institut Cochin, INSERM, CNRS, Paris, France
| | - P Santullli
- Department of Gynaecology Obstetrics and Reproductive Medicine, Assistance Publique-Hopitaux de Paris (AP-HP), Centre Hospitalier Universitaire (CHU), Université Paris Cité, Paris, France
- Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
4
|
Li Q, Chen Y, Adeniran SO, Qiu Z, Zhao Q, Zheng P. LIF regulates the expression of miR-27a-3p and HOXA10 in bovine endometrial epithelial cells via STAT3 pathway. Theriogenology 2023; 210:101-109. [PMID: 37490795 DOI: 10.1016/j.theriogenology.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
LIF is crucial in regulating embryo implantation, while HOXA10 is a marker gene for uterine receptivity. However, the specific mechanism of LIF regulating HOXA10 during cow embryo implantation has not been fully understood. To address this knowledge gap, the experiment involved treating bovine endometrial epithelial cells (BEECs) with LIF to investigate the relationship between LIF, miRNA, and HOXA10. The experimental findings revealed that applying LIF resulted in a substantial increase in the proliferation of endometrial epithelial cells. Moreover, the expressions of PI3K, AKT, HOXA10, CDK4, cyclinD1, and cyclinE1 were significantly elevated. Conversely, the expression of p21Cipl was significantly reduced. In the group that received a combination of LIF and a STAT3 inhibitor, the expression of PI3K/AKT remained significantly increased, but there was no significant change in the expression of HOXA10. When miRNA-27a-3p was overexpressed, it resulted in a decrease in both the RNA and protein expression of HOXA10. Conversely, inhibiting miRNA-27a-3p increased the RNA and protein expression of HOXA10. In the presence of LIF treatment, the expression of miRNA-27a-3p was reduced, while the expression of HOXA10 was increased. However, when LIF and a STAT3 inhibitor were combined, there was no significant change in the expression of miRNA-27a-3p or HOXA10. Consequently, LIF facilitated cell proliferation by activating the PI3K/AKT pathway. LIF controlled the expression of miRNA-27a-3p and HOXA10 in endometrial epithelial cells through STAT3, with miRNA-27a-3p negatively regulating the expression of HOXA10.
Collapse
Affiliation(s)
- Qi Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yanru Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Samson Olugbenga Adeniran
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University Ibafo, Ogun State, Nigeria
| | - Zixi Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Qian Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
5
|
Eivazi S, Tanhaye Kalate Sabz F, Amiri S, Zandieh Z, Bakhtiyari M, Rashidi M, Aflatoonian R, Mehraein F, Amjadi F. MiRNAs secreted by human blastocysts could be potential gene expression regulators during implantation. Mol Biol Rep 2023; 50:1375-1383. [PMID: 36469260 DOI: 10.1007/s11033-022-08121-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Micro RNAs (miRNAs) are small non-coding RNAs known as essential regulators of cell-cell communication. Recent studies have revealed that miRNAs are secreted by a blastocyst in culture media. We hypothesized that endometrial epithelial cells take up embryo-derived miRNAs as well as other soluble factors and regulate their receptivity-related gene expression. METHODS AND RESULTS Blastocyst culture media (BCM) were collected from the individually cultured embryos, while human endometrial epithelial cells (HEECs) were collected from healthy fertile volunteers. To evaluate the effect of BCM on the endometrial receptivity gene expression, HEECs were co-cultured with implanted BCM, non-implanted BCM, and a control culture medium. After determining altered gene expression in the HEECs, the miRNAs-related genes through bioinformatics databases were identified and evaluated in the BCM. Co-culture of primary HEECs with BCM significantly stimulated the expression levels of VEGFA, HBEGF, HOXA10, and LIF in the implanted group compared with non-implanted and control groups. The fold changes of miR-195 significantly diminished in the implanted BCM group compared with the non-implanted BCM group. Reduced fold changes of miR-29b, 145 and increased miR-223 were also observed in the implanted BCM group compared with the non-implanted ones. CONCLUSION miRNAs could function as potential gene expression regulators during implantation. These molecules are secreted by human blastocyst, taken up by endometrial epithelial cells, and cause a change in the endometrial function. We found that BCMs can be effective in implantation process by stimulating related receptivity gene expression.
Collapse
Affiliation(s)
- Sadegh Eivazi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1168743514, Iran
| | - Fatemeh Tanhaye Kalate Sabz
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1168743514, Iran
- Department of Anatomical Sciences and Pathology, School of Medicine, North Khorasan University of Medical Sciences, bojnurd, Iran
| | - Sadegh Amiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1168743514, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1168743514, Iran
- Shahid Akbar Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehrdad Bakhtiyari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1168743514, Iran
| | - Mandana Rashidi
- Shahid Akbar Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Fereshteh Mehraein
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1168743514, Iran.
| | - Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1168743514, Iran.
- Shahid Akbar Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
6
|
Sharma JB, Sharma S, Sharma E, Dharmendra S, Singh S. Immune disturbances in female genital tuberculosis and latent genital tuberculosis. Am J Reprod Immunol 2023; 89:e13632. [PMID: 36494901 DOI: 10.1111/aji.13632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 09/07/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Female genital tuberculosis (FGTB), an important clinical sub-type of extra-pulmonary tuberculosis (EPTB) is responsible for about 10% cases of infertility in India. Both FGTB and latent genital tuberculosis (LGTB) can cause infertility through blockage of fallopian tubes and through altered uterine endometrial receptivity. AIMS This review tries to elucidates the role of various immune factors in FGTB and LGTB. CONTENT Various immune disturbances are observed in FGTB and LGTB like growth factors and cytokines which inhibit implantation and several inflammatory signaling pathways like mitogen activated protein kinase (MAPK), natural killer (NK) cells, nuclear factor kappa-B (NF-KB), tumor necrosis factor (TNF), and toll like receptors (TLR) signaling are dysregulated. These altered immune factors and pathways may be detected in the endometrial biopsies at the early stages of disease before permanent damage. Prompt and adequate treatment with the four anti-tubercular drugs (rifampicin [R], isoniazid [H], pyrazinamide [Z], and ethambutol [E]) can increase pregnancy rates in some of these women. Assisted reproduction especially in-vitro fertilization and embryo transfer may be required for some women. IMPLICATIONS Inflammatory pathways identified from the gene profiling have enabled development of potential biomarkers for early diagnosis of FGTB. Immunomodulation and novel biotechniques like stem cell transplantation, nanoparticles and host directed therapies are being tried in selected patients of FGTB and LGTB with promising results.
Collapse
Affiliation(s)
- Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Sangeeta Sharma
- Department of Paediatrics, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Eshani Sharma
- Department of Medicine, KU School of Medicine, Wichita, Kansas, USA
| | - Sona Dharmendra
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Sheena Singh
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
The Update Immune-Regulatory Role of Pro- and Anti-Inflammatory Cytokines in Recurrent Pregnancy Losses. Int J Mol Sci 2022; 24:ijms24010132. [PMID: 36613575 PMCID: PMC9820098 DOI: 10.3390/ijms24010132] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Recurrent pregnancy losses (RPL) is a common reproductive disorder with various underlying etiologies. In recent years, rapid progress has been made in exploring the immunological mechanisms for RPL. A propensity toward Th2 over Th1 and regulatory T (Treg) over Th17 immune responses may be advantageous for reproductive success. In women with RPL and animals prone to abortion, an inordinate expression of cytokines associated with implantation and early embryo development is present in the endometrium or decidua secreted from immune and non-immune cells. Hence, an adverse cytokine milieu at the maternal-fetal interface assaults immunological tolerance, leading to fetal rejection. Similar to T cells, NK cells can be categorized based on the characteristics of cytokines they secrete. Decidual NK (dNK) cells of RPL patients exhibited an increased NK1/NK2 ratio (IFN-γ/IL-4 producing NK cell ratios), leading to pro-inflammatory cytokine milieu and increased NK cell cytotoxicity. Genetic polymorphism may be the underlying etiologies for Th1 and Th17 propensity since it alters cytokine production. In addition, various hormones participate in cytokine regulations, including progesterone and estrogen, controlling cytokine balance in favor of the Th2 type. Consequently, the intricate regulation of cytokines and hormones may prevent the RPL of immune etiologies. Local or systemic administration of cytokines or their antagonists might help maintain adequate cytokine milieu, favoring Th2 over Th1 response or Treg over Th17 immune response in women with RPL. Herein, we provided an updated comprehensive review regarding the immune-regulatory role of pro- and anti-inflammatory cytokines in RPL. Understanding the roles of cytokines involved in RPL might significantly advance the early diagnosis, monitoring, and treatment of RPL.
