1
|
Zhao Y, Deng S, Li C, Cao J, Wu A, Chen M, Ma X, Wu S, Lian Z. The Role of Retinoic Acid in Spermatogenesis and Its Application in Male Reproduction. Cells 2024; 13:1092. [PMID: 38994945 PMCID: PMC11240464 DOI: 10.3390/cells13131092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogenesis in mammalian testes is essential for male fertility, ensuring a continuous supply of mature sperm. The testicular microenvironment finely tunes this process, with retinoic acid, an active metabolite of vitamin A, serving a pivotal role. Retinoic acid is critical for various stages, including the differentiation of spermatogonia, meiosis in spermatogenic cells, and the production of mature spermatozoa. Vitamin A deficiency halts spermatogenesis, leading to the degeneration of numerous germ cells, a condition reversible with retinoic acid supplementation. Although retinoic acid can restore fertility in some males with reproductive disorders, it does not work universally. Furthermore, high doses may adversely affect reproduction. The inconsistent outcomes of retinoid treatments in addressing infertility are linked to the incomplete understanding of the molecular mechanisms through which retinoid signaling governs spermatogenesis. In addition to the treatment of male reproductive disorders, the role of retinoic acid in spermatogenesis also provides new ideas for the development of male non-hormone contraceptives. This paper will explore three facets: the synthesis and breakdown of retinoic acid in the testes, its role in spermatogenesis, and its application in male reproduction. Our discussion aims to provide a comprehensive reference for studying the regulatory effects of retinoic acid signaling on spermatogenesis and offer insights into its use in treating male reproductive issues.
Collapse
Affiliation(s)
- Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Chongyang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Jingchao Cao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Aowu Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuehai Ma
- Xinjiang Key Laboratory of Mental Development and Learning Science, College of Psychology, Xinjiang Normal University, Urumqi 830017, China
| | - Sen Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Singh R, Deb R, Sengar GS, Raja TV, Kumar S, Singh U, Das AK, Alex R, Kumar A, Tyagi S, Pal P, Patil NV. Differentially expressed microRNAs in biochemically characterized Frieswal TM crossbred bull semen. Anim Biotechnol 2023; 34:25-38. [PMID: 34106815 DOI: 10.1080/10495398.2021.1932519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In addition to the transmission of paternal genome, spermatozoa also carry coding as well as noncoding microRNAs (miRNAs) into the female oocyte during the process of biological fertilization. Based on RNA deep sequencing, a total 28 number of differentially expressed miRNAs were cataloged in categorized FrieswalTM crossbred (Holstein Friesian X Sahiwal) bull semen on the basis of conception rate (CR) in field progeny testing program. Validation of selected miRNAs viz. bta-mir-182, bta-let-7b, bta-mir-34c and bta-mir-20a revealed that, superior bull semen having comparatively (p < .05) lower level of all the miRNAs in contrast to inferior bull semen. Additionally, it was illustrated that, bta-mir-20a and bta-mir-34c miRNAs are negatively (p < .01) correlated with seminal plasma catalase (CAT) activity and glutathione peroxidase (GPx) level. Interactome studies identified that bta-mir-140, bta-mir-342, bta-mir-1306 and bta-mir-217 can target few of the important solute carrier (SLC) proteins viz. SLC30A3, SLC39A9, SLC31A1 and SLC38A2, respectively. Interestingly, it was noticed that all the SLCs were significantly (p < .05) expressed at higher level in superior quality bull semen and they are negatively correlated (p < .01) with their corresponding miRNAs as mentioned. This study may reflect the role of miRNAs in regulating few of the candidate genes and thus may influence the bull semen quality traits.
Collapse
Affiliation(s)
- Rani Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Rajib Deb
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Gyanendra Singh Sengar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - T V Raja
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Umesh Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - A K Das
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Rani Alex
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Amod Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Shrikant Tyagi
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Prasanna Pal
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - N V Patil
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| |
Collapse
|
3
|
Wang JM, Li ZF, Yang WX, Tan FQ. Follicle-stimulating hormone signaling in Sertoli cells: a licence to the early stages of spermatogenesis. Reprod Biol Endocrinol 2022; 20:97. [PMID: 35780146 PMCID: PMC9250200 DOI: 10.1186/s12958-022-00971-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Follicle-stimulating hormone signaling is essential for the initiation and early stages of spermatogenesis. Follicle-stimulating hormone receptor is exclusively expressed in Sertoli cells. As the only type of somatic cell in the seminiferous tubule, Sertoli cells regulate spermatogenesis not only by controlling their own number and function but also through paracrine actions to nourish germ cells surrounded by Sertoli cells. After follicle-stimulating hormone binds to its receptor and activates the follicle-stimulating hormone signaling pathway, follicle-stimulating hormone signaling will establish a normal Sertoli cell number and promote their differentiation. Spermatogonia pool maintenance, spermatogonia differentiation and their entry into meiosis are also positively regulated by follicle-stimulating hormone signaling. In addition, follicle-stimulating hormone signaling regulates germ cell survival and limits their apoptosis. Our review summarizes the aforementioned functions of follicle-stimulating hormone signaling in Sertoli cells. We also describe the clinical potential of follicle-stimulating hormone treatment in male patients with infertility. Furthermore, our review may be helpful for developing better therapies for treating patients with dysfunctional follicle-stimulating hormone signaling in Sertoli cells.
Collapse
Affiliation(s)
- Jia-Ming Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
4
|
Haldar S, Agrawal H, Saha S, Straughn AR, Roy P, Kakar SS. Overview of follicle stimulating hormone and its receptors in reproduction and in stem cells and cancer stem cells. Int J Biol Sci 2022; 18:675-692. [PMID: 35002517 PMCID: PMC8741861 DOI: 10.7150/ijbs.63721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/21/2021] [Indexed: 11/05/2022] Open
Abstract
Follicle stimulating hormone (FSH) and its receptor (FSHR) have been reported to be responsible for several physiological functions and cancers. The responsiveness of stem cells and cancer stem cells towards the FSH-FSHR system make the function of FSH and its receptors more interesting in the context of cancer biology. This review is comprised of comprehensive information on FSH-FSHR signaling in normal physiology, gonadal stem cells, cancer cells, and potential options of utilizing FSH-FSHR system as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Swati Haldar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.,Current address: Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand 249405
| | - Himanshu Agrawal
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences Rishikesh, Uttarakhand 249203, India
| | - Alex R Straughn
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sham S Kakar
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Johnson GP, Jonas KC. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling†. Biol Reprod 2021; 102:773-783. [PMID: 31882999 DOI: 10.1093/biolre/ioz228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Gonadotropin hormones and their receptors play a central role in the control of male and female reproduction. In recent years, there has been growing evidence surrounding the complexity of gonadotropin hormone/receptor signaling, with it increasingly apparent that the Gαs/cAMP/PKA pathway is not the sole signaling pathway that confers their biological actions. Here we review recent literature on the different receptor-receptor, receptor-scaffold, and receptor-signaling molecule complexes formed and how these modulate and direct gonadotropin hormone-dependent intracellular signal activation. We will touch upon the more controversial issue of extragonadal expression of FSHR and the differential signal pathways activated in these tissues, and lastly, highlight the open questions surrounding the role these gonadotropin hormone receptor complexes and how this will shape future research directions.
Collapse
Affiliation(s)
| | - Kim Carol Jonas
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Lewis V, Laberge F, Heyland A. Transcriptomic signature of extinction learning in the brain of the fire-bellied toad, Bombina orientalis. Neurobiol Learn Mem 2021; 184:107502. [PMID: 34391934 DOI: 10.1016/j.nlm.2021.107502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/21/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022]
Abstract
Insight into the molecular and cellular mechanisms of learning and memory from a diverse array of taxa contributes to our understanding of the evolution of these processes. The fire-bellied toad, Bombina orientalis, is a basal anuran amphibian model species who could help us describe shared and divergent characteristics of learning and memory mechanisms between amphibians and other vertebrates, and hence answer questions about the evolution of learning. Utilizing next generation sequencing techniques, we profiled gene expression patterns associated with the extinction of prey-catching conditioning in the brain of the fire-bellied toad. For this purpose, gene expression was at first compared between toads sacrificed after acquisition and extinction of the conditioned response. A second comparison was done between toads submitted to extinction following either short or long acquisition training, which results in toads displaying response extinction or resistance to extinction, respectively. We analyzed brain tissue transcription profiles common to both acquisition and extinction learning, or unique to extinction learning and resistance to extinction, and found significant overlap in gene expression related to molecular pathways involving neuronal plasticity (e.g. structural modification, transcription). However, extinction learning induced a unique GABAergic transcriptomic signal, which may be responsible for suppression of the original response memory. Further, when comparing extinction learning in short- and long-trained groups, short training engaged many pathways related to neuronal plasticity, as expected, but long training engaged molecular pathways related to the suppression of learning through epigenetic mediated transcriptional suppression and inhibitory neurotransmission. Overall, gene expression patterns associated with extinction learning in the fire-bellied toad were similar to those found in mammals submitted to extinction, although some divergent profiles highlighted potential differences in the mechanisms of learning and memory among tetrapods.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
7
|
Khanehzad M, Abbaszadeh R, Holakuyee M, Modarressi MH, Nourashrafeddin SM. FSH regulates RA signaling to commit spermatogonia into differentiation pathway and meiosis. Reprod Biol Endocrinol 2021; 19:4. [PMID: 33407539 PMCID: PMC7789255 DOI: 10.1186/s12958-020-00686-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Spermatogenesis is a complex process that is controlled by interactions between germ cells and somatic cells. The commitment of undifferentiated spermatogonia to differentiating spermatogonia and normal spermatogenesis requires the action of gonadotropins. Additionally, numerous studies revealed the role of retinoic acid signaling in induction of germ cell differentiation and meiosis entry. MAIN TEXT Recent studies have shown that expression of several RA signaling molecules including Rdh10, Aldh1a2, Crabp1/2 are influenced by changes in gonadotropin levels. Components of signaling pathways that are regulated by FSH signaling such as GDNF, Sohlh1/2, c-Kit, DMRT, BMP4 and NRGs along with transcription factors that are important for proliferation and differentiation of spermatogonia are also affected by retinoic acid signaling. CONCLUSION According to all studies that demonstrate the interface between FSH and RA signaling, we suggest that RA may trigger spermatogonia differentiation and initiation of meiosis through regulation by FSH signaling in testis. Therefore, to the best of our knowledge, this is the first time that the correlation between FSH and RA signaling in spermatogenesis is highlighted.
Collapse
Affiliation(s)
- Maryam Khanehzad
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Abbaszadeh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Seyed Mehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Banerjee AA, Joseph S, Mahale SD. From cell surface to signalling and back: the life of the mammalian FSH receptor. FEBS J 2020; 288:2673-2696. [DOI: 10.1111/febs.15649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Antara A. Banerjee
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Shaini Joseph
- Genetic Research Center National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Smita D. Mahale
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
- ICMR Biomedical Informatics Centre National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| |
Collapse
|
9
|
Molecular insights into information processing and developmental and immune regulation of Eriocheir sinensis megalopa under hyposaline stress. Genomics 2020; 112:4647-4656. [PMID: 32798716 DOI: 10.1016/j.ygeno.2020.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/23/2022]
Abstract
Eriocheir sinensis is an important euryhaline catadromous crustacean of the Yangtze River and an important commercial species for breeding in China. However, wild E. sinensis have suffered serious damage attributed to overfishing, climate change, etc. The Ministry of Agriculture of China issued a notice banning the commercial fishing of wild E. sinensis. E. sinensis megalopa migrates upriver into fresh water for growth and fattening, which creates optimal conditions to experimentally explore its hyposaline osmoregulation mechanism. We performed comparative transcriptome analyses of E. sinensis megalopae under hyposaline stress. The results suggest that KEGG pathways and genes related to genetic information processing, developmental regulation, immune and anti-stress responses were differentially expressed. The present study reveals the most significantly enriched pathways and functional gene groups, and explores the hyposaline osmoregulation mode of E. sinensis megalopae. This study lays a theoretical foundation for further studies on the osmoregulation and developmental mechanisms of E. sinensis.
Collapse
|
10
|
Molecular insights into hormone regulation via signaling pathways in Sertoli cells: With discussion on infertility and testicular tumor. Gene 2020; 753:144812. [DOI: 10.1016/j.gene.2020.144812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
|
11
|
Follicle-stimulating Hormone (FSH) Action on Spermatogenesis: A Focus on Physiological and Therapeutic Roles. J Clin Med 2020; 9:jcm9041014. [PMID: 32260182 PMCID: PMC7230878 DOI: 10.3390/jcm9041014] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human reproduction is regulated by the combined action of the follicle-stimulating hormone (FSH) and the luteinizing hormone (LH) on the gonads. Although FSH is largely used in female reproduction, in particular in women attending assisted reproductive techniques to stimulate multi-follicular growth, its efficacy in men with idiopathic infertility is not clearly demonstrated. Indeed, whether FSH administration improves fertility in patients with hypogonadotropic hypogonadism, the therapeutic benefit in men presenting alterations in sperm production despite normal FSH serum levels is still unclear. In the present review, we evaluate the potential pharmacological benefits of FSH administration in clinical practice. METHODS This is a narrative review, describing the FSH physiological role in spermatogenesis and its potential therapeutic action in men. RESULTS The FSH role on male fertility is reviewed starting from the physiological control of spermatogenesis, throughout its mechanism of action in Sertoli cells, the genetic regulation of its action on spermatogenesis, until the therapeutic options available to improve sperm production. CONCLUSION FSH administration in infertile men has potential benefits, although its action should be considered by evaluating its synergic action with testosterone, and well-controlled, powerful trials are required. Prospective studies and new compounds could be developed in the near future.
Collapse
|
12
|
Jiang Y, Cai NN, Zhao XX, Zhu WQ, Zhang J, Yang R, Tang B, Li ZY, Zhang XM. Decreased abundance of GDNF mRNA transcript in the immature Sertoli cells of cattle in response to protein kinase inhibitor staurosporine. Anim Reprod Sci 2020; 214:106303. [PMID: 32087919 DOI: 10.1016/j.anireprosci.2020.106303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 01/15/2023]
Abstract
Sertoli cells (SC) have important functions in spermatogenesis by regulating development of spermatogenic cells. Glial cell line-derived neurotrophic factor (GDNF) are produced by SC. Although the effects of GDNF on spermatogenesis have been well studied, the understanding of how GDNF is synthesized is still limited, especially in food animal producing species. Because protein kinase (PK) has varied functions in multiple cellular processes and the PK pathway modulates SC functions, the objective of the present study was to determine whether PK modulates the abundance of GDNF protein in SC of cattle. To conduct this study, immature SC were enriched from cryopreserved testicular tissues of 1-day-old bulls. These cells had a marked proliferation capacity. Results from immunostaining analysis indicated that there was a sustained abundance of SC mRNA marker protein transcripts and marker proteins: androgen bind protein (ABP), GATA4 and VIMENTIN. There was subsequent characterization of SC treated with the PK inhibitor staurosporine for 0, 1 or 2 h. Results from real-time-PCR and Western blot analyses indicated the treatment (2 h) resulted in a decrease in Gdnf mRNA transcript and GDNF protein. Additionally, the staurosporine treatment resulted in an increase in the abundance of anti-apoptosis Bcl2 and decrease in pro-apoptosis Bax mRNA transcripts. Furthermore, results of the TUNEL assay indicated there was a decrease in apoptosis in the staurosprine-treated SC. Collectively, results indicate the PK signaling is involved in regulation of GDNF protein abundance in the immature SC and the survival of these cells in cattle.
Collapse
Affiliation(s)
- Yu Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ning-Ning Cai
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin-Xin Zhao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wen-Qian Zhu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi-Yi Li
- First Hospital, Jilin University, Changchun, China
| | - Xue-Ming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
13
|
Ni FD, Hao SL, Yang WX. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis. Cell Death Dis 2019; 10:541. [PMID: 31316051 PMCID: PMC6637205 DOI: 10.1038/s41419-019-1782-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
The functions of Sertoli cells in spermatogenesis have attracted much more attention recently. Normal spermatogenesis depends on Sertoli cells, mainly due to their influence on nutrient supply, maintenance of cell junctions, and support for germ cells' mitosis and meiosis. Accumulating evidence in the past decade has highlighted the dominant functions of the MAPK, AMPK, and TGF-β/Smad signaling pathways during spermatogenesis. Among these pathways, the MAPK signaling pathway regulates dynamics of tight junctions and adherens junctions, proliferation and meiosis of germ cells, proliferation and lactate production of Sertoli cells; the AMPK and the TGF-β/Smad signaling pathways both affect dynamics of tight junctions and adherens junctions, as well as the proliferation of Sertoli cells. The AMPK signaling pathway also regulates lactate supply. These signaling pathways combine to form a complex regulatory network for spermatogenesis. In testicular tumors or infertile patients, the activities of these signaling pathways in Sertoli cells are abnormal. Clarifying the mechanisms of signaling pathways in Sertoli cells on spermatogenesis provides new insights into the physiological functions of Sertoli cells in male reproduction, and also serves as a pre-requisite to identify potential therapeutic targets in abnormal spermatogenesis including testicular tumor and male infertility.
Collapse
Affiliation(s)
- Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Ulloa-Aguirre A, Reiter E, Crépieux P. FSH Receptor Signaling: Complexity of Interactions and Signal Diversity. Endocrinology 2018; 159:3020-3035. [PMID: 29982321 DOI: 10.1210/en.2018-00452] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
FSH is synthesized in the pituitary by gonadotrope cells. By binding to and interacting with its cognate receptor [FSH receptor (FSHR)] in the gonads, this gonadotropin plays a key role in the control of gonadal function and reproduction. Upon activation, the FSHR undergoes conformational changes leading to transduction of intracellular signals, including dissociation of G protein complexes into components and activation of several associated interacting partners, which concertedly regulate downstream effectors. The canonical Gs/cAMP/protein kinase A pathway, considered for a long time as the sole effector of FSHR-mediated signaling, is now viewed as one of several mechanisms employed by this receptor to transduce intracellular signals in response to the FSH stimulus. This complex network of signaling pathways allows for a fine-tuning regulation of the gonadotropic stimulus, where activation/inhibition of its multiple components vary depending on the cell context, cell developmental stage, and concentration of associated receptors and corresponding ligands. Activation of these multiple signaling modules eventually converge to the hormone-integrated biological response, including survival, proliferation and differentiation of target cells, synthesis and secretion of paracrine/autocrine regulators, and, at the molecular level, functional selectivity and differential gene expression. In this mini-review, we discuss the complexity of FSHR-mediated intracellular signals activated in response to ligand stimulation. A better understanding of the signaling pathways involved in FSH action might potentially influence the development of new therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric Reiter
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| | - Pascale Crépieux
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| |
Collapse
|
15
|
Oduwole OO, Peltoketo H, Huhtaniemi IT. Role of Follicle-Stimulating Hormone in Spermatogenesis. Front Endocrinol (Lausanne) 2018; 9:763. [PMID: 30619093 PMCID: PMC6302021 DOI: 10.3389/fendo.2018.00763] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis is a concerted sequence of events during maturation of spermatogonia into spermatozoa. The process involves differential gene-expression and cell-cell interplay regulated by the key endocrine stimuli, i.e., follicle-stimulating hormone (FSH) and luteinizing hormone (LH)-stimulated testosterone. FSH affects independently and in concert with testosterone, the proliferation, maturation and function of the supporting Sertoli cells that produce regulatory signals and nutrients for the maintenance of developing germ cells. Rodents are able to complete spermatogenesis without FSH stimulus, but its deficiency significantly decreases sperm quantity. Men carrying loss-of-function mutation in the gene encoding the ligand (FSHB) or its receptor (FSHR) present, respectively, with azoospermia or suppressed spermatogenesis. Recently, the importance of high intratesticular testosterone concentration for spermatogenesis has been questioned. It was established that it can be completed at minimal intratesticular concentration of the hormone. Furthermore, we recently demonstrated that very robust constitutive FSHR action can rescue spermatogenesis and fertility of mice even when the testosterone stimulus is completely blocked. The clinical relevance of these findings concerns a new strategy of high-dose FSH in treatment of spermatogenic failure.
Collapse
Affiliation(s)
- Olayiwola O. Oduwole
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Hellevi Peltoketo
- Cancer and Translational Medicine Research Unit, Laboratory of Cancer Genetics and Tumor Biology, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ilpo T. Huhtaniemi
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- Department of Physiology, University of Turku, Turku, Finland
- *Correspondence: Ilpo T. Huhtaniemi
| |
Collapse
|
16
|
Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:1-58. [DOI: 10.1016/bs.ircmb.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Protein kinase A activation by retinoic acid in the nuclei of HL60 cells. Biochim Biophys Acta Gen Subj 2017; 1861:276-285. [DOI: 10.1016/j.bbagen.2016.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/21/2016] [Accepted: 11/28/2016] [Indexed: 11/23/2022]
|
18
|
Li BI, Matteson PG, Ababon MF, Nato AQ, Lin Y, Nanda V, Matise TC, Millonig JH. The orphan GPCR, Gpr161, regulates the retinoic acid and canonical Wnt pathways during neurulation. Dev Biol 2015; 402:17-31. [PMID: 25753732 DOI: 10.1016/j.ydbio.2015.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 02/03/2015] [Accepted: 02/11/2015] [Indexed: 10/23/2022]
Abstract
The vacuolated lens (vl) mouse mutation arose on the C3H/HeSnJ background and results in lethality, neural tube defects (NTDs) and cataracts. The vl phenotypes are due to a deletion/frameshift mutation in the orphan GPCR, Gpr161. A recent study using a null allele demonstrated that Gpr161 functions in primary cilia and represses the Shh pathway. We show the hypomorphic Gpr161(vl) allele does not severely affect the Shh pathway. To identify additional pathways regulated by Gpr161 during neurulation, we took advantage of naturally occurring genetic variation in the mouse. Previously Gpr161(vl-C3H) was crossed to different inbred backgrounds including MOLF/EiJ and the Gpr161(vl) mutant phenotypes were rescued. Five modifiers were mapped (Modvl: Modifier of vl) including Modvl5(MOLF). In this study we demonstrate the Modvl5(MOLF) congenic rescues the Gpr161(vl)-associated lethality and NTDs but not cataracts. Bioinformatics determined the transcription factor, Cdx1, is the only annotated gene within the Modvl5 95% CI co-expressed with Gpr161 during neurulation and not expressed in the eye. Using Cdx1 as an entry point, we identified the retinoid acid (RA) and canonical Wnt pathways as downstream targets of Gpr161. QRT-PCR, ISH and IHC determined that expression of RA and Wnt genes are down-regulated in Gpr161(vl/vl) but rescued by the Modvl5(MOLF) congenic during neurulation. Intraperitoneal RA injection restores expression of canonical Wnt markers and rescues Gpr161(vl/vl) NTDs. These results establish the RA and canonical Wnt as pathways downstream of Gpr161 during neurulation, and suggest that Modvl5(MOLF) bypasses the Gpr161(vl) mutation by restoring the activity of these pathways.
Collapse
Affiliation(s)
- Bo I Li
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States; Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States.
| | - Paul G Matteson
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States; Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Myka F Ababon
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States; Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Alejandro Q Nato
- Department of Genetics; Rutgers University, Piscataway, NJ, United States
| | - Yong Lin
- Division of Biometrics, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States; Department of Biochemistry, Rutgers University, Piscataway, NJ, United States; Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Tara C Matise
- Department of Genetics; Rutgers University, Piscataway, NJ, United States
| | - James H Millonig
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States; Department of Neuroscience and Cell Biology, Rutgers University, Piscataway, NJ, United States; Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States; Department of Genetics; Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
19
|
Smith KP, Gifford KM, Waitzman JS, Rice SE. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects. Proteins 2015; 83:25-36. [PMID: 24833420 PMCID: PMC4233198 DOI: 10.1002/prot.24605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
While it is currently estimated that 40 to 50% of eukaryotic proteins are phosphorylated, little is known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor binding sites. In this study, we investigated how frequently phosphorylation may affect the binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data Bank (PDB). We cross-referenced these structures with phosphorylation data available from the PhosphoSitePlus database. Three hundred twenty-two of 453 (71%) of drug targets have evidence of phosphorylation that has been validated by multiple methods or labs. For 132 of 453 (29%) of those, the phosphorylation site is within 12 Å of the small molecule-binding site, where it would likely alter small molecule binding affinity. We propose a framework for distinguishing between drug-phosphorylation site interactions that are likely to alter the efficacy of drugs versus those that are not. In addition we highlight examples of well-established drug targets, such as estrogen receptor alpha, for which phosphorylation may affect drug affinity and clinical efficacy. Our data suggest that phosphorylation may affect drug binding and efficacy for a significant fraction of drug target proteins.
Collapse
Affiliation(s)
- Kyle P Smith
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611
| | | | | | | |
Collapse
|
20
|
Bergler-Czop B. The aetiopathogenesis of acne vulgaris - what's new? Int J Cosmet Sci 2014; 36:187-94. [DOI: 10.1111/ics.12122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/18/2014] [Indexed: 12/18/2022]
Affiliation(s)
- B. Bergler-Czop
- Departament of Dermatology; Silesian Medical University in Katowice; Francuska Street 20/24 Katowice 40-027 Poland
| |
Collapse
|
21
|
Li H, He Y, Zhang H, Miao G. Differential proteome and gene expression reveal response to carbon ion irradiation in pubertal mice testes. Toxicol Lett 2014; 225:433-44. [DOI: 10.1016/j.toxlet.2014.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 12/30/2013] [Accepted: 01/01/2014] [Indexed: 02/08/2023]
|
22
|
Piskunov A, Al Tanoury Z, Rochette-Egly C. Nuclear and extra-nuclear effects of retinoid acid receptors: how they are interconnected. Subcell Biochem 2014; 70:103-127. [PMID: 24962883 DOI: 10.1007/978-94-017-9050-5_6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The nuclear retinoic acid receptors (RAR α, β and γ) and their isoforms are ligand-dependent regulators of transcription Transcription , which mediate the effects of all-trans retinoic acid (RA), the active endogenous metabolite of Vitamin A. They heterodimerize with Retinoid X Receptors (RXRs α, β and γ), and regulate the expression of a battery of target genes Target genes involved in cell growth and differentiation Differentiation . During the two last decades, the description of the crystallographic structures of RARs, the characterization of the polymorphic response elements of their target genes Target genes , and the identification of the multiprotein complexes involved in their transcriptional activity have provided a wealth of information on their pleiotropic effects. However, the regulatory scenario became even more complicated once it was discovered that RARs are phosphoproteins and that RA can activate kinase signaling cascades via a pool of RARs present in membrane lipid rafts. Now it is known that these RA-activated kinases Kinases translocate to the nucleus where they phosphorylate RARs and other retinoid signaling factors. The phosphorylation Phosphorylation state of the RARs dictates whether the transcriptional programs which are known to be induced by RA are facilitated and/or switched on. Thus, kinase signaling pathways appear to be crucial for fine-tuning the appropriate physiological activity of RARs.
Collapse
Affiliation(s)
- Aleksandr Piskunov
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France,
| | | | | |
Collapse
|
23
|
Nguyen E, Gausdal G, Varennes J, Pendino F, Lanotte M, Døskeland SO, Ségal-Bendirdjian E. Activation of both protein kinase A (PKA) type I and PKA type II isozymes is required for retinoid-induced maturation of acute promyelocytic leukemia cells. Mol Pharmacol 2013; 83:1057-65. [PMID: 23455313 DOI: 10.1124/mol.112.081034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by granulopoietic differentiation arrest at the promyelocytic stage. In most cases, this defect can be overcome by treatment with all-trans-retinoic acid (ATRA), leading to complete clinical remission. Cyclic AMP signaling has a key role in retinoid treatment efficacy: it enhances ATRA-induced maturation in ATRA-sensitive APL cells (including NB4 cells) and restores it in some ATRA-resistant cells (including NB4-LR1 cells). We show that the two cell types express identical levels of the Cα catalytic subunit and comparable global cAMP-dependent protein kinase A (PKA) enzyme activity. However, the maturation-resistant NB4-LR1 cells have a PKA isozyme switch: compared with the NB4 cells, they have decreased content of the juxtanuclearly located PKA regulatory subunit IIα and PKA regulatory subunit IIβ, and a compensatory increase of the generally cytoplasmically distributed PKA-RIα. Furthermore, the PKA regulatory subunit II exists mainly in the less cAMP-responsive nonautophosphorylated state in the NB4-LR1 cells. By the use of isozyme-specific cAMP analog pairs, we show that both PKA-I and PKA-II must be activated to achieve maturation in NB4-LR1 as well as NB4 cells. Therefore, special attention should be paid to activating not only PKA-I but also PKA-II in attempts to enhance ATRA-induced APL maturation in a clinical setting.
Collapse
Affiliation(s)
- Eric Nguyen
- Institut National de la Santé et de Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)-S 1007, Homeostasis and Cancer, Paris, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Al Tanoury Z, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 2013; 54:1761-75. [PMID: 23440512 DOI: 10.1194/jlr.r030833] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vitamin A or retinol is arguably the most multifunctional vitamin in the human body, as it is essential from embryogenesis to adulthood. The pleiotropic effects of vitamin A are exerted mainly by one active metabolite, all-trans retinoic acid (atRA), which regulates the expression of a battery of target genes through several families of nuclear receptors (RARs, RXRs, and PPARβ/δ), polymorphic retinoic acid (RA) response elements, and multiple coregulators. It also involves extranuclear and nontranscriptional effects, such as the activation of kinase cascades, which are integrated in the nucleus via the phosphorylation of several actors of RA signaling. However, vitamin A itself proved recently to be active and RARs to be present in the cytosol to regulate translation and cell plasticity. These new concepts expand the scope of the biologic functions of vitamin A and RA.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U964, CNRS, UMR7104, Université de Strasbourg, 67404 Illkirch Cedex, France
| | | | | |
Collapse
|
25
|
Manoli SE, Smith LA, Vyhlidal CA, An CH, Porrata Y, Cardoso WV, Baron RM, Haley KJ. Maternal smoking and the retinoid pathway in the developing lung. Respir Res 2012; 13:42. [PMID: 22651576 PMCID: PMC3479035 DOI: 10.1186/1465-9921-13-42] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maternal smoking is a risk factor for pediatric lung disease, including asthma. Animal models suggest that maternal smoking causes defective alveolarization in the offspring. Retinoic acid signaling modulates both lung development and postnatal immune function. Thus, abnormalities in this pathway could mediate maternal smoking effects. We tested whether maternal smoking disrupts retinoic acid pathway expression and functioning in a murine model. METHODS Female C57Bl/6 mice with/without mainstream cigarette smoke exposure (3 research cigarettes a day, 5 days a week) were mated to nonsmoking males. Cigarette smoke exposure continued throughout the pregnancy and after parturition. Lung tissue from the offspring was examined by mean linear intercept analysis and by quantitative PCR. Cell culture experiments using the type II cell-like cell line, A549, tested whether lipid-soluble cigarette smoke components affected binding and activation of retinoic acid response elements in vitro. RESULTS Compared to tobacco-naïve mice, juvenile mice with tobacco toxin exposure had significantly (P < 0.05) increased mean linear intercepts, consistent with an alveolarization defect. Tobacco toxin exposure significantly (P < 0.05) decreased mRNA and protein expression of retinoic acid signaling pathway elements, including retinoic acid receptor alpha and retinoic acid receptor beta, with the greatest number of changes observed between postnatal days 3-5. Lipid-soluble cigarette smoke components significantly (P < 0.05) decreased retinoic acid-induced binding and activation of the retinoic acid receptor response element in A549 cells. CONCLUSIONS A murine model of maternal cigarette smoking causes abnormal alveolarization in association with altered retinoic acid pathway element expression in the offspring. An in vitro cell culture model shows that lipid-soluble components of cigarette smoke decrease retinoic acid response element activation. It is feasible that disruption of retinoic acid signaling contributes to the pediatric lung dysfunction caused by maternal smoking.
Collapse
Affiliation(s)
- Sara E Manoli
- Department of Medicine, Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lasala C, Schteingart HF, Arouche N, Bedecarrás P, Grinspon RP, Picard JY, Josso N, di Clemente N, Rey RA. SOX9 and SF1 are involved in cyclic AMP-mediated upregulation of anti-Mullerian gene expression in the testicular prepubertal Sertoli cell line SMAT1. Am J Physiol Endocrinol Metab 2011; 301:E539-47. [PMID: 21693691 DOI: 10.1152/ajpendo.00187.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Sertoli cells, anti-Müllerian hormone (AMH) expression is upregulated by FSH via cyclic AMP (cAMP), although no classical cAMP response elements exist in the AMH promoter. The response to cAMP involves NF-κB and AP2; however, targeted mutagenesis of their binding sites in the AMH promoter do not completely abolish the response. In this work we assessed whether SOX9, SF1, GATA4, and AP1 might represent alternative pathways involved in cAMP-mediated AMH upregulation, using real-time RT-PCR (qPCR), targeted mutagenesis, luciferase assays, and immunocytochemistry in the Sertoli cell line SMAT1. We also explored the signaling cascades potentially involved. In qPCR experiments, Amh, Sox9, Sf1, and Gata4 mRNA levels increased after SMAT1 cells were incubated with cAMP. Blocking PKA abolished the effect of cAMP on Sox9, Sf1, and Gata4 expression, inhibiting PI3K/PKB impaired the effect on Sf1 and Gata4, and reducing MEK1/2 and p38 MAPK activities curtailed Gata4 increase. SOX9 and SF1 translocated to the nucleus after incubation with cAMP. Mutations of the SOX9 or SF1 sites, but not of GAT4 or AP1 sites, precluded the response of a 3,063-bp AMH promoter to cAMP. In conclusion, in the Sertoli cell line SMAT1 cAMP upregulates SOX9, SF1, and GATA4 expression and induces SOX9 and SF1 nuclear translocation mainly through PKA, although other kinases may also participate. SOX9 and SF1 binding to the AMH promoter is essential to increase the activity of the AMH promoter in response to cAMP.
Collapse
Affiliation(s)
- Celina Lasala
- Centro de Investigaciones Endocrinológicas, Hospital de Niños R. Gutiérrez, Gallo, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang L, Tang J, Haines CJ, Feng HL, Lai L, Teng X, Han Y. c-kit and its related genes in spermatogonial differentiation. SPERMATOGENESIS 2011; 1:186-194. [PMID: 22319667 DOI: 10.4161/spmg.1.3.17760] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/13/2011] [Accepted: 08/15/2011] [Indexed: 11/19/2022]
Abstract
Spermatogenesis is the process of production of male gametes from SSCs. The SSCs are the stem cells that differentiate into male gametes in the testis. in the mean time, the Spg are remarkable for their potential multiple trans-differentiations, which make them greatly invaluable for clinical applications. However, the molecular mechanism controlling differentiation of the Spg is still not clear. Among the discovered spermatogenesis-related genes, c-kit seems to be expressed first by the Spgs thus may play a central role in switching on the differentiation process. Expression of Kit and the activation of the Kit/Kitl pathway coincide with the start of differentiation of Spgs. Several genes have been discovered to be related to the Kit/Kitl pathway. in this review, we have summarized the recent discoveries of c-kit and the Kit/Kitl pathway-related genes in the spermatogenic cells during different stages of spermatogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Obstetrics and Gynaecology; Prince of Wales Hospital; The Chinese University of Hong Kong; Hong Kong
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Retinoids are ubiquitous signaling molecules that influence nearly every cell type, exert profound effects on development, and complement cancer chemotherapeutic regimens. All-trans retinoic acid (RA) and other active retinoids are generated from vitamin A (retinol), but key aspects of the signaling pathways required to produce active retinoids remain unclear. Retinoids generated by one cell type can affect nearby cells, so retinoids also function in intercellular communication. RA induces differentiation primarily by binding to RARs, transcription factors that associate with RXRs and bind RAREs in the nucleus. Binding of RA: (1) initiates changes in interactions of RAR/RXRs with co-repressor and co-activator proteins, activating transcription of primary target genes; (2) alters interactions with proteins that induce epigenetic changes; (3) induces transcription of genes encoding transcription factors and signaling proteins that further modify gene expression (e.g., FOX03A, Hoxa1, Sox9, TRAIL, UBE2D3); and (4) results in alterations in estrogen receptor α signaling. Proteins that bind at or near RAREs include Sin3a, N-CoR1, PRAME, Trim24, NRIP1, Ajuba, Zfp423, and MN1/TEL. Interactions among retinoids, RARs/RXRs, and these proteins explain in part the powerful effects of retinoids on stem cell differentiation. Studies of this retinol signaling cascade enhance our ability to understand and regulate stem cell differentiation for therapeutic and scientific purposes. In cancer chemotherapeutic regimens retinoids can promote tumor cell differentiation and/or induce proteins that sensitize tumors to drug combinations. Mechanistic studies of retinoid signaling continue to suggest novel drug targets and will improve therapeutic strategies for cancer and other diseases, such as immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York 10065, USA.
| | | |
Collapse
|
29
|
Gloaguen P, Crépieux P, Heitzler D, Poupon A, Reiter E. Mapping the follicle-stimulating hormone-induced signaling networks. Front Endocrinol (Lausanne) 2011; 2:45. [PMID: 22666216 PMCID: PMC3364461 DOI: 10.3389/fendo.2011.00045] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/14/2011] [Indexed: 01/14/2023] Open
Abstract
Follicle-stimulating hormone (FSH) is a central regulator of male and female reproductive function. Over the last decade, there has been a growing perception of the complexity associated with FSH-induced cellular signaling. It is now clear that the canonical Gs/cAMP/PKA pathway is not the sole mechanism that must be considered in FSH biological actions. In parallel, consistent with the emerging concept of biased agonism, several examples of ligand-mediated selective signaling pathway activation by gonadotropin receptors have been reported. In this context, it is important to gain an integrative view of the signaling pathways induced by FSH and how they interconnect to form a network. In this review, we propose a first attempt at building topological maps of various pathways known to be involved in the FSH-induced signaling network. We discuss the multiple facets of FSH-induced signaling and how they converge to the hormone integrated biological response. Despite of their incompleteness, these maps of the FSH-induced signaling network represent a first step toward gaining a system-level comprehension of this hormone's actions, which may ultimately facilitate the discovery of novel regulatory processes and therapeutic strategies for infertility and non-steroidal contraception.
Collapse
Affiliation(s)
- Pauline Gloaguen
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des ComportementsNouzilly, France
- UMR6175, CNRSNouzilly, France
- Université François RabelaisTours, France
- L’Institut Français du Cheval et de l’ÉquitationNouzilly, France
| | - Pascale Crépieux
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des ComportementsNouzilly, France
- UMR6175, CNRSNouzilly, France
- Université François RabelaisTours, France
- L’Institut Français du Cheval et de l’ÉquitationNouzilly, France
| | - Domitille Heitzler
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des ComportementsNouzilly, France
- UMR6175, CNRSNouzilly, France
- Université François RabelaisTours, France
- L’Institut Français du Cheval et de l’ÉquitationNouzilly, France
| | - Anne Poupon
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des ComportementsNouzilly, France
- UMR6175, CNRSNouzilly, France
- Université François RabelaisTours, France
- L’Institut Français du Cheval et de l’ÉquitationNouzilly, France
| | - Eric Reiter
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des ComportementsNouzilly, France
- UMR6175, CNRSNouzilly, France
- Université François RabelaisTours, France
- L’Institut Français du Cheval et de l’ÉquitationNouzilly, France
- *Correspondence: Eric Reiter, INRA UMR85, CNRS-Université François Rabelais UMR6175, 37380, Nouzilly, France. e-mail:
| |
Collapse
|
30
|
Kogai T, Liu YY, Richter LL, Mody K, Kagechika H, Brent GA. Retinoic acid induces expression of the thyroid hormone transporter, monocarboxylate transporter 8 (Mct8). J Biol Chem 2010; 285:27279-27288. [PMID: 20573951 DOI: 10.1074/jbc.m110.123158] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid (RA) and thyroid hormone are critical for differentiation and organogenesis in the embryo. Mct8 (monocarboxylate transporter 8), expressed predominantly in the brain and placenta, mediates thyroid hormone uptake from the circulation and is required for normal neural development. RA induces differentiation of F9 mouse teratocarcinoma cells toward neurons as well as extraembryonal endoderm. We hypothesized that Mct8 is functionally expressed in F9 cells and induced by RA. All-trans-RA (tRA) and other RA receptor (RAR) agonists dramatically (>300-fold) induced Mct8. tRA treatment significantly increased uptake of triiodothyronine and thyroxine (4.1- and 4.3-fold, respectively), which was abolished by a selective Mct8 inhibitor, bromosulfophthalein. Sequence inspection of the Mct8 promoter region and 5'-rapid amplification of cDNA ends PCR analysis in F9 cells identified 11 transcription start sites and a proximal Sp1 site but no TATA box. tRA significantly enhanced Mct8 promoter activity through a consensus RA-responsive element located 6.6 kilobases upstream of the coding region. A chromatin immunoprecipitation assay demonstrated binding of RAR and retinoid X receptor to the RA response element. The promotion of thyroid hormone uptake through the transcriptional up-regulation of Mct8 by RAR is likely to be important for extraembryonic endoderm development and neural differentiation. This finding demonstrates cross-talk between RA signaling and thyroid hormone signaling in early development at the level of the thyroid hormone transporter.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, and the Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073.
| | - Yan-Yun Liu
- Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, and the Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| | - Laura L Richter
- Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, and the Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| | - Kaizeen Mody
- Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, and the Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Gregory A Brent
- Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, and the Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073.
| |
Collapse
|