1
|
Sakumoto R. Role of chemokines in regulating luteal and uterine functions in pregnant cows. J Reprod Dev 2024; 70:145-151. [PMID: 38403584 PMCID: PMC11153120 DOI: 10.1262/jrd.2023-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024] Open
Abstract
Pregnancy is intricately regulated by the interactions between various bioactive substances secreted by the conceptus, uterus, and corpus luteum (CL). Interferon-τ, synthesized and secreted by the conceptus, plays a central role in the interaction mechanism of maternal recognition in cows. Chemokines, chemotaxis mediators that are primarily secreted by immune cells, regulate various reproductive responses in various species. Although there are scattered reports on the potential roles of chemokines in the bovine CL and the uterus during the estrous cycle, there is little information on chemokines in these organs during pregnancy. Therefore, in this review, we discuss the possible physiological roles of chemokines in the CL and uterus of pregnant cows, focusing on our recent findings on chemokines and changes in their receptor expression in the CL and endometrium of cows at some stages of pregnancy.
Collapse
Affiliation(s)
- Ryosuke Sakumoto
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
2
|
Ferreira JC, Reis MB, Coelho GDP, Gastaldello GH, Peti APF, Rodrigues DM, Bastos JK, Campo VL, Sorgi CA, Faccioli LH, Gardinassi LG, Tefé-Silva C, Zoccal KF. Baccharin and p-coumaric acid from green propolis mitigate inflammation by modulating the production of cytokines and eicosanoids. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114255. [PMID: 34062248 DOI: 10.1016/j.jep.2021.114255] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Green propolis is produced by Apis mellifera honeybees using Baccharis dracunculifolia D.C. (Asteraceae) as substrate. This Southern Brazilian native plant and green propolis have been used in traditional medicine to treat gastric diseases, inflammation and liver disorders. AIM OF THE STUDY Investigate the effects of baccharin (Bac) or p-coumaric acid (pCA) isolated from B. dracunculifolia D.C. (Asteraceae) over the inflammation induced by lipopolysaccharide (LPS) in vivo. MATERIALS AND METHODS Inflammation was induced by LPS injection into air-pouches in mice, which were subsequently treated with Bac or pCA. Lavage fluid was collected from air pouches for the quantification of cellular influx via microscopy, and quantification of inflammatory mediators via colorimetric methods, ELISA and liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS LPS-induced inflammation increased cellular influx and increased the levels of parameters related to vascular permeability and edema formation, such as nitric oxide (NO) and protein extravasation. Moreover, LPS increased the levels of cytokines and eicosanoids in the air-pouches. Importantly, both Bac and pCA suppressed the infiltration of neutrophils, production of NO and protein extravasation. Notably, the compounds promote differential regulation of cytokine and eicosanoid production. CONCLUSIONS Our results suggest that Bac from green propolis directly affects inflammation by inhibiting the production of cytokines and eicosanoids, while pCA may exert direct, but also indirect effects on inflammation by stimulating the production of regulatory effectors such as interkeukin-10 in vivo.
Collapse
Affiliation(s)
- Juliana C Ferreira
- Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brazil.
| | - Mouzarllem B Reis
- Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brazil.
| | - Giovanna D P Coelho
- Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brazil.
| | | | - Ana Paula F Peti
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Débora M Rodrigues
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Jairo K Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Vanessa L Campo
- Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Carlos A Sorgi
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lúcia H Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Luiz G Gardinassi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil.
| | | | - Karina F Zoccal
- Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Hlavová K, Kudláčková H, Faldyna M. The impact of parturition induction with cloprostenol on immunological parameters in the sow colostrum. Porcine Health Manag 2020; 6:35. [PMID: 33303033 PMCID: PMC7731548 DOI: 10.1186/s40813-020-00174-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Farrowing induction with prostaglandin F2 analogue cloprostenol is commonly used on commercial farms to manage the timing of farrowing. When labour induction is applied, the questions arise about possible side effects of such a hormonal intervention on physiological processes connected with labour and lactation, including colostral immunity. RESULTS In this study, immune cells composition, lysozyme concentration, complement bacteriolytic activity and proinflamatory (GM-CSF2, IL-1β, IL-6, a TNFα) and anti-inflammatory (IL-4, IL-10, TGFβ1 a TGFβ2) cytokines were measured in colostrum samples from sows farrowing naturally (NP) and from sows