1
|
Ågmo A. Androgen receptors and sociosexual behaviors in mammals: The limits of generalization. Neurosci Biobehav Rev 2024; 157:105530. [PMID: 38176634 DOI: 10.1016/j.neubiorev.2023.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Circulating testosterone is easily aromatized to estradiol and reduced to dihydrotestosterone in target tissues and elsewhere in the body. Thus, the actions of testosterone can be mediated either by the estrogen receptors, the androgen receptor or by simultaneous action at both receptors. To determine the role of androgens acting at the androgen receptor, we need to eliminate actions at the estrogen receptors. Alternatively, actions at the androgen receptor itself can be eliminated. In the present review, I will analyze the specific role of androgen receptors in male and female sexual behavior as well as in aggression. Some comments about androgen receptors and social recognition are also made. It will be shown that there are important differences between species, even between strains within a species, concerning the actions of the androgen receptor on the behaviors mentioned. This fact makes generalizations from one species to another or from one strain to another very risky. The existence of important species differences is often ignored, leading to many misunderstandings and much confusion.
Collapse
Affiliation(s)
- Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| |
Collapse
|
2
|
Broberg MN, Knych H, Bondesson U, Pettersson C, Tidstedt B, Stanley S, Thevis M, Hedeland M. Equine in vivo metabolite profiling of the selective androgen receptor modulator LGD-3303 for doping control. J Pharm Biomed Anal 2023; 233:115468. [PMID: 37224728 DOI: 10.1016/j.jpba.2023.115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
LGD-3303 is a Selective Androgen Receptor Modulator (SARM) that is prohibited in both equine and human sports due to its anabolic properties. The aim of this study was to investigate the equine in vivo metabolite profile of LGD-3303 and identify drug metabolites that can be suitable as new and improved analytical targets for equine doping control. This was performed by an oral administration of 0.05 mg·kg-1 LGD-3303 to horses, where blood and urine samples were collected up to 96 h after administration. The in vivo samples consisting of plasma, urine and hydrolyzed urine were analyzed utilizing ultra-high performance liquid chromatography hyphenated to a Q Exactive™ Orbitrap™ high resolution mass spectrometer with a heated electrospray ionization source. A total of eight metabolites of LGD-3303 were tentatively identified, including one carboxylated and several hydroxylated metabolites in combination with glucuronic acid conjugates. A monohydroxylated metabolite is suggested as an analytical target for doping control analysis of plasma and urine after hydrolysis with β-glucuronidase, due to the high intensity and prolonged detection time in comparison to parent LGD-3303.
Collapse
Affiliation(s)
- Malin Nilsson Broberg
- Department of Medicinal Chemistry, Uppsala University, Box 574, 75123 Uppsala Sweden
| | - Heather Knych
- Kenneth L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Ulf Bondesson
- Department of Medicinal Chemistry, Uppsala University, Box 574, 75123 Uppsala Sweden
| | - Curt Pettersson
- Department of Medicinal Chemistry, Uppsala University, Box 574, 75123 Uppsala Sweden
| | - Börje Tidstedt
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), 75189 Uppsala, Sweden
| | - Scott Stanley
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Mario Thevis
- Institute of Biochemistry, Center for Preventive Doping Research, German Sport University, 50933 Cologne, Germany
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Uppsala University, Box 574, 75123 Uppsala Sweden.
| |
Collapse
|
3
|
Kim NN. Testosterone and Female Sexual Desire: Direct or Indirect Effects? J Sex Med 2021; 19:5-7. [PMID: 34848139 DOI: 10.1016/j.jsxm.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Noel N Kim
- Institute for Sexual Medicine, San Diego, CA, USA.
| |
Collapse
|
4
|
Neural and Hormonal Basis of Opposite-Sex Preference by Chemosensory Signals. Int J Mol Sci 2021; 22:ijms22158311. [PMID: 34361077 PMCID: PMC8347621 DOI: 10.3390/ijms22158311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian reproduction, sexually active males seek female conspecifics, while estrous females try to approach males. This sex-specific response tendency is called sexual preference. In small rodents, sexual preference cues are mainly chemosensory signals, including pheromones. In this article, we review the physiological mechanisms involved in sexual preference for opposite-sex chemosensory signals in well-studied laboratory rodents, mice, rats, and hamsters of both sexes, especially an overview of peripheral sensory receptors, and hormonal and central regulation. In the hormonal regulation section, we discuss potential rodent brain bisexuality, as it includes neural substrates controlling both masculine and feminine sexual preferences, i.e., masculine preference for female odors and the opposite. In the central regulation section, we show the substantial circuit regulating sexual preference and also the influence of sexual experience that innate attractants activate in the brain reward system to establish the learned attractant. Finally, we review the regulation of sexual preference by neuropeptides, oxytocin, vasopressin, and kisspeptin. Through this review, we clarified the contradictions and deficiencies in our current knowledge on the neuroendocrine regulation of sexual preference and sought to present problems requiring further study.
Collapse
|
5
|
Jones SL, Rosenbaum S, Gardner Gregory J, Pfaus JG. Aromatization Is Not Required for the Facilitation of Appetitive Sexual Behaviors in Ovariectomized Rats Treated With Estradiol and Testosterone. Front Neurosci 2019; 13:798. [PMID: 31447629 PMCID: PMC6691068 DOI: 10.3389/fnins.2019.00798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Testosterone can be safely and effectively administered to estrogen-treated post-menopausal women experiencing hypoactive sexual desire. However, in the United States and Canada, although it is often administered off-label, testosterone co-administered with estradiol is not a federally approved treatment for sexual arousal/desire disorder, partly because its mechanism is poorly understood. One possible mechanism involves the aromatization of testosterone to estradiol. In an animal model, the administration of testosterone propionate (TP) given in combination with estradiol benzoate (EB) significantly increases sexually appetitive behaviors (i.e., solicitations and hops/darts) in ovariectomized (OVX) Long-Evans rats, compared to those treated with EB-alone. The goal of current study was to test whether blocking aromatization of testosterone to estradiol would disrupt the facilitation of sexual behaviors in OVX Long-Evans rats, and to determine group differences in Fos immunoreactivity within brain regions involved in sexual motivation and reward. Groups of sexually experienced OVX Long-Evans rats were treated with EB alone, EB+TP, or EB+TP and the aromatase inhibitor Fadrozole (EB+TP+FAD). Females treated with EB+TP+FAD displayed significantly more hops and darts, solicitations and lordosis magnitudes when compared to EB-alone females. Furthermore, TP, administered with or without FAD, induced the activation of Fos-immunoreactivity in brain areas implicated in sexual motivation and reward including the medial preoptic area, ventrolateral division of the ventromedial nucleus of the hypothalamus, the nucleus accumbens core, and the prefrontal cortex. These results suggest that aromatization may not be necessary for TP to enhance female sexual behavior and that EB+TP may act via androgenic pathways to increase the sensitivity of response to male-related cues, to induce female sexual desire.
Collapse
Affiliation(s)
- Sherri Lee Jones
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Stephanie Rosenbaum
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - James Gardner Gregory
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - James G Pfaus
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
6
|
Domonkos E, Hodosy J, Ostatníková D, Celec P. On the Role of Testosterone in Anxiety-Like Behavior Across Life in Experimental Rodents. Front Endocrinol (Lausanne) 2018; 9:441. [PMID: 30127767 PMCID: PMC6088149 DOI: 10.3389/fendo.2018.00441] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Testosterone affects brain functions and might explain some of the observed behavioral sex differences. Animal models may help in elucidating the possible involvement of sex hormones in these sex differences. The effects of testosterone have been intensively investigated, especially in anxiety models. Numerous experiments have brought inconsistent results with either anxiolytic or anxiogenic effects. Besides methodological variations, contradictory findings might be explained by the divergent metabolism of testosterone and its recognition by neurons during prenatal and postnatal development. Gonadectomy and subsequent supplementation have been used to study the role of sex hormones. However, the variable duration of hypogonadism might affect the outcomes and the effect of long-term androgen deficiency is understudied. Testosterone can be metabolized to dihydrotestosterone strengthening the androgen signaling, but also to estradiol converting the androgen to estrogen activity. Moreover, some metabolites of testosterone can modulate γ-aminobutyric acid and serotonergic neurotransmission. Here we review the currently available experimental data in experimental rodents on the effects of testosterone on anxiety during development. Based on the experimental results, females are generally less anxious than males from puberty to middle-age. The anxiety-like behavior of females and males is likely influenced by early organizational effects, but might be modified by activational effects of testosterone and its metabolites. The effects of sex hormones leading to anxiogenesis or anxiolysis depend on factors affecting hormonal status including age. The biological and several technical issues make the study of effects of testosterone on anxiety very complex and should be taken into account when interpreting experimental results.
Collapse
Affiliation(s)
- Emese Domonkos
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Július Hodosy
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
- Faculty of Medicine, Institute of Physiology, Comenius University, Bratislava, Slovakia
| | - Daniela Ostatníková
- Faculty of Medicine, Institute of Physiology, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
- Faculty of Medicine, Institute of Pathophysiology, Comenius University, Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
7
|
Meerts SH, Strnad HK, Schairer RS. Paced mating behavior is affected by clitoral-vaginocervical lidocaine application in combination with sexual experience. Physiol Behav 2015; 140:222-9. [DOI: 10.1016/j.physbeh.2014.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 11/25/2022]
|
8
|
Handa RJ, McGivern RF. Steroid Hormones, Receptors, and Perceptual and Cognitive Sex Differences in the Visual System. Curr Eye Res 2014; 40:110-27. [DOI: 10.3109/02713683.2014.952826] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Zhang X, Allan GF, Tannenbaum P, Sbriscia T, Linton O, Lai MT, Haynes-Johnson D, Bhattacharjee S, Lundeen SG, Sui Z. Pharmacological characterization of an imidazolopyrazole as novel selective androgen receptor modulator. J Steroid Biochem Mol Biol 2013; 134:51-8. [PMID: 23098693 DOI: 10.1016/j.jsbmb.2012.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 12/01/2022]
Abstract
Selective androgen receptor modulators (SARMs) are androgens with tissue-selective activity. SARMs that have anabolic activity on muscle while having minimal stimulatory activity on prostate are classified as SARM agonists. They can be used to prevent the loss of lean body mass that is associated with cancer, immunodeficiency, renal disease and aging. They may also have anabolic activity on bone; thus, unlike estrogens, they may reverse the loss of bone strength associated with aging or hypogonadism. Our in-house effort on SARM program discovers a nonsteroidal androgen receptor ligand with a unique imidazolopyrazole moiety in its structure. In vitro, this compound is a weak androgen receptor binder and a weak androgen agonist. Despite this, in orchidectomized mature rats it is an effective SARM agonist, with an ED(50) on levator ani muscle of 3.3mg/kg and an ED(50) on ventral prostate of >30mg/kg. It has its maximal effect on muscle at the dose of 10mg/kg. In addition, this compound has mixed agonistic and antagonistic activities on prostate, reducing the weight of that tissue in intact rats by 22% at 10mg/kg. The compound does not have significant effect on gonadotropin levels or testosterone levels in both orchidectomized and intact male rats. It does not have notable progestin, estrogen or glucocorticoid agonistic or antagonistic activity in rats. In a female sexual behavior model, it improves the sexual desire of ovariectomized female rats for sexually mature intact males over nonsexually ovariectomized females. Overall, the imidazolopyrazole is a potent prostate-sparing candidate for development as a SARM agonist with an appropriate pharmacological profile for clinical benefit in muscle-wasting conditions and female sexual function disorders.
Collapse
Affiliation(s)
- Xuqing Zhang
- Janssen Research and Development LLC, Welsh&McKean Roads, Spring House, PA 19477, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang X, Sui Z. Deciphering the selective androgen receptor modulators paradigm. Expert Opin Drug Discov 2012; 8:191-218. [DOI: 10.1517/17460441.2013.741582] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xuqing Zhang
- Janssen Research and Development, LLC, Welsh and McKean Roads, PO Box 776, Spring House, PA 19477, USA
| | - Zhihua Sui
- Janssen Research and Development, LLC, Welsh and McKean Roads, PO Box 776, Spring House, PA 19477, USA
| |
Collapse
|
11
|
Haendler B, Cleve A. Recent developments in antiandrogens and selective androgen receptor modulators. Mol Cell Endocrinol 2012; 352:79-91. [PMID: 21704118 DOI: 10.1016/j.mce.2011.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/16/2011] [Accepted: 06/03/2011] [Indexed: 11/30/2022]
Abstract
The androgens testosterone and dihydrotestosterone play an essential role in the development and maintenance of primary and secondary male characteristics. Androgens bind to a specific androgen receptor (AR), a ligand-dependent transcription factor which controls the expression of a large number of downstream target genes. The AR is an essential player in early and late prostate cancer, and may also be involved in some forms of breast cancer. It also represents a drug target for the treatment of hypogonadism. Recent studies furthermore indicate that targeting the AR in pathologies such as frailty syndrome, cachexia or polycystic ovary syndrome may have clinical benefit. Numerous AR ligands with very different pharmacological properties have been identified in the last 40 years and helped to treat several of these diseases. However, progress still needs to be made in order to find compounds with an improved profile with regard to efficacy, differentiation and side-effects. This will only be achieved through a better understanding of the mechanisms involved in normal and aberrant AR signaling.
Collapse
Affiliation(s)
- Bernard Haendler
- TRG Oncology, Global Drug Discovery, Bayer HealthCare, D-13342 Berlin, Germany.
| | | |
Collapse
|
12
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Kirkpatrick ME, Clark AS. Androgen inhibition of sexual receptivity is modulated by estrogen. Physiol Behav 2010; 102:361-6. [PMID: 21130793 DOI: 10.1016/j.physbeh.2010.11.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/03/2010] [Accepted: 11/26/2010] [Indexed: 11/16/2022]
Abstract
Sexual receptivity induced in ovariectomized rats by the long-term administration of estradiol benzoate (EB) can be inhibited by concurrent administration of androgens. Experiment 1 examined the role of time course and dose of androgens in the inhibition of estrogen-induced sexual receptivity. Ovariectomized rats were treated with EB (2.0 microg per rat per day) for 6 days and tested for sexual receptivity (Test Day I). EB treatment continued for 15 days concomitant with daily administration of one of three doses of dihydrotestosterone propionate (DHTP; 7.5, 0.75, 0.075 mg/kg) or 3α-androstanediol (3α-Adiol; 3.75, 1.0, 0.375 mg/kg). Four tests for sexual receptivity were conducted on days 3, 6, 14, and 15 of the androgen/vehicle treatment period (Test Days II-V). On Day 15 (Test Day V), the rats received progesterone (1.0 mg per rat) 4 h before testing. Using the same experimental design, Experiment 2 examined the effect of increasing the dose of estrogen on the androgenic inhibition of sexual receptivity. Ovariectomized rats were treated with one of two doses of EB (2.0 or 10.0 microg per rat per day) concomitant with daily administration of DHTP (7.5 mg/kg) or 3α-Adiol (3.75 mg/kg). In Experiment 1, the highest doses of both DHTP and 3α-Adiol significantly inhibited estrogen-induced sexual receptivity. Data from Experiment 2 indicate that the inhibitory effects of DHTP but not 3α-Adiol can be moderated by an increased dose of EB.
Collapse
Affiliation(s)
- Meg E Kirkpatrick
- Department of Psychology, Wheaton College, Box 18, 26 E. Main Street, Norton, MA 02766, USA.
| | | |
Collapse
|