Collapse
|
8
|
Johnston RA, Atkins CL, Siddiqui SR, Jackson WT, Mitchell NC, Spencer CY, Pilkington AW, Kashon ML, Haque IU. Interleukin-11 receptor subunit α-1 is required for maximal airway responsiveness to methacholine after acute exposure to ozone. Am J Physiol Regul Integr Comp Physiol 2022; 323:R921-R934. [PMID: 36283092 PMCID: PMC9722265 DOI: 10.1152/ajpregu.00213.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
Interleukin (IL)-11, a multifunctional cytokine, contributes to numerous biological processes, including adipogenesis, hematopoiesis, and inflammation. Asthma, a respiratory disease, is notably characterized by reversible airway obstruction, persistent lung inflammation, and airway hyperresponsiveness (AHR). Nasal insufflation of IL-11 causes AHR in wild-type mice while lung inflammation induced by antigen sensitization and challenge, which mimics features of atopic asthma in humans, is attenuated in mice genetically deficient in IL-11 receptor subunit α-1 (IL-11Rα1-deficient mice), a transmembrane receptor that is required conjointly with glycoprotein 130 to transduce IL-11 signaling. Nevertheless, the contribution of IL-11Rα1 to characteristics of nonatopic asthma is unknown. Thus, based on the aforementioned observations, we hypothesized that genetic deficiency of IL-11Rα1 attenuates lung inflammation and increases airway responsiveness after acute inhalation exposure to ozone (O3), a criteria pollutant and nonatopic asthma stimulus. Accordingly, 4 and/or 24 h after cessation of exposure to filtered room air or O3, we assessed lung inflammation and airway responsiveness in wild-type and IL-11Rα1-deficient mice. With the exception of bronchoalveolar lavage macrophages and adiponectin, which were significantly increased and decreased, respectively, in O3-exposed IL-11Rα1-deficient as compared with O3-exposed wild-type mice, no other genotype-related differences in lung inflammation indices that we quantified were observed in O3-exposed mice. However, airway responsiveness to acetyl-β-methylcholine chloride (methacholine) was significantly diminished in IL-11Rα1-deficient as compared with wild-type mice after O3 exposure. In conclusion, these results demonstrate that IL-11Rα1 minimally contributes to lung inflammation but is required for maximal airway responsiveness to methacholine in a mouse model of nonatopic asthma.
Collapse
Affiliation(s)
- Richard A Johnston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Saad R Siddiqui
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - William T Jackson
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Nicholas C Mitchell
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantal Y Spencer
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Albert W Pilkington
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
9
|
Wu HM, Chen LH, Hsu LT, Lai CH. Immune Tolerance of Embryo Implantation and Pregnancy: The Role of Human Decidual Stromal Cell- and Embryonic-Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms232113382. [PMID: 36362169 PMCID: PMC9658721 DOI: 10.3390/ijms232113382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Embryo–endometrial communication plays a critical role in embryo implantation and the establishment of a successful pregnancy. Successful pregnancy outcomes involve maternal immune modulation during embryo implantation. The endometrium is usually primed and immunomodulated by steroid hormones and embryo signals for subsequent embryo implantation and the maintenance of pregnancy. The roles of extracellular vesicles (EVs) and microRNAs for the embryo–maternal interactions have been elucidated recently. New evidence shows that endometrial EVs and trophectoderm-originated EV cargo, including microRNAs, proteins, and lipids in the physiological microenvironment, regulate maternal immunomodulation for embryo implantation and subsequent pregnancy. On the other hand, trophoblast-derived EVs also control the cross-communication between the trophoblasts and immune cells. The exploration of EV functions and mechanisms in the processes of embryo implantation and pregnancy will shed light on a practical tool for the diagnostic or therapeutic approaches to reproductive medicine and infertility.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Le-Tien Hsu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Gynecologic Cancer Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 8254)
| |
Collapse
|
10
|
Takamura M, Zhou W, Rombauts L, Dimitriadis E. The long noncoding RNA PTENP1 regulates human endometrial epithelial adhesive capacity in vitro: implications in infertility. Biol Reprod 2021; 102:53-62. [PMID: 31504217 DOI: 10.1093/biolre/ioz173] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
There is general consensus that the synchronous development of the embryo and endometrium is absolutely essential for successful implantation. Recent studies have strongly suggested that embryo-secreted factors are able to deliver into the endometrial cavity/endometrium and alter its protein profile in preparation for implantation. However, there is limited research focusing on long noncoding RNA (lncRNA) changes in the endometrium that brought about by the embryonic derived factors. It has been suggested that lncRNA has intricate interplay with microRNA (miR), small (~19-22 nucleotides), non-protein-coding RNA, to regulate protein production in the endometrium, thus controlling adhesive capacity. Here through microarray assays, we compare the lncRNA profile of the primary human endometrial epithelial cells (HEECs) that have been precultured with blastocyst-conditioned media (BCM) from embryos that implanted versus nonimplanted. Our data indicate a substantial change of lncRNA expression in HEECs, including 9 up-regulated and 12 down-regulated lncRNAs after incubation with implanted BCM. Selective knockdown of PTENP1, the most increased lncRNA after implanted BCM treatment in the HEECs, compromised the spheroid adhesion (P < 0.001). Characterization of PTENP1 confirmed its expression in the luminal epithelium with staining appeared most intense in the midsecretory phase. Furthermore, we have recorded a substantial change of miR profile upon PTENP1 knockdown in HEECs. Overexpression of miR-590-3p, a novel predicted target of PTENP1, impaired spheroid adhesion (P < 0.001). Collectively, these data have supported a novel regulation system that lncRNAs were able to participate in the regulation of implantation through association with miRs.
Collapse
Affiliation(s)
- Masashi Takamura
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Luk Rombauts
- Monash IVF, Monash Surgical Private Hospital, Clayton, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| |
Collapse
|
11
|
Mayoral Andrade G, Vásquez Martínez G, Pérez-Campos Mayoral L, Hernández-Huerta MT, Zenteno E, Pérez-Campos Mayoral E, Martínez Cruz M, Martínez Cruz R, Matias-Cervantes CA, Meraz Cruz N, Romero Díaz C, Cruz-Parada E, Pérez-Campos E. Molecules and Prostaglandins Related to Embryo Tolerance. Front Immunol 2020; 11:555414. [PMID: 33329514 PMCID: PMC7710691 DOI: 10.3389/fimmu.2020.555414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
It is generally understood that the entry of semen into the female reproductive tract provokes molecular and cellular changes facilitating conception and pregnancy. We show a broader picture of the participation of prostaglandins in the fertilization, implantation and maintenance of the embryo. A large number of cells and molecules are related to signaling networks, which regulate tolerance to implantation and maintenance of the embryo and fetus. In this work, many of those cells and molecules are analyzed. We focus on platelets, polymorphonuclear leukocytes, and group 2 innate lymphoid cells involved in embryo tolerance in order to have a wider view of how prostaglandins participate. The combination of platelets and neutrophil extracellular traps (Nets), uterine innate lymphoid cells (uILC), Treg cells, NK cells, and sex hormones have an important function in immunological tolerance. In both animals and humans, the functions of these cells can be regulated by prostaglandins and soluble factors in seminal plasma to achieve an immunological balance, which maintains fetal-maternal tolerance. Prostaglandins, such as PGI2 and PGE2, play an important role in the suppression of the previously mentioned cells. PGI2 inhibits platelet aggregation, in addition to IL-5 and IL-13 expression in ILC2, and PGE2 inhibits some neutrophil functions, such as chemotaxis and migration processes, leukotriene B4 (LTB4) biosynthesis, ROS production, and the formation of extracellular traps, which could help prevent trophoblast injury and fetal loss. The implications are related to fertility in female when seminal fluid is deposited in the vagina or uterus.
Collapse
Affiliation(s)
- Gabriel Mayoral Andrade
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Laura Pérez-Campos Mayoral
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Edgar Zenteno
- Department of Biochemistry, School of Medicine, UNAM, Mexico City, México
| | - Eduardo Pérez-Campos Mayoral
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Ruth Martínez Cruz
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Noemi Meraz Cruz
- School of Medicine, Branch at National Institute of Genomic Medicine, Mexico City, Mexico
| | - Carlos Romero Díaz
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | - Eli Cruz-Parada
- Biochemistry and Immunology Unit, National Technological of Mexico/ITOaxaca, Oaxaca, Mexico
| | - Eduardo Pérez-Campos
- Biochemistry and Immunology Unit, National Technological of Mexico/ITOaxaca, Oaxaca, Mexico
| |
Collapse
|
12
|
Gupta S, Gupta P. Etiopathogenesis, Challenges and Remedies Associated With Female Genital Tuberculosis: Potential Role of Nuclear Receptors. Front Immunol 2020; 11:02161. [PMID: 33178178 PMCID: PMC7593808 DOI: 10.3389/fimmu.2020.02161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
Extra-pulmonary tuberculosis (EPTB) is recognized mainly as a secondary manifestation of a primary tuberculosis (TB) infection in the lungs contributing to a high incidence of morbidity and mortality. The TB bacilli upon reactivation maneuver from the primary site disseminating to other organs. Diagnosis and treatment of EPTB remains challenging due to the abstruse positioning of the infected organs and the associated invasiveness of sample acquisition as well as misdiagnosis, associated comorbidities, and the inadequacy of biomarkers. Female genital tuberculosis (FGTB) represents the most perilous form of EPTB leading to poor uterine receptivity (UR), recurrent implantation failure and infertility in females. Although the number of TB cases is reducing, FGTB cases are not getting enough attention because of a lack of clinical awareness, nonspecific symptoms, and inappropriate diagnostic measures. This review provides an overview for EPTB, particularly FGTB diagnostics and treatment challenges. We emphasize the need for new therapeutics and highlight the need for the exaction of biomarkers as a point of care diagnostic. Nuclear receptors have reported role in maintaining UR, immune modulation, and TB modulation; therefore, we postulate their role as a therapeutic drug target and biomarker that should be explored in FGTB.
