1
|
Liu Z, Li S, Chen S, Sheng J, Li Z, Lv T, Yu W, Fan Y, Wang J, Liu W, Hu S, Jin J. YAP-mediated GPER signaling impedes proliferation and survival of prostate epithelium in benign prostatic hyperplasia. iScience 2024; 27:109125. [PMID: 38420594 PMCID: PMC10901089 DOI: 10.1016/j.isci.2024.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) occurs when there is an imbalance between the proliferation and death of prostate cells, which is regulated tightly by estrogen signaling. However, the role of G protein-coupled estrogen receptor (GPER) in prostate cell survival remains ambiguous. In this study, we observed that prostates with epithelial hyperplasia showed increased yes-associated protein 1 (YAP) expression and decreased levels of estrogen and GPER. Blocking YAP through genetic or drug interventions led to reduced proliferation and increased apoptosis in the prostate epithelial cells. Interestingly, GPER agonists produced similar effects. GPER activation enhanced the phosphorylation and degradation of YAP, which was crucial for suppressing cell proliferation and survival. The Gαs/cAMP/PKA/LATS pathway, downstream of GPER, transmitted signals that facilitated YAP inhibition. This study investigated the interaction between GPER and YAP in the prostate epithelial cells and its contribution to BPH development. It lays the groundwork for future research on developing BPH treatments.
Collapse
Affiliation(s)
- Zhifu Liu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Senmao Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shengbin Chen
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jindong Sheng
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Gynaecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zheng Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Tianjing Lv
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jinlong Wang
- Department of Urology, Tibet Autonomous Region People's Hospital, Lhasa 850000, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen 518036, China
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jie Jin
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Beijing 100034, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
2
|
Ershov AV. The impact of sports on the normal functioning of the prostate gland: A review. CONSILIUM MEDICUM 2023. [DOI: 10.26442/20751753.2022.12.202036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
This article explores the relationship of physical activity to the normal functioning of the prostate gland. The biomechanism of hormonal activity during exercise was studied, and special attention was paid to the biomechanism of an actively working muscle and the release of myokines. The analysis of the relationship between myokines and the functioning of the prostate gland was carried out. It has been established that physical activity reduces the risk of developing prostate diseases and is an important method of prevention.
Collapse
|
3
|
Yang Y, Sheng J, Hu S, Cui Y, Xiao J, Yu W, Peng J, Han W, He Q, Fan Y, Niu Y, Lin J, Tian Y, Chang C, Yeh S, Jin J. Estrogen and G protein-coupled estrogen receptor accelerate the progression of benign prostatic hyperplasia by inducing prostatic fibrosis. Cell Death Dis 2022; 13:533. [PMID: 35672281 PMCID: PMC9174491 DOI: 10.1038/s41419-022-04979-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Benign prostatic hyperplasia (BPH) is the most common and progressive urological disease in elderly men worldwide. Epidemiological studies have suggested that the speed of disease progression varies among individuals, while the pathophysiological mechanisms of accelerated clinical progression in some BPH patients remain to be elucidated. In this study, we defined patients with BPH as belonging to the accelerated progressive group (transurethral resection of the prostate [TURP] surgery at ≤50 years old), normal-speed progressive group (TURP surgery at ≥70 years old), or non-progressive group (age ≤50 years old without BPH-related surgery). We enrolled prostate specimens from the three groups of patients and compared these tissues to determine the histopathological characteristics and molecular mechanisms underlying BPH patients with accelerated progression. We found that the main histopathological characteristics of accelerated progressive BPH tissues were increased stromal components and prostatic fibrosis, which were accompanied by higher myofibroblast accumulation and collagen deposition. Mechanism dissection demonstrated that these accelerated progressive BPH tissues have higher expression of the CYP19 and G protein-coupled estrogen receptor (GPER) with higher estrogen biosynthesis. Estrogen functions via GPER/Gαi signaling to modulate the EGFR/ERK and HIF-1α/TGF-β1 signaling to increase prostatic stromal cell proliferation and prostatic stromal fibrosis. The increased stromal components and prostatic fibrosis may accelerate the clinical progression of BPH. Targeting this newly identified CYP19/estrogen/GPER/Gαi signaling axis may facilitate the development of novel personalized therapeutics to better suppress the progression of BPH.
Collapse
Affiliation(s)
- Yang Yang
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Jindong Sheng
- grid.411918.40000 0004 1798 6427Department of Gynaecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Shuai Hu
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Yun Cui
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| | - Jing Xiao
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Wei Yu
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Jing Peng
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Wenke Han
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Qun He
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Yu Fan
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| | - Yuanjie Niu
- grid.265021.20000 0000 9792 1228Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, 300211 Tianjin, China
| | - Jun Lin
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Ye Tian
- grid.24696.3f0000 0004 0369 153XDepartment of Urology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Chawnshang Chang
- grid.265021.20000 0000 9792 1228Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, 300211 Tianjin, China ,grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY USA
| | - Shuyuan Yeh
- grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY USA
| | - Jie Jin
- grid.411472.50000 0004 1764 1621Department of Urology, Peking University First Hospital, 100034 Beijing, China ,Beijing Key Laboratory of Urogenital diseases (male) molecular diagnosis and treatment center, Beijing, China
| |
Collapse
|
4
|
Xu D, Wu Y, Shen H, Qian S, Qi J. High serum concentration of estradiol may be a risk factor of prostate enlargement in aging male in China. Aging Male 2020; 23:1-6. [PMID: 29912660 DOI: 10.1080/13685538.2018.1481027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Objective: Assess the association between serum sex hormone level and prostate volume in men with benign prostatic hyperplasia (BPH).Material and methods: The study involved 239 BPH patients from January 2013 to June 2015 in our hospital. Each patient collected age, medical history, height, weight, body mass index, as well as a full examination of sex hormones, and transrectal ultrasound results.Results: Estradiol (E2) was significantly associated with prostate volume (r = 0.151, p = .02) and transitional zone volume (r = 0.136, p = .035). The association was more significant after adjusting age and BMI (r = 0.253 and 0.250, p <.001). Patients were divided into two groups according to prostate volume and E2, respectively. E2 in patients with prostate volume ≤50 ml was significantly lower than those with prostate volume >50 ml. Prostate volume, transitional zone volume and age were all significantly higher in the patients with E2 ≥ 160 umol/l than those in the patients with E2 < 160 umol/l. Through logistics regression, E2 (p = .012, OR = 1.004) are the only independent risk factor for prostate volume.Conclusions: E2 is significantly associated with prostate volume. High concentrations of E2 may be a risk factor for the large volume of prostate.
Collapse
Affiliation(s)
- Ding Xu
- Department of Urology, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wu
- Department of Urology, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Shen
- Department of Ultrasound, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Subo Qian
- Department of Urology, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Qi
- Department of Urology, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Role of the adjacent stroma cells in prostate cancer development and progression: synergy between TGF-β and IGF signaling. BIOMED RESEARCH INTERNATIONAL 2014; 2014:502093. [PMID: 25089270 PMCID: PMC4095744 DOI: 10.1155/2014/502093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/28/2014] [Indexed: 02/04/2023]
Abstract
This review postulates the role of transforming growth factor-beta (TGF-β) and insulin-like growth factor (IGF-I/IGF-II) signaling in stromal cells during prostate carcinogenesis and progression. It is known that stromal cells have a reciprocal relationship to the adjacent epithelial cells in the maintenance of structural and functional integrity of the prostate. An interaction between TGF-β and IGF signaling occupies a central part in this stromal-epithelial interaction. An increase in TGF-β and IGF signaling will set off the imbalance of this relationship and will lead to cancer development. A continuous input from TGF-β and IGF in the tumor microenvironment will result in cancer progression. Understanding of these events can help prevention, diagnosis, and therapy of prostate cancer.
Collapse
|
7
|
Biology and Clinical Relevance of Estrogen Receptors in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
8
|
Vitkus S, Yeh CR, Lin HH, Hsu I, Yu J, Chen M, Yeh S. Distinct function of estrogen receptor α in smooth muscle and fibroblast cells in prostate development. Mol Endocrinol 2012. [PMID: 23204329 DOI: 10.1210/me.2012-1212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.
Collapse
Affiliation(s)
- Spencer Vitkus
- Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Ho SM, Lee MT, Lam HM, Leung YK. Estrogens and prostate cancer: etiology, mediators, prevention, and management. Endocrinol Metab Clin North Am 2011; 40:591-614, ix. [PMID: 21889723 PMCID: PMC3167093 DOI: 10.1016/j.ecl.2011.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mainstay targets for hormonal prostate cancer (PCa) therapies are based on negating androgen action. Recent epidemiologic and experimental data have pinpointed the key roles of estrogens in PCa development and progression. Racial and geographic differences, as well as age-associated changes, in estrogen synthesis and metabolism contribute significantly to the etiology. This article summarizes how different estrogens/antiestrogens/estrogen mimics contribute to prostate carcinogenesis, the roles of the different mediators of estrogen in the process, and the potentials of new estrogenic/antiestrogenic compounds for prevention and treatment of PCa.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Environmental Health, Center for Environmental Genetics, and the Cancer Institute, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ming-tsung Lee
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio. Telephone 513-558-0595, Fax 513-558-0071,
| | - Hung-Ming Lam
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio. Telephone 513-558-0595, Fax 513-558-0071,
| | - Yuet-Kin Leung
- Department of Environmental Health, Center for Environmental Genetics, and The Cancer Institute, College of Medicine, University of Cincinnati, Cincinnati, Ohio. Telephone 513-558-5181, Fax 513-558-0071,
| |
Collapse
|
10
|
Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation 2011; 82:184-99. [PMID: 21620560 DOI: 10.1016/j.diff.2011.04.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 01/28/2023]
Abstract
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms (LUTS) are common clinical problems in urology. While the precise molecular etiology remains unclear, sex steroids have been implicated in the development and maintenance of BPH. Sufficient data exists linking androgens and androgen receptor pathways to BPH and use of androgen reducing compounds, such as 5α-reductase inhibitors which block the conversion of testosterone into dihydrotestosterone, are a component of the standard of care for men with LUTS attributed to an enlarged prostate. However, BPH is a multifactorial disease and not all men respond well to currently available treatments, suggesting factors other than androgens are involved. Testosterone, the primary circulating androgen in men, can also be metabolized via CYP19/aromatase into the potent estrogen, estradiol-17β. The prostate is an estrogen target tissue and estrogens directly and indirectly affect growth and differentiation of prostate. The precise role of endogenous and exogenous estrogens in directly affecting prostate growth and differentiation in the context of BPH is an understudied area. Estrogens and selective estrogen receptor modulators (SERMs) have been shown to promote or inhibit prostate proliferation signifying potential roles in BPH. Recent research has demonstrated that estrogen receptor signaling pathways may be important in the development and maintenance of BPH and LUTS; however, new models are needed to genetically dissect estrogen regulated molecular mechanisms involved in BPH. More work is needed to identify estrogens and associated signaling pathways in BPH in order to target BPH with dietary and therapeutic SERMs.
Collapse
Affiliation(s)
- Tristan M Nicholson
- University of Rochester School of Medicine & Dentistry, Rochester, NY, United States
| | | |
Collapse
|
11
|
Abstract
Estrogens and androgens have both been implicated as causes of benign prostatic hyperplasia (BPH). Although epidemiological data on an association between serum androgen concentrations and BPH are inconsistent, it is generally accepted that androgens play a permissive role in BPH pathogenesis. In clinical practice, inhibitors of 5α-reductase (which converts testosterone to the more potent androgen dihydrotestosterone) have proven effective in the management of BPH, confirming an essential role for androgens in BPH pathophysiology. To date, multiple lines of evidence support a role for estrogens in BPH pathogenesis. Studies of the two estrogen receptor (ER) subtypes have shed light on their differential functions in the human prostate; ERα and ERβ have proliferative and antiproliferative effects on prostate cells, respectively. Effects of estrogens on the prostate are associated with multiple mechanisms including apoptosis, aromatase expression and paracrine regulation via prostaglandin E2. Selective estrogen receptor modulators or other agents that can influence intraprostatic estrogen levels might conceivably be potential therapeutic targets for the treatment of BPH.
Collapse
|
12
|
|
13
|
Chen MF, Qi L, Li Y, Zu XB, Dai YQ, Zhang P. Icaritin induces growth inhibition and apoptosis of human prostatic smooth muscle cells in an estrogen receptor-independent manner. Amino Acids 2009; 38:1505-13. [PMID: 19876716 DOI: 10.1007/s00726-009-0366-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/09/2009] [Indexed: 01/20/2023]
Abstract
Icaritin has selective estrogen receptor (ER) modulating activity. ERs are expressed in the prostate stroma, and estrogens have an important role in the pathology of benign prostatic hyperplasia (BPH). However, the impact of icaritin on BPH was not studied. Human prostatic smooth muscle cells (PSMCs) were treated with 0-100 microM icaritin, also using 10 microM ICI182780 as a specific ER antagonist. The effects on cell growth and apoptosis were determined by cell counting and sandwich-enzyme-immunoassay. Western blotting was employed to illustrate the possible mechanisms. Cell growth was strongly inhibited by icaritin, and this was accompanied by an augmented apoptosis. Few changes in icaritin-induced growth inhibition and apoptosis were observed after pretreatment in the presence of ICI182780. Consistent with growth inhibition and apoptosis induction, icaritin decreased cyclin D1 and CDK4 expression and increased Bax/Bcl-2 ratio in human PSMCs. Furthermore, icaritin induced sustained phosphorylation of extracellular signal-regulated kinase (ERK) in human PSMCs. PD98059, a specific ERK inhibitor, blocked the activation of ERK by icaritin and abolished the icaritin-induced growth inhibition and apoptosis. The results indicate that icaritin reduces growth and induces apoptosis in human PSMCs via ERK signaling pathway without involvement of ERs.
Collapse
Affiliation(s)
- Min-Feng Chen
- Department of Urology, Xiangya Hospital, Central South University, 87# Xiangya Road, 410008, Changsha, Hunan, People's Republic of China
| | | | | | | | | | | |
Collapse
|