1
|
Borreguero CF, Wueest S, Hantel C, Schneider H, Konrad D, Beuschlein F, Spyroglou A. Deoxyguanosine kinase mutation F180S is associated with a lean phenotype in mice. Int J Obes (Lond) 2023; 47:215-223. [PMID: 36709400 PMCID: PMC10023562 DOI: 10.1038/s41366-023-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Deoxyguanosine kinase (DGUOK) deficiency is one of the genetic causes of mitochondrial DNA depletion syndrome (MDDS) in humans, leading to the hepatocerebral or the isolated hepatic form of MDDS. Mouse models are helpful tools for the improvement of understanding of the pathophysiology of diseases and offer the opportunity to examine new therapeutic options. METHODS Herein, we describe the generation and metabolic characterization of a mouse line carrying a homozygous DguokF180S/F180S mutation derived from an N-ethyl-N-nitrosourea-mutagenesis screen. Energy expenditure (EE), oxygen consumption (VO2) and carbon dioxide production (VCO2) were assessed in metabolic cages. LC-MS/MS was used to quantify plasma adrenal steroids. Plasma insulin and leptin levels were quantified with commercially available assay kits. RESULTS Mutant animals displayed significantly lower body weights and reduced inguinal fat pad mass, in comparison to unaffected littermates. Biochemically, they were characterized by significantly lower blood glucose levels, accompanied by significantly lower insulin, total cholesterol, high density lipoprotein and triglyceride levels. They also displayed an almost 2-fold increase in transaminases. Moreover, absolute EE was comparable in mutant and control mice, but EE in mutants was uncoupled from their body weights. Histological examination of inguinal white adipose tissue (WAT) revealed adipocytes with multilocular fat droplets reminiscent of WAT browning. In addition, mRNA and protein expression of Ucp1 was increased. Mutant mice also presented differing mitochondrial DNA content in various tissues and altered metabolic activity in mitochondria, but no further phenotypical or behavioral abnormalities. Preliminary data imply normal survival of DguokF180S/F180S mutant animals. CONCLUSION Taken together, DGUOK mutation F180S leads to a lean phenotype, with lower glucose, insulin, and lipid levels rendering this mouse model not only useful for the study of MDDS forms but also for deciphering mechanisms resulting in a lean phenotype.
Collapse
Affiliation(s)
- Cédric Francis Borreguero
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Constanze Hantel
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Holger Schneider
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland.
| | - Ariadni Spyroglou
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
2
|
Taylor MJ, Ullenbruch MR, Frucci EC, Rege J, Ansorge MS, Gomez-Sanchez CE, Begum S, Laufer E, Breault DT, Rainey WE. Chemogenetic activation of adrenocortical Gq signaling causes hyperaldosteronism and disrupts functional zonation. J Clin Invest 2020; 130:83-93. [PMID: 31738186 DOI: 10.1172/jci127429] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/18/2019] [Indexed: 02/04/2023] Open
Abstract
The mineralocorticoid aldosterone is produced in the adrenal zona glomerulosa (ZG) under the control of the renin-angiotensin II (AngII) system. Primary aldosteronism (PA) results from renin-independent production of aldosterone and is a common cause of hypertension. PA is caused by dysregulated localization of the enzyme aldosterone synthase (Cyp11b2), which is normally restricted to the ZG. Cyp11b2 transcription and aldosterone production are predominantly regulated by AngII activation of the Gq signaling pathway. Here, we report the generation of transgenic mice with Gq-coupled designer receptors exclusively activated by designer drugs (DREADDs) specifically in the adrenal cortex. We show that adrenal-wide ligand activation of Gq DREADD receptors triggered disorganization of adrenal functional zonation, with induction of Cyp11b2 in glucocorticoid-producing zona fasciculata cells. This result was consistent with increased renin-independent aldosterone production and hypertension. All parameters were reversible following termination of DREADD-mediated Gq signaling. These findings demonstrate that Gq signaling is sufficient for adrenocortical aldosterone production and implicate this pathway in the determination of zone-specific steroid production within the adrenal cortex. This transgenic mouse also provides an inducible and reversible model of hyperaldosteronism to investigate PA therapeutics and the mechanisms leading to the damaging effects of aldosterone on the cardiovascular system.