Collapse
Affiliation(s)
- Shalini Gupta
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Pawan Gupta
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
13
|
Ali S, Majid S, Ali MN, Taing S, Rehman MU, Arafah A. Cytokine imbalance at materno-embryonic interface as a potential immune mechanism for recurrent pregnancy loss. Int Immunopharmacol 2020; 90:107118. [PMID: 33191177 DOI: 10.1016/j.intimp.2020.107118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Recurrent pregnancy loss (RPL) is a prominent reproductive disease that distresses about 2%-5% of couples. RPL is the loss of two or more successive spontaneous pregnancies prior to the 20th week of embryo development. The commencement of pregnancy necessitates implantation of the embryo into responsive maternal decidua synchronized with the process of placentation, decidual and myometrial trophoblast incursion as well as refashioning of spiral blood arteries of uterus. The collapse of any of the processes fundamental for pregnancy success may result into an array of pregnancy problems including spontaneous pregnancy loss. Endometrium of human female manufactures an extensive range of cytokines during the proliferative and secretory stage of the menstrual cycle. These endometrial cytokines are thought as major players for making the uterus ready for embryo implantation and placental development during pregnancy. Decidual cytokines regulate the invasion of trophoblast and remodeling of spiral arteries as well as take part in immune suppression to accomplish the pregnancy. Deterrence of maternal rejection of embryo needs a regulated milieu, which takes place essentially at the embryo-maternal interface and the tissues of the uterus. The reasons of RPL remain anonymous in a large number of cases that lead to difficulties in management and severe trauma in couples. Cytokine modulatory therapies have been shown promising for preventing RPL. Further study of novel factors is wanted to establish more effective RPL treatment protocols. The present study aims to review the outcome of cytokine breach at materno-embryonic interface and the efficacy of cytokine modulatory therapies in RPL.
Collapse
Affiliation(s)
- Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir-190006, Srinagar, J&K, India; Department of Biochemistry, Government Medical College, Srinagar, J&K, India.
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College, Srinagar, J&K, India
| | - Md Niamat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir-190006, Srinagar, J&K, India.
| | - Shahnaz Taing
- Department of Obstetrics and Gynaecology, Govt. Medical College Associated Lalla Ded Hospital, Srinagar, J&K, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Zhou W, Santos L, Dimitriadis E. Characterization of the role for cadherin 6 in the regulation of human endometrial receptivity. Reprod Biol Endocrinol 2020; 18:66. [PMID: 32600462 PMCID: PMC7322878 DOI: 10.1186/s12958-020-00624-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The endometrial luminal epithelium is the first point of attachment of embryos during implantation. Failure of embryos to firmly adhere results in implantation failure and infertility. A receptive endometrial luminal epithelium is achieved through the expression of adhesion molecules in the mid-secretory phase and is a requirement for implantation. Cadherin 6 (CDH6) is an adhesion molecule localizing to the endometrial luminal epithelial cell surface in the mid-secretory/receptive phase and knockdown of CDH6 in the Ishikawa cells (receptive endometrial epithelial cell line) compromises cell integrity. However, there are no studies investigating the role of CDH6 on receptivity and infertility. This study aimed to investigate whether CDH6 is dysregulated in the endometrium of women with infertility during the receptive window and the effect of CDH6 on endometrial adhesion and receptivity. METHODS The expression and the localization of CDH6 in the human endometrium were determined by immunohistochemistry. Ishikawa cells were used to investigate the functional consequences of CDH6 knockdown on endometrial adhesive capacity to HTR8/SVneo (trophoblast cell line) spheroids in vitro. CDH6 knockdown was assessed by qPCR and immunoblotting. After CDH6 knockdown, the expression of type II cadherin family members and CDH6 functional partners were assessed by qPCR. Two-tailed unpaired student's t-test or one-way ANOVA as appropriate were used for statistical analysis with a significance threshold of P < 0.05. RESULTS A significant reduction of CDH6 immunolocalization was recorded in the luminal and glandular epithelium of endometrium from women with infertility (P < 0.05) compared to fertile group respective cellular compartments in the mid-secretory phase. Functional analysis using Ishikawa cells demonstrated that knockdown of CDH6 (treated with 50 nM CDH6 siRNA) significantly reduced epithelial adhesive capacity (P < 0.05) to HTR8/SVneo spheroids compared to control and other type II cadherin family members likely failed to compensate for the loss of CDH6. The expression levels of CDH6 functional partners, catenin family members were not changed after CDH6 knockdown in Ishikawa cells. CONCLUSION Together, our data revealed that CDH6 was dysregulated in the endometrium from women with infertility and altered Ishikawa cell adhesive capacity. Our study supports a role for CDH6 in regulating endometrial adhesion and implantation.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, 3052, Australia
| | - Leilani Santos
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, 3052, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
15
|
Etiology and management of recurrent implantation failure: A focus on intra-uterine PBMC-therapy for RIF. J Reprod Immunol 2020; 139:103121. [DOI: 10.1016/j.jri.2020.103121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/11/2023]
|
16
|
Two patterns of cytokine production by placental macrophages. Placenta 2020; 91:1-10. [PMID: 31941612 DOI: 10.1016/j.placenta.2020.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Macrophages participate in the regulation immune and morphogenetic events in the placenta. However, these roles remain unclear for placental macrophages (Hofbauer cells). The aims of this study were to characterize the consecutive steps of cytokine production (intracellular synthesis and secretion) in placental macrophages in early and late gestation and to compare the secretory profiles of placental macrophages and villous tissue. METHODS Macrophages and villous tissue were isolated from placentas obtained from normal pregnancies at either 9-12 or 38-40 weeks of gestation. Intracellular cytokines were determined by flow cytometry after staining with monoclonal antibodies. Secreted cytokines were quantified by cytometric bead array and ELISA. RESULTS Two patterns of cytokine production were revealed in placental macrophages. Cytokines in the first group (IL-1, IL-6, IL-8, IL-10, TNFα) demonstrated low basal production and were stimulated by bacterial endotoxin. Cytokines in the second group (IL-11, IL-17A, IL-17F, TGF-β, VEGF) were characterized by constitutive production and did not respond to stimulation. Gestational age-dependent changes were observed: basal secretion of TNFα and IL-8 increased whereas IL-11 and IL-17 secretion decreased in third-trimester macrophages compared with the first-trimester cells. Comparison of cytokine production at the cellular and tissue levels suggested the contribution of the placental macrophages both in intraplacental and extraplacental cytokine production. DISCUSSION It would be safe to assume that the two patterns of cytokine production, revealed in our study, correspond to two regulatory roles of placental macrophages: "immune" and "morphogenetic". The inflammatory phenotype of macrophages is attenuated in early gestation and increases with the progression of pregnancy. The cytokines of the first group supposedly contribute to both local and extraplacental levels, whereas the cytokine effects of the second group are more likely confined to the placental tissue.
Collapse
|
17
|
Zhao X, Dai L, Yue Q, Wang H, Wang X, Li Y, Chen R. MiR-195 inhibits migration, invasion and epithelial-mesenchymal transition (EMT) of endometrial carcinoma cells by targeting SOX4. J Biosci 2019. [DOI: 10.1007/s12038-019-9966-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Zhang X, Kiapour N, Kapoor S, Khan T, Thamilarasan M, Tao Y, Cohen S, Miller R, Sobel RA, Markovic-Plese S. IL-11 Induces Encephalitogenic Th17 Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2019; 203:1142-1150. [PMID: 31341075 DOI: 10.4049/jimmunol.1900311] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023]
Abstract
IL-11+CD4+ cells accumulate in the cerebrospinal fluid of patients with early relapsing-remitting multiple sclerosis (MS) and in active brain MS lesions. Mouse studies have confirmed a causal role of IL-11 in the exacerbation of relapsing-remitting experimental autoimmune encephalomyelitis (RREAE). Administration of IL-11 at the time of clinical onset of RREAE induced an acute exacerbation and increased clinical scores, which persisted during the entire course of the disease. IL-11 increased the numbers of spinal cord inflammatory foci, as well as the numbers of peripheral and CNS-infiltrating IL-17+CD4+ cells and IL-17A serum levels. Ag recall assays revealed that IL-11 induces IL-17A+, GM-CSF+, and IL-21+CD4+ myelin Ag-reactive cells. Passive transfer of these encephalitogenic CD4+ T cells induced severe RREAE with IL-17A+CCR6+ CD4+ and B cell accumulation within the CNS. Furthermore, passive transfer of nonmanipulated CNS-derived mononuclear cells from mice with RREAE after a single dose of IL-11 induced severe RREAE with increased accumulation of IL-17A+ and CCR6+ CD4+ cells within the CNS. These results suggest that IL-11 might serve as a biomarker of early autoimmune response and a selective therapeutic target for patients with early relapsing-remitting MS.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nazanin Kiapour
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Sahil Kapoor
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Tabish Khan
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Madhan Thamilarasan
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yazhong Tao
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie Cohen
- Lineberger Cancer Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ryan Miller
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Raymond A Sobel
- Department of Pathology, Stanford University, Palo Alto, CA 94394
| | - Silva Markovic-Plese
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
19
|
Van Sinderen M, Griffiths M, Menkhorst E, Niven K, Dimitriadis E. Restoration of microRNA-29c in type I endometrioid cancer reduced endometrial cancer cell growth. Oncol Lett 2019; 18:2684-2693. [PMID: 31404303 DOI: 10.3892/ol.2019.10588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/04/2019] [Indexed: 12/26/2022] Open
Abstract
Endometrial cancer is the most common gynaecological cancer worldwide, and the prognosis of patients with advanced disease remains poor. MicroRNAs (miRs) are dysregulated in endometrial cancer. miRs-29-a, -b and -c expression levels are downregulated in endometrial cancer; however, a specific role for miR-29c and its target genes remain to be elucidated. The aim of the present study was to determine the functional effect of restoring miR-29c expression in endometrial cancer cell lines and to identify miR-29c targets involved in cancer progression. miR-29c expression in human endometrial tumour grades 1-3 and benign tissue as well as in the endometrial cancer cell lines Ishikawa, HEC1A and AN3CA were analysed using reverse transcriptase-quantitative PCR (RT-qPCR). The cell lines were transfected with miR-29c mimic, miR-29c inhibitor or scrambled control. xCELLigence real-time cell monitoring analysed proliferation and migration, and flow cytometry was used to analyse apoptosis and cell cycle. The expression of miR-29c target genes in transfected cell lines was analysed using RT-qPCR. miR-29c was downregulated in grade 1-3 endometrial cancer samples compared with benign endometrium. miR-29c was reduced in Ishikawa and AN3CA cells, but not in HEC1A cell lines compared with non-cancerous primary human endometrial epithelial cells. Overexpression of miR-29c variably reduced proliferation, increased apoptosis and reduced the expression levels of miR-29c target genes, including cell division cycle 42, HMG-box transcription factor 1, integrin subunit β 1, MCL1 apoptosis regulator BCL2 family member, MDM2 proto-oncogene, serum/glucocorticoid regulated kinase 1, sirtuin 1 and vascular endothelial growth factor A, across the three cell lines investigated. Inhibition of miR-29c in HEC1A cells increased proliferation and collagen type IV α 1 chain expression. The re-introduction of miR-29c to endometrial cancer cell lines reduced proliferation, increased apoptosis and reduced miR-29c target gene expression in vitro. The present results suggested that miR-29c may be a potential therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Michelle Van Sinderen
- Embryo Implantation Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3186, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria 3800, Australia
| | - Meaghan Griffiths
- Embryo Implantation Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3186, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ellen Menkhorst
- Embryo Implantation Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3186, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria 3800, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, The Royal Women's Hospital, Parkville, Victoria 3010, Australia
| | - Keith Niven
- FlowCore, Technology Research Platforms, Monash University, Clayton, Victoria 3800, Australia
| | - Evdokia Dimitriadis
- Embryo Implantation Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria 3186, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, The Royal Women's Hospital, Parkville, Victoria 3010, Australia
| |
Collapse
|
20
|
Brünnert D, Shekhawat I, Chahar KR, Ehrhardt J, Pandey J, Yadav JK, Zygmunt M, Goyal P. Thrombin stimulates gene expression and secretion of IL-11 via protease-activated receptor-1 and regulates extravillous trophoblast cell migration. J Reprod Immunol 2019; 132:35-41. [DOI: 10.1016/j.jri.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/19/2019] [Accepted: 03/08/2019] [Indexed: 11/28/2022]
|
21
|
Wang Y, Hua R, Xue S, Li W, Wu L, Kang T, Lei M. mRNA/lncRNA expression patterns and the function of fibrinogen-like protein 2 in Meishan pig endometrium during the preimplantation phases. Mol Reprod Dev 2019; 86:354-369. [PMID: 30632236 DOI: 10.1002/mrd.23109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/08/2019] [Indexed: 01/09/2023]
Abstract
Embryonic implantation involves a complex and well-coordinated interaction between the developing conceptus and maternal uterus, and the preimplantation period has a major impact on litter size in pigs. The present study aimed to investigate the vital messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) that regulate preimplantation in Meishan pigs. The enriched Gene Ontology terms were all related to "binding." Furthermore, "ECM-receptor interaction" was predicted as an important pathway that regulated the success of implantation. We speculated that the differentially expressed mRNAs S100A9, ANXA8, MUC16, and FGL2 and the differentially expressed lncRNAs TCONS_11206566, TCONS_09904861, and TCONS_1252933 may play vital roles in the process of implantation. Furthermore, this study verified that FGL2 was highly expressed on Day 12 of pregnancy, and we also investigated the function of FGL2 during preimplantation in vivo. In conclusion, this study provides useful information for further analyses of the molecular mechanisms of implantation in Chinese domestic pigs.
Collapse
Affiliation(s)
- Yueying Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Renwu Hua
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Songyi Xue
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenchao Li
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lihang Wu
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Kang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Minggang Lei
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Huang C, Sun H, Wang Z, Liu Y, Cheng X, Liu J, Jiang R, Zhang X, Zhen X, Zhou J, Chen L, Ding L, Yan G, Jiang Y. Increased Krüppel-like factor 12 impairs embryo attachment via downregulation of leukemia inhibitory factor in women with recurrent implantation failure. Cell Death Discov 2018; 4:23. [PMID: 30109142 PMCID: PMC6079092 DOI: 10.1038/s41420-018-0088-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/26/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
Recurrent implantation failure (RIF) caused by various etiological factors remains a challenge for fertility clinicians using assisted reproductive technology (ART) worldwide. Dysregulation of leukemia inhibitory factor (LIF) in the endometria of women with RIF is involved in impaired endometrial receptivity and embryo adhesion. However, the mechanism through which LIF expression is regulated in women with RIF is still poorly understood. Our previous study noted that the abnormally increased endometrial Krüppel-like factor 12 (KLF12) in RIF women led to impaired decidualization and embryo implantation. Here, we further found that KLF12 inhibited embryo adhesion in vivo and in vitro by repressing LIF expression. Mechanistically, KLF12 bound to conserved sites (CAGTGGG, −6771 to −6765 and −7115 to −7109) within the LIF promoter region and repressed LIF transcription directly. Exogenous LIF significantly reversed the KLF12-mediated repression of BeWo spheroid adhesion. KLF12 expression was reduced significantly in Ishikawa cells treated with progestogen, which was due to the activation of Akt signaling. These findings may provide novel potential therapeutic regimens for patients with RIF and disrupted endometrial receptivity.
Collapse
Affiliation(s)
- Chenyang Huang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Zhilong Wang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Yang Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Xi Cheng
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Jingyu Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Ruiwei Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Xindong Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Xin Zhen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Jidong Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Linjun Chen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| |
Collapse
|
23
|
Van Sinderen M, Oyanedel J, Menkhorst E, Cuman C, Rainczuk K, Winship A, Salamonsen L, Edgell T, Dimitriadis E. Soluble Delta-like ligand 1 alters human endometrial epithelial cell adhesive capacity. Reprod Fertil Dev 2018; 29:694-702. [PMID: 26616664 DOI: 10.1071/rd15313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/23/2015] [Indexed: 01/23/2023] Open
Abstract
The endometrium undergoes substantial morphological and functional changes to become receptive to embryo implantation and to enable establishment of a successful pregnancy. Reduced Delta-like ligand 1 (DLL1, Notch ligand) in the endometrium is associated with infertility. DLL1 can be cleaved by 'a disintegrin and metalloprotease' (ADAM) proteases to produce a soluble ligand that may act to inhibit Notch signalling. We used an enzyme-linked immunosorbent assay to quantify soluble DLL1 in uterine lavages from fertile and infertile women in the secretory phase of the menstrual cycle. We also determined the cellular location and immunostaining intensity of ADAM12 and 17 in human endometrium throughout the cycle. Functional effects of soluble DLL1 in receptivity were analysed using in vitro adhesion and proliferation assays and gene expression analysis of Notch signalling targets. Soluble DLL1 was significantly increased in uterine lavage samples of infertile women compared with fertile women in the secretory phase of the menstrual cycle. This coincided with significantly increased ADAM17 immunostaining detected in the endometrial luminal epithelium in the mid-secretory phase in infertile women. Soluble DLL1 significantly inhibited the adhesive capacity of endometrial epithelial cells via downregulation of helix-loop-helix and hairy/enhancer of split family member HES1 mRNA. Thus, soluble DLL1 may serve as a suitable target or potential biomarker for receptivity.
Collapse
Affiliation(s)
- Michelle Van Sinderen
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Jennifer Oyanedel
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Ellen Menkhorst
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Carly Cuman
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Katarzyna Rainczuk
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Amy Winship
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Lois Salamonsen
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Tracey Edgell
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| | - Evdokia Dimitriadis
- Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Vic. 3168, Australia
| |
Collapse
|
24
|
Guo S, Li Z, Yan L, Sun Y, Feng Y. GnRH agonist improves pregnancy outcome in mice with induced adenomyosis by restoring endometrial receptivity. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1621-1631. [PMID: 29922037 PMCID: PMC5995291 DOI: 10.2147/dddt.s162541] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purpose Adenomyosis has a negative impact on female fertility. GnRH agonist treatment can improve pregnancy outcomes in women with adenomyosis. However, the impact of GnRH agonist upon endometrium receptivity of patients with adenomyosis remains unclear. In this study, endometrial receptivity and pregnancy outcome were investigated using a mouse model of adenomyosis. Materials and methods Adenomyosis was induced in 12 female ICR mice, neonatally treated with tamoxifen, while another six female mice (control group) received solvent only. At 75 days, the induced adenomyosis group was randomly divided into two groups: an untreated group and a group treated with GnRH agonist (n = 6 each). Sixty days later, the mice were mated and pregnancy outcomes were observed and compared among the three groups (n = 6 each). In a parallel experiment using the same treatment regimes, uterus samples were collected on day 4 of pregnancy for immunohistochemistry, gene (quantitative polymerase chain reaction) and protein expression (Western blot), and scanning electron microscopy analyses. Results We found that the average live litter size was reduced in the adenomyosis compared with control group (8 ± 0.56 versus 13 ± 0.71; P = 0.03). However, the litter size was significantly increased in the treated with GnRH agonist group compared with the untreated group (12 ± 0.35 versus 8 ± 0.56; P = 0.04). The uterine expression levels of Hoxa10, Hoxa11, Lif and integrin b3 mRNA and protein were decreased in the adenomyosis group, and were significantly increased after GnRH agonist treatment. Additionally, pinopodes were reduced in number and poorly developed in mice with induced adenomyosis. However, pinopodes were abundant and well-developed in the GnRH agonist treatment group. Conclusion Adenomyosis may have an adverse impact on endometrial receptivity and reduce pregnancy outcomes in mice. However, GnRH agonist may improve the pregnancy outcome by partially restoring endometrial receptivity.
Collapse
Affiliation(s)
- Song Guo
- Department of Gynaecology and Obstetrics, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhichao Li
- Gynecology, Shanghai Ji Ai Genetics & In Vitro Fertilization Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Li Yan
- Department of Gynaecology and Obstetrics, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yijuan Sun
- Gynecology, Shanghai Ji Ai Genetics & In Vitro Fertilization Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yun Feng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Ismail AM, Agban MN, Hasanein AS, Rayan AA, Abbas AM. Role of Th-1 cell cytokines, leukemia inhibitory factor and hoxA genes in women with recurrent pregnancy loss. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2017. [DOI: 10.1016/j.mefs.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Agthe M, Garbers Y, Putoczki T, Garbers C. Interleukin-11 classic but not trans-signaling is essential for fertility in mice. Placenta 2017; 57:13-16. [DOI: 10.1016/j.placenta.2017.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/19/2022]
|
27
|
Suzuki S, Nakashima N, Kageyama M, Yamagata K. A phytoestrogen supplement prevents the altered gene expression associated with pregnancy implantation induced by IL-1β in endometrial epithelial cells. Reprod Biol 2017. [PMID: 28647515 DOI: 10.1016/j.repbio.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phytoestrogens stimulate expression of the uterine estrogen receptor and regulate uterine functions in reproductive tissues. However, comprehensive understanding of the beneficial impacts of phytoestrogens on uterine biology at the molecular level remains unexplored. Interleukin-1β (IL-1β) expression is increased in the inflamed decidua and is associated with first trimester pregnancy loss. AglyMax-Sup has the same composition as that of the phytoestrogen supplement AglyMax but with added vitamins and other components. Expression of genes associated with implantation may be enhanced by AglyMax-Sup compared with AglyMax. We tested the hypothesis that AglyMax-Sup has greater effects on implantation compared with AglyMax, using RT-PCR and Western blotting in the endometrial epithelial cell line. Furthermore, we investigated the protective effect of AglyMax-Sup on IL-1βinduced changes in estrogen-responsive gene expression in endometrial epithelial cells. The purpose of this study was to compare the effects of the phytoestrogen supplement AglyMax-Sup with those of AglyMax on estrogen-responsive gene expression. AglyMax and AglyMax-Sup significantly (p<0.05) induced gene expression of glycodelin-A, HoxA10, IL-11, LIF, MEG-E8 and TGFβ1. AglyMax-Sup induced high levels of these genes compared with the levels induced by AglyMax. The enhanced expression of LIF, IL-11, integrin αV, and HOXA10 induced by AglyMax-Sup was abolished by the ER antagonist fulvestrant and the ERK inhibitor PD98059. Meanwhile, IL-1β inhibited progesterone plus estrogen-induced TGFβ1, glycodelin-A, HOXA10, and integrin αV expression. IL-1β-induced suppression of these expression was reversed by AglyMax-Sup. These results indicate that expression of genes associated with implantation may be increased by AglyMax-Sup compared with AglyMax. AglyMax-Sup might abrogate IL-1β-mediated changes that can affect embryo implantation via the MAPK pathway.
Collapse
Affiliation(s)
- Sayaka Suzuki
- Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University (NUBS), Japan
| | | | | | - Kazuo Yamagata
- Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University (NUBS), Japan.
| |
Collapse
|
28
|
Yang Y, Sun Y, Cheng L, Li A, Shen Y, Jiang L, Deng X, Chao L. GRIM-19, a gene associated with retinoid-interferon-induced mortality, affects endometrial receptivity and embryo implantation. Reprod Fertil Dev 2017; 29:1447-1455. [DOI: 10.1071/rd16104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/07/2016] [Indexed: 11/23/2022] Open
Abstract
GRIM-19 is associated with apoptosis, abnormal proliferation, immune tolerance and malignant transformation, and it also plays an important role in early embryonic development. Although the homologous deletion of GRIM-19 causes embryonic lethality in mice, the precise role of GRIM-19 in embryo implantation has not been elucidated. Here we show that GRIM-19 plays an important role in endometrial receptivity and embryo implantation. Day 1 to Day 6 pregnant mouse uteri were collected. Immunohistochemistry studies revealed the presence of GRIM-19 on the luminal epithelium and glandular epithelium throughout the implantation period in pregnant mice. The protein and mRNA levels of GRIM-19 were markedly decreased on Day 4 of pregnancy in pregnant mice, but there was no change in GRIM-19 levels in a group of pseudopregnant mice. Overexpression of GRIM-19 decreased the adhesion rate of RL95–2–BeWo co-cultured spheroids and increased apoptosis. Furthermore, STAT3 and IL-11 mRNA and protein levels were reduced by overexpressing GRIM-19, but protein and mRNA levels of TNF-α were increased. These findings indicate the involvement of GRIM-19 in the embryo implantation process by regulating adhesion, apoptosis and immune tolerance.
Collapse
|
29
|
Leff-Gelman P, Mancilla-Herrera I, Flores-Ramos M, Cruz-Fuentes C, Reyes-Grajeda JP, García-Cuétara MDP, Bugnot-Pérez MD, Pulido-Ascencio DE. The Immune System and the Role of Inflammation in Perinatal Depression. Neurosci Bull 2016; 32:398-420. [PMID: 27432060 PMCID: PMC5563787 DOI: 10.1007/s12264-016-0048-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/23/2016] [Indexed: 01/01/2023] Open
Abstract
Major depression during pregnancy is a common psychiatric disorder that arises from a complex and multifactorial etiology. Psychosocial stress, sex, hormones, and genetic vulnerability increase the risk for triggering mood disorders. Microglia and toll-like receptor 4 play a crucial role in triggering wide and varied stress-induced responses mediated through activation of the inflammasome; this leads to the secretion of inflammatory cytokines, increased serotonin metabolism, and reduction of neurotransmitter availability along with hypothalamic-pituitary-adrenal axis hyperactivity. Dysregulation of this intricate neuroimmune communication network during pregnancy modifies the maternal milieu, enhancing the emergence of depressive symptoms and negative obstetric and neuropsychiatric outcomes. Although several studies have clearly demonstrated the role of the innate immune system in major depression, it is still unclear how the placenta, the brain, and the monoaminergic and neuroendocrine systems interact during perinatal depression. Thus, in the present review we describe the cellular and molecular interactions between these systems in major depression during pregnancy, proposing that the same stress-related mechanisms involved in the activation of the NLRP3 inflammasome in microglia and peripheral myeloid cells in depressed patients operate in a similar fashion in the neuroimmune placenta during perinatal depression. Thus, activation of Toll-like receptor 2 and 4 signaling and the NLRP3 inflammasome in placental immune cells may promote a shift of the Th1/Th2 bias towards a predominant Th1/Th17 inflammatory response, associated with increased secretion of pro-inflammatory cytokines, among other secreted autocrine and paracrine mediators, which play a crucial role in triggering and/or exacerbating depressive symptoms during pregnancy.
Collapse
Affiliation(s)
| | | | - Mónica Flores-Ramos
- National Institute of Psychiatry, Mexico City, Mexico
- National Council of Science and Technology, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
30
|
Monhasery N, Moll J, Cuman C, Franke M, Lamertz L, Nitz R, Görg B, Häussinger D, Lokau J, Floss DM, Piekorz R, Dimitriadis E, Garbers C, Scheller J. Transcytosis of IL-11 and Apical Redirection of gp130 Is Mediated by IL-11α Receptor. Cell Rep 2016; 16:1067-1081. [PMID: 27425614 DOI: 10.1016/j.celrep.2016.06.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/08/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-11 signaling is involved in various processes, including epithelial intestinal cell regeneration and embryo implantation. IL-11 signaling is initiated upon binding of IL-11 to IL-11R1 or IL-11R2, two IL-11α-receptor splice variants, and gp130. Here, we show that IL-11 signaling via IL-11R1/2:gp130 complexes occurs on both the apical and basolateral sides of polarized cells, whereas IL-6 signaling via IL-6R:gp130 complexes is restricted to the basolateral side. We show that basolaterally supplied IL-11 is transported and released to the apical extracellular space via transcytosis in an IL-11R1-dependent manner. By contrast, IL-6R and IL-11R2 do not promote transcytosis. In addition, we show that transcytosis of IL-11 is dependent on the intracellular domain of IL-11R1 and that synthetic transfer of the intracellular domain of IL-11R1 to IL-6R promotes transcytosis of IL-6. Our data define IL-11R as a cytokine receptor with transcytotic activity by which IL-11 and IL-6:soluble IL-6R complexes are transported across cellular barriers.
Collapse
Affiliation(s)
- Niloufar Monhasery
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Jens Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Carly Cuman
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168 VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, 3168 VIC, Australia
| | - Manuel Franke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Larissa Lamertz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Rebecca Nitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3168 VIC, Australia
| | - Juliane Lokau
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Roland Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Eva Dimitriadis
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168 VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, 3168 VIC, Australia
| | - Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
31
|
Zheng Q, Dai K, Cui X, Yu M, Yang X, Yan B, Liu S, Yan Q. Leukemia inhibitory factor promote trophoblast invasion via urokinase-type plasminogen activator receptor in preeclampsia. Biomed Pharmacother 2016; 80:102-108. [DOI: 10.1016/j.biopha.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022] Open
|
32
|
Human Decidual Stromal Cells as a Component of the Implantation Niche and a Modulator of Maternal Immunity. J Pregnancy 2016; 2016:8689436. [PMID: 27239344 PMCID: PMC4864559 DOI: 10.1155/2016/8689436] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/26/2016] [Accepted: 03/27/2016] [Indexed: 12/27/2022] Open
Abstract
The human decidua is a specialized tissue characterized by embryo-receptive properties. It is formed during the secretory phase of menstrual cycle from uterine mucosa termed endometrium. The decidua is composed of glands, immune cells, blood and lymph vessels, and decidual stromal cells (DSCs). In the process of decidualization, which is controlled by oestrogen and progesterone, DSCs acquire specific functions related to recognition, selection, and acceptance of the allogeneic embryo, as well as to development of maternal immune tolerance. In this review we discuss the relationship between the decidualization of DSCs and pathological obstetrical and gynaecological conditions. Moreover, the critical influence of DSCs on local immune cells populations as well as their relationship to the onset and maintenance of immune tolerance is described.
Collapse
|
33
|
Abstract
IL-11 is a member of the IL-6 family of cytokines. While it was discovered over 20 years ago, we have very little understanding of the role of IL-11 during normal homeostasis and disease. Recently, IL-11 has gained interest for its newly recognized role in the pathogenesis of diseases that are attributed to deregulated mucosal homeostasis, including gastrointestinal cancers. IL-11 can increase the tumorigenic capacity of cells, including survival of the cell or origin, proliferation of cancerous cells and survival of metastatic cells at distant organs. Here we outline our current understanding of IL-11 biology and recent advances in our understanding of its role in cancer. We advocate that inhibition of IL-11 signaling may represent an emerging therapeutic opportunity for numerous cancers.
Collapse
Affiliation(s)
- Tracy L Putoczki
- The Walter & Eliza Hall Institute of Medical Research & Department of Medical Biology, University of Melbourne, Parkville Victoria 3052, Australia
| | | |
Collapse
|
34
|
Subramani E, Madogwe E, Ray CD, Dutta SK, Chakravarty B, Bordignon V, Duggavathi R, Chaudhury K. Dysregulated leukemia inhibitory factor and its receptor regulated signal transducers and activators of transcription 3 pathway: a possible cause for repeated implantation failure in women with dormant genital tuberculosis? Fertil Steril 2016; 105:1076-1084.e5. [PMID: 26776907 DOI: 10.1016/j.fertnstert.2015.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To investigate the influence of dormant Mycobacterium tuberculosis on the expression of various endometrial receptivity markers and leukemia inhibitory factor (LIF)-signal transducers and activators of transcription 3 (STAT3) signaling pathway. Expression of endometrial receptivity markers and LIF-STAT3 signaling in in vitro decidualized human endometrial stromal cells (hESC) treated with 65 kDa mycobacterial heat shock protein (HSP65) is also explored. DESIGN A prospective study. SETTING Tertiary care hospital and reproductive health research unit. PATIENT(S) Endometrial tissue samples were collected from 38 women who tested positive for Mycobacterium tuberculosis and 30 normal women with proven fertility undergoing sterilization. In vitro decidualization of hESC was performed. INTERVENTION(S) Endometrial biopsies collected from all women during implantation window and treatment of hESC with HSP65. MAIN OUTCOME MEASURE(S) Measurement of various endometrial receptivity markers including αvβ3 integrin, E-cadherin, MECA-79, mucin-1, and pinopodes and LIF/LIFR-STAT3 signaling molecules expressed in the endometrium of women with dormant genital tuberculosis (GTB) during implantation window and measured also in HSP65-treated hESC. RESULT(S) Significantly reduced levels of endometrial receptivity markers LIF, LIFR, and pSTAT3 were observed in endometrium of women with dormant GTB as compared with controls. A similar trend was observed under in vitro conditions with decreased level of phosphorylated STAT3 in HSP65-treated hESC. However, no change in the expression of endometrial receptivity markers under in vitro conditions was observed. CONCLUSION(S) Our findings suggest that endometrium of women with dormant GTB is associated with poor receptivity, as evidenced by reduced receptivity markers and aberrant LIF-STAT3 signaling. In vitro treatment of hESC with HSP65 also confirms compromised endometrial decidualization.
Collapse
Affiliation(s)
- Elavarasan Subramani
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India; Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Ejimedo Madogwe
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Chaitali Datta Ray
- Department of Gynaecology and Obstetrics, Institute of Post-Graduate Medical Education and Research and SSKM Hospital, Kolkata, India
| | - Subir Kumar Dutta
- Department of Pathology, Scientific Clinical Research Laboratory, Kolkata, India
| | | | - Vilceu Bordignon
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|
35
|
Salamonsen LA, Evans J, Nguyen HPT, Edgell TA. The Microenvironment of Human Implantation: Determinant of Reproductive Success. Am J Reprod Immunol 2015; 75:218-25. [PMID: 26661899 DOI: 10.1111/aji.12450] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022] Open
Abstract
Successful implantation requires synchronous development of embryo and endometrium. Endometrial receptivity results from progesterone-induced differentiation of endometrial cells, generally achieved during the mid-secretory phase of the cycle. Failure to properly develop receptivity results in failed or inadequate implantation and hence no ongoing pregnancy. The blastocyst undergoes final development, apposition, attachment and initiates invasion of the endometrial epithelium within the uterine cavity. Thus, the microenvironment provided by uterine fluid, particularly glandular secretions, is essential for implantation. Analysis of endometrial fluid has identified cytokines, chemokines, proteases, antiproteases and other factors that modulate blastocyst functions relevant to implantation. Exosomes/microvesicular bodies released from the endometrium (and likely also the embryo) are present in uterine fluid. These can transfer miRNA, proteins and lipids between cells, thus providing endometrial-embryo communication in the peri-implantation period. Understanding the uterine microenvironment, and its effects on endometrial-embryo interactions, will provide opportunities to modify current infertility treatments to improve success rates.
Collapse
Affiliation(s)
| | - Jemma Evans
- Hudson Institute of Medical Research, Clayton, Vic., Australia
| | - Hong P T Nguyen
- Hudson Institute of Medical Research, Clayton, Vic., Australia
| | - Tracey A Edgell
- Hudson Institute of Medical Research, Clayton, Vic., Australia
| |
Collapse
|
36
|
de Ruijter-Villani M, Deelen C, Stout TAE. Expression of leukaemia inhibitory factor at the conceptus?maternal interface during preimplantation development and in the endometrium during the oestrous cycle in the mare. Reprod Fertil Dev 2015; 28:RD14334. [PMID: 25881292 DOI: 10.1071/rd14334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/17/2015] [Indexed: 12/22/2022] Open
Abstract
Leukaemia inhibitory factor (LIF) plays a critical role in blastocyst development and implantation in several species. The present study investigated mRNA and protein expression for LIF, as well as the low-affinity LIF receptor (LIFR) and interleukin-6 signal transducer (IL6ST), in equine endometrium, trophoblast and histotroph during early pregnancy and in the endometrium during the oestrous cycle. Endometrial LIF mRNA expression was upregulated after Day 21 of pregnancy, whereas LIF immunoreactivity increased in the endometrium on Day 28. Expression of LIF mRNA in the yolk sac membrane increased from Day 21 of pregnancy, whereas LIF immunoreactivity increased from Day 28 in the trophoblast. LIFR and IL6ST mRNA was expressed in the endometrium during both the oestrous cycle and early pregnancy and, although LIFR and IL6ST protein were localised to the glandular epithelium during the cycle and first 14 days of pregnancy, from Day 21 they were located in the luminal epithelium. Trophoblast expression of LIFR and IL6ST increased as pregnancy proceeded. In conclusion, LIF expression increased at the conceptus-maternal interface during capsule attenuation. Because contemporaneous upregulation of both LIFR and IL6ST was also observed in the trophoblast, we propose that LIF plays an important role in the development of endometrial receptivity for trophoblast growth, apposition and adhesion in mares.
Collapse
|
37
|
Localisation of the Notch family in the human endometrium of fertile and infertile women. J Mol Histol 2014; 45:697-706. [DOI: 10.1007/s10735-014-9587-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
|
38
|
Colicchia M, Campagnolo L, Baldini E, Ulisse S, Valensise H, Moretti C. Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum Reprod Update 2014; 20:884-904. [PMID: 24943836 DOI: 10.1093/humupd/dmu028] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Implantation and early embryo development are finely regulated processes in which several molecules are involved. Evidence that thyroid hormones (TH: T4 and T3) might be part of this machinery is emerging. An increased demand for TH occurs during gestation, and any alteration in maternal thyroid physiology has significant implications for both maternal and fetal health. Not only overt but also subclinical hypothyroidism is associated with infertility as well as with obstetric complications, including disruptions and disorders of pregnancy, labor, delivery, and troubles in early neonatal life. METHODS We searched the PubMed and Google Scholar databases for articles related to TH action on ovary, endometrium, trophoblast maturation and embryo implantation. In addition, articles on the regulation of TH activity at cellular level have been reviewed. The findings are hereby summarized and critically discussed. RESULTS TH have been shown to influence endometrial, ovarian and placental physiology. TH receptors (TR) and thyrotropin (thyroid-stimulating hormone: TSH) receptors (TSHR) are widely expressed in the feto-maternal unit during implantation, and both the endometrium and the trophoblast might be influenced by TH either directly or through TH effects on the synthesis and activity of implantation-mediating molecules. Interestingly, due to the multiplicity of mechanisms involved in TH action (e.g. differential expression of TR isoforms, heterodimeric receptor partners, interacting cellular proteins, and regulating enzymes), the TH concentration in blood is not always predictive of their cellular availability and activity at both genomic and nongenomic level. CONCLUSIONS In addition to the known role of TH on the hormonal milieu of the ovarian follicle cycle, which is essential for a woman's fertility, evidence is emerging on the importance of TH signaling during implantation and early pregnancy. Based on recent observations, a local action of TH on female reproductive organs and the embryo during implantation appears to be crucial for a successful pregnancy. Furthermore, an imbalance in the spatio-temporal expression of factors involved in TH activity might induce early arrest of pregnancy in women considered as euthyroid, based on their hormonal blood concentration. In conclusion, alterations of the highly regulated local activity of TH may play a crucial, previously underestimated, role in early pregnancy and pregnancy loss. Further studies elucidating this topic should be encouraged.
Collapse
Affiliation(s)
- Martina Colicchia
- Department of Systems' Medicine, University of Rome Tor Vergata, UOC of Endocrinology and Diabetes, Section of Reproductive Endocrinology Fatebenefratelli Hospital, 'Isola Tiberina' 00187, Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier1, 00133 Rome, Italy
| | - Enke Baldini
- Department of Experimental Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Salvatore Ulisse
- Department of Experimental Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Herbert Valensise
- Department of Obstetrics and Gynaecology, University of Rome Tor Vergata, Fatebenefratelli Hospital 'Isola Tiberina', 00187 Rome, Italy
| | - Costanzo Moretti
- Department of Systems' Medicine, University of Rome Tor Vergata, UOC of Endocrinology and Diabetes, Section of Reproductive Endocrinology Fatebenefratelli Hospital, 'Isola Tiberina' 00187, Rome, Italy
| |
Collapse
|
39
|
Dekel N, Gnainsky Y, Granot I, Racicot K, Mor G. The role of inflammation for a successful implantation. Am J Reprod Immunol 2014; 72:141-7. [PMID: 24809430 DOI: 10.1111/aji.12266] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/07/2014] [Indexed: 12/12/2022] Open
Abstract
Approximately half of all human embryo implantations result in failed pregnancy. Multiple factors may contribute to this failure, including genetic or metabolic abnormalities of the embryo. However, many of these spontaneous early abortion cases are attributed to poor uterine receptivity. Furthermore, although many fertility disorders have been overcome by a variety of assisted reproductive techniques, implantation remains the rate-limiting step for the success of the in vitro fertilization (IVF) treatments. We, as well as others, have demonstrated that endometrial biopsies performed either during the spontaneous, preceding cycle, or during the IVF cycle itself, significantly improve the rate of implantation, clinical pregnancies, and live births. These observations suggest that mechanical injury of the endometrium may enhance uterine receptivity by provoking the immune system to generate an inflammatory reaction. In strong support of this idea, we recently found that dendritic cells (DCs), an important cellular component of the innate immune system, play a critical role in successful implantation in a mouse model. In this review, we discuss the hypothesis that the injury-derived inflammation in the biopsy-treated patients generates a focus for uterine DCs and Mac accumulation that, in turn, enhance the endometrial expression of essential molecules that facilitate the interaction between the embryo and the uterine epithelium.
Collapse
Affiliation(s)
- Nava Dekel
- Department of Biological Regulation, The Weizmann Institute, Rehovot, Israel
| | | | | | | | | |
Collapse
|
40
|
Menkhorst E, Gamage T, Cuman C, Kaitu'u-Lino T, Tong S, Dimitriadis E. Galectin-7 acts as an adhesion molecule during implantation and increased expression is associated with miscarriage. Placenta 2014; 35:195-201. [DOI: 10.1016/j.placenta.2014.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 11/25/2022]
|
41
|
Hannan NJ, Evans J, Salamonsen LA. Alternate roles for immune regulators: establishing endometrial receptivity for implantation. Expert Rev Clin Immunol 2014; 7:789-802. [DOI: 10.1586/eci.11.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Krishnan T, Winship A, Sonderegger S, Menkhorst E, Horne AW, Brown J, Zhang JG, Nicola NA, Tong S, Dimitriadis E. The role of leukemia inhibitory factor in tubal ectopic pregnancy. Placenta 2013; 34:1014-9. [PMID: 24074901 DOI: 10.1016/j.placenta.2013.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Ectopic pregnancy is unique to humans and a leading cause of maternal morbidity and mortality. The etiology remains unknown however factors regulating embryo implantation likely contribute. Leukemia inhibitory factor (LIF) has roles in extravillous trophoblast adhesion and invasion and is present in ectopic implantation sites. We hypothesised that LIF facilitates blastocyst adhesion/invasion in the Fallopian tube, contributing to ectopic pregnancy. METHODS We immunolocalised LIF receptor (R) in tubal ectopic pregnancy (N = 5). We used an oviduct cell line (OE-E6/E7) to model Fallopian tube epithelial cells and a trophoblast spheroid co-culture model (HTR-8/SVneo cell line formed spheroids) to model blastocyst attachment to the Fallopian tube. We examined LIF signaling pathways in OE-E6/E7 cells by Western blot. The effect of LIF and LIF inhibition (using a novel LIF inhibitor, PEGLA) on first-trimester placental outgrowth was determined. RESULTS LIFR localised to villous and extravillous trophoblast and Fallopian tube epithelium in ectopic pregnancy. LIF activated STAT3 but not the ERK pathway in OE-E6/E7 cells. LIF stimulated HTR-8/SVneo spheroid adhesion to OE-E6/E7 cells which was significantly reduced after PEGLA treatment. LIF promoted placental explants outgrowth, while co-treatment with PEGLA blocked outgrowth. DISCUSSION Our data suggests LIF facilitates the development of ectopic pregnancy by stimulating blastocyst adhesion and trophoblast outgrowth from placental explants. Ectopic pregnancy is usually diagnosed after 6 weeks of pregnancy, therefore PEGLA may be useful in targeting trophoblast growth/invasion. CONCLUSION LIF may contribute to the development of ectopic pregnancies and that pharmacologically targeting LIF-mediated trophoblast outgrowth may be useful as a treatment for ectopic pregnancy.
Collapse
Affiliation(s)
- T Krishnan
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Victoria 3168, Australia; Faculty of Medicine, Nursing & Health Sciences, Wellington Road, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lalitkumar S, Boggavarapu NR, Menezes J, Dimitriadis E, Zhang JG, Nicola NA, Gemzell-Danielsson K, Lalitkumar LP. Polyethylene glycated leukemia inhibitory factor antagonist inhibits human blastocyst implantation and triggers apoptosis by down-regulating embryonic AKT. Fertil Steril 2013; 100:1160-9. [DOI: 10.1016/j.fertnstert.2013.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 01/13/2023]
|
44
|
Pilot study on molecular quantitation and sequencing of endometrial cytokines gene expression and their effect on the outcome of in vitro fertilization (IVF) cycle. J Adv Res 2013; 5:595-600. [PMID: 25685528 PMCID: PMC4294313 DOI: 10.1016/j.jare.2013.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/23/2013] [Accepted: 08/18/2013] [Indexed: 02/03/2023] Open
Abstract
Human trophoblast invasion and differentiation are essential for successful pregnancy outcome. The molecular mechanisms, however, are poorly understood. Interleukin (IL)-11, a cytokine, regulates endometrial epithelial cell adhesion. Leukemia inhibitory factor (LIF) is one of the key cytokines in the embryo implantation regulation. The present study aimed to assess the levels of LIF, IL-11, and IL-11 α receptor gene expression in the endometrium of women undergoing IVF and correlate their levels with the IVF pregnancy outcome. Also, the study aimed to detect any mutation in these three genes among IVF pregnant and non-pregnant women versus control menstrual blood of fertile women. Endometrial tissue biopsies were taken from 15 women undergoing IVF on the day of oocyte retrieval. The quantitative expression of IL-11, IL-11Rα, and LIF genes was assessed by real-time PCR and PCR products were sequenced. Menstrual blood from 10 fertile women was used as control to compare the DNA sequence versus DNA sequence of the studied genes in endometrial biopsies. LH, FSH, and E2 were assessed for enrolled patients by ELISA. Endometrial thickness was also assessed by pelvic ultrasonography. No significant difference was detected between quantitative expression of the three studied genes and pregnancy IVF outcome. Although DNA sequence changes were found in IL-11 and LIF genes of women with negative pregnancy IVF outcome compared to women with positive pregnancy IVF outcome, no DNA sequence changes were detected for IL-11Rα. Other studied parameters (e.g., age, LH, FSH, E2, and endometrial thickness) showed no significant differences or correlation of quantitative expression of the three studied involved genes. Data suggested that there were no significant differences between quantitative expression of IL-11, IL-11Rα, and LIF genes and the IVF pregnancy outcome. The present study may reveal that changes in IL-11 and LIF genes sequence may contribute in pregnancy IVF outcome.
Collapse
|
45
|
Van Sinderen M, Cuman C, Winship A, Menkhorst E, Dimitriadis E. The chrondroitin sulfate proteoglycan (CSPG4) regulates human trophoblast function. Placenta 2013; 34:907-12. [PMID: 23953863 DOI: 10.1016/j.placenta.2013.07.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Trophoblast growth and invasion of the uterine endometrium are critical events during placentation and are tightly regulated by locally produced factors. Abnormal placentation can result in early miscarriage or preeclampsia and intrauterine growth restriction, leading to impaired fetal and/or maternal health. Chondroitin sulfate proteoglycan 4 (CSPG4) is involved in cancer cell migration and invasion, processes which are critical during placentation but unlike in cancer, trophoblast invasion is highly regulated. CSPG4 expression and function in trophoblast is unknown. We determined CSPG4 expression in human first trimester placenta and implantation sites, and investigated whether CSPG4 influenced proliferation, migration and invasion of a human extravillous trophoblast (EVT) cell line (HTR8/SVneo cells) as a model for extravillous trophoblast (EVT). METHODS AND RESULTS Immunoreactive CSPG4 localized to EVT cells in the trophoblast shell, subpopulations of interstitial EVT cells within the decidua and cytotrophoblast cells in placental villi. In HTR8/SVneo cells, siRNA knockdown of CSPG4 stimulated proliferation and decreased migration/invasion. In primary first trimester placental villi explants two cytokines, interleukin 11 (IL11) and leukemia inhibitory factor (LIF) with known roles in trophoblast function, stimulated CSPG4 mRNA expression and immunoreactive protein in the cyotrophoblast. DISCUSSION AND CONCLUSION This is the first demonstration of the production and function of CSPG4 in human placentation. These data suggest that locally produced CSPG4 stimulates human EVT migration and invasion and suggests that IL11 and LIF regulate villous cytotrophoblast differentiation towards the invasive phenotype at least in part via CSPG4.
Collapse
Affiliation(s)
- M Van Sinderen
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | | | | | | |
Collapse
|
46
|
Itoh F, Komohara Y, Takaishi K, Honda R, Tashiro H, Kyo S, Katabuchi H, Takeya M. Possible involvement of signal transducer and activator of transcription-3 in cell–cell interactions of peritoneal macrophages and endometrial stromal cells in human endometriosis. Fertil Steril 2013; 99:1705-13. [DOI: 10.1016/j.fertnstert.2013.01.133] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/08/2012] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
|
47
|
Balakrishnan L, Soman S, Patil YB, Advani J, Thomas JK, Desai DV, Kulkarni-Kale U, Harsha HC, Prasad TSK, Raju R, Pandey A, Dimitriadis E, Chatterjee A. IL-11/IL11RA receptor mediated signaling: a web accessible knowledgebase. ACTA ACUST UNITED AC 2013; 20:81-6. [PMID: 23631681 DOI: 10.3109/15419061.2013.791683] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Interleukin-11 (IL-11) is a pleiotropic cytokine that belongs to gp130 family. It plays a significant role in the synthesis and maturation of hematopoietic cells, inhibition of adipogenesis, regulation of embryo implantation, and trophoblasts invasion. Although IL-11 signaling has been described in several biological processes, a centralized resource documenting these molecular reactions induced by IL-11 is not publicly available. In the current study, we have manually annotated the molecular reactions and interactions induced by IL-11 from literature available. We have documented 40 unique molecules involved in 18 protein-protein interactions, 26 enzyme-substrate reactions, 7 translocation events, and 4 activation/ inhibition reactions. We have also annotated 23 genes reported to be differentially regulated under IL-11 stimulation. We have enabled the data availability in standard exchange formats from 'NetPath', a repository for signaling pathways. We believe that this will help in the identification of potential therapeutic targets in IL-11-associated disorders.
Collapse
|
48
|
Lee JH, Kim TH, Oh SJ, Yoo JY, Akira S, Ku BJ, Lydon JP, Jeong JW. Signal transducer and activator of transcription-3 (Stat3) plays a critical role in implantation via progesterone receptor in uterus. FASEB J 2013; 27:2553-63. [PMID: 23531596 DOI: 10.1096/fj.12-225664] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent studies have shown that activation of the signal transducer and activator of transcription-3 (Stat3) is required for decidualization, interacting with progesterone receptor (PR) in uterus. Based on previous reports, we hypothesized that crosstalk between STAT3 and PR signaling is required for successful implantation. To identify the interaction between STAT3 and PR isoforms, we performed immunoprecipitation following transient cotransfection and found that STAT3 physically interacted with PR-A, which is known to be important for uterine development and function, but not with PR-B. To further investigate the role of Stat3 in uterine function, Stat3 was conditionally ablated only in the PR-positive cells (PR(cre/+) Stat3(f/f); Stat3(d/d)). Our studies revealed that ovarian function and uterine development of Stat3(d/d) mice were normal. However, Stat3(d/d) female mice were infertile due to defective embryo implantation. Unlike Stat3(f/f) mice, Stat3(d/d) mice exhibited an unclosed uterine lumen. Furthermore, uteri of Stat3(d/d) mice were unable to undergo a well-characterized hormonally induced decidual reaction. The expression of stromal PR was decreased during decidualization and preimplantation period in Stat3(d/d) mice, and PR target genes were significantly down-regulated after progesterone induction. Our results suggest that STAT3 and PR crosstalk is required for successful implantation in the mouse uterus.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University College of Human Medicine, 333 Bostwick Ave. NE, Grand Rapids, MI 49503, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cuman C, Menkhorst E, Rombauts L, Holden S, Webster D, Bilandzic M, Osianlis T, Dimitriadis E. Preimplantation human blastocysts release factors that differentially alter human endometrial epithelial cell adhesion and gene expression relative to IVF success. Hum Reprod 2013; 28:1161-71. [DOI: 10.1093/humrep/det058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Van Sinderen M, Menkhorst E, Winship A, Cuman C, Dimitriadis E. Preimplantation human blastocyst-endometrial interactions: the role of inflammatory mediators. Am J Reprod Immunol 2012; 69:427-40. [PMID: 23176081 DOI: 10.1111/aji.12038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/15/2012] [Indexed: 01/24/2023] Open
Abstract
Immune factors such as cytokines, chemokines, and growth factors are known to play important roles in the preimplantation interactions and communication between the blastocyst and receptive endometrium. This crucial dialog occurs during the stages when the blastocyst is in the uterine cavity immediately preceding implantation and the establishment of pregnancy. Human preimplantation processes are difficult to study due to restrictions on tissue availability. This review focuses on the expression and role of immune factors in human blastocyst-endometrial dialog during the very early stages of implantation. It highlights the importance of immune regulators and the need to develop new models to study human implantation.
Collapse
|