Collapse
Affiliation(s)
- Matthew J Taylor
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew R Ullenbruch
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily C Frucci
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark S Ansorge
- The Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York, USA
| | - Celso E Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center and the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Salma Begum
- Department of Obstetrics, Gynecology and Women's Health, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Edward Laufer
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - David T Breault
- Department of Pediatrics, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Aragao-Santiago L, Gomez-Sanchez CE, Mulatero P, Spyroglou A, Reincke M, Williams TA. Mouse Models of Primary Aldosteronism: From Physiology to Pathophysiology. Endocrinology 2017; 158:4129-4138. [PMID: 29069360 PMCID: PMC5711388 DOI: 10.1210/en.2017-00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/16/2017] [Indexed: 01/08/2023]
Abstract
Primary aldosteronism (PA) is a common form of endocrine hypertension that is characterized by the excessive production of aldosterone relative to suppressed plasma renin levels. PA is usually caused by either a unilateral aldosterone-producing adenoma or bilateral adrenal hyperplasia. Somatic mutations have been identified in several genes that encode ion pumps and channels that may explain the aldosterone excess in over half of aldosterone-producing adenomas, whereas the pathophysiology of bilateral adrenal hyperplasia is largely unknown. A number of mouse models of hyperaldosteronism have been described that recreate some features of the human disorder, although none replicate the genetic basis of human PA. Animal models that reproduce the genotype-phenotype associations of human PA are required to establish the functional mechanisms that underlie the endocrine autonomy and deregulated cell growth of the affected adrenal and for preclinical studies of novel therapeutics. Herein, we discuss the differences in adrenal physiology across species and describe the genetically modified mouse models of PA that have been developed to date.
Collapse
Affiliation(s)
- Leticia Aragao-Santiago
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
| | - Celso E Gomez-Sanchez
- Endocrinology Division, G.V. (Sonny) Montgomery Veterans Affairs Medical Center and University of Mississippi Medical Center
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy
| | - Ariadni Spyroglou
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy
| |
Collapse
|
4
|
Perez-Rivas LG, Rhayem Y, Sabrautzki S, Hantel C, Rathkolb B, Hrabě de Angelis M, Reincke M, Beuschlein F, Spyroglou A. Genetic characterization of a mouse line with primary aldosteronism. J Mol Endocrinol 2017; 58:67-78. [PMID: 27965370 DOI: 10.1530/jme-16-0200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022]
Abstract
In an attempt to define novel genetic loci involved in the pathophysiology of primary aldosteronism, a mutagenesis screen after treatment with the alkylating agent N-ethyl-N-nitrosourea was established for the parameter aldosterone. One of the generated mouse lines with hyperaldosteronism was phenotypically and genetically characterized. This mouse line had high aldosterone levels but normal creatinine and urea values. The steroidogenic enzyme expression levels in the adrenal gland did not differ significantly among phenotypically affected and unaffected mice. Upon exome sequencing, point mutations were identified in seven candidate genes (Sspo, Dguok, Hoxaas2, Clstn3, Atm, Tipin and Mapk6). Subsequently, animals were stratified into wild-type and mutated groups according to their genotype for each of these candidate genes. A correlation of their genotypes with the respective aldosterone, aldosterone-to-renin ratio (ARR), urea and creatinine values as well as steroidogenic enzyme expression levels was performed. Aldosterone values were significantly higher in animals carrying mutations in four different genes (Sspo, Dguok, Hoxaas2 and Clstn3) and associated statistically significant adrenal Cyp11b2 overexpression as well as increased ARR was present only in mice with Sspo mutation. In contrast, mutations of the remaining candidate genes (Atm, Tipin and Mapk6) were associated with lower aldosterone values and lower Hsd3b6 expression levels. In summary, these data demonstrate association between the genes Sspo, Dguok, Hoxaas2 and Clstn3 and hyperaldosteronism. Final proofs for the causative nature of the mutations have to come from knock-out and knock-in experiments.
Collapse
Affiliation(s)
- L G Perez-Rivas
- Medizinische Klinik und Poliklinik IVEndocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| | - Y Rhayem
- Medizinische Klinik und Poliklinik IVEndocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| | - S Sabrautzki
- Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
- Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH), Research Unit Comparative Medicine, Neuherberg, Germany
| | - C Hantel
- Medizinische Klinik und Poliklinik IVEndocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| | - B Rathkolb
- Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
- Member of German Center for Diabetes Research (DZD)Neuherberg, Germany
- Ludwig-Maximilians-Universität MünchenChair for Molecular Animal Breeding and Biotechnology, Gene Center of the München, Germany
| | - M Hrabě de Angelis
- Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
- Member of German Center for Diabetes Research (DZD)Neuherberg, Germany
- Lehrstuhl für Experimentelle GenetikTechnische Universität München, Freising-Weihenstephan, Germany
| | - M Reincke
- Medizinische Klinik und Poliklinik IVEndocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| | - F Beuschlein
- Medizinische Klinik und Poliklinik IVEndocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| | - A Spyroglou
- Medizinische Klinik und Poliklinik IVEndocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| |
Collapse
|
5
|
Spyroglou A, Bozoglu T, Rawal R, De Leonardis F, Sterner C, Boulkroun S, Benecke AG, Monti L, Zennaro MC, Petersen AK, Döring A, Rossi A, Bidlingmaier M, Warth R, Gieger C, Reincke M, Beuschlein F. Diastrophic dysplasia sulfate transporter (SLC26A2) is expressed in the adrenal cortex and regulates aldosterone secretion. Hypertension 2014; 63:1102-9. [PMID: 24591336 DOI: 10.1161/hypertensionaha.113.02504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Elucidation of the molecular mechanisms leading to autonomous aldosterone secretion is a prerequisite to define potential targets and biomarkers in the context of primary aldosteronism. After a genome-wide association study with subjects from the population-based Cooperative Health Research in the Region of Augsburg F4 survey, we observed a highly significant association (P=6.78×10(-11)) between the aldosterone to renin ratio and a locus at 5q32. Hypothesizing that this locus may contain genes of relevance for the pathogenesis of primary aldosteronism, we investigated solute carrier family 26 member 2 (SLC26A2), a protein with known transport activity for sulfate and other cations. Within murine tissues, adrenal glands showed the highest expression levels for SLC26A2, which was significantly downregulated on in vivo stimulation with angiotensin II and potassium. SLC26A2 expression was found to be significantly lower in aldosterone-producing adenomas in comparison with normal adrenal glands. In adrenocortical NCI-H295R cells, specific knockdown of SLC26A2 resulted in a highly significant increase in aldosterone secretion. Concomitantly, expression of steroidogenic enzymes, as well as upstream effectors including transcription factors such as NR4A1, CAMK1, and intracellular Ca(2+) content, was upregulated in knockdown cells. To substantiate further these findings in an SLC26A2 mutant mouse model, aldosterone output proved to be increased in a sex-specific manner. In summary, these findings point toward a possible effect of SLC26A2 in the regulation of aldosterone secretion potentially involved in the pathogenesis of primary aldosteronism.
Collapse
Affiliation(s)
- Ariadni Spyroglou
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstr. 1, D-80336 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Arterial hypertension is a major cardiovascular risk factor that affects between 10 and 40% of the population in industrialized countries. Primary aldosteronism (PA) is the most common form of secondary hypertension with an estimated prevalence of around 10% in referral centers and 4% in a primary care setting. Despite its high prevalence until recently, the underlying genetic and molecular basis of this common disease had remained largely obscure. Over the past decade, a number of insights have been achieved that have relied on in vitro cellular systems, wild-type and genetically modified in vivo models, as well as clinical studies in well-characterized patient populations. This progress has been made possible by a number of independent technical developments including that of specific hormone assays that allow measurement in small sample volumes as well as genetic techniques that enable high-throughput sequencing of a large number of samples. Furthermore, animal models have provided important insights into the physiology of aldosterone regulation that have served as a starting point for investigation of mechanisms involved in autonomous aldosterone secretion. Finally, national and international networks that have built up registries and biobanks have been instrumental in fostering translational research endeavors in PA. Therefore, it is to be expected that in the near future, further pathophysiological mechanisms that result in autonomous aldosterone secretion will be unraveled.
Collapse
Affiliation(s)
- Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, Germany.
| |
Collapse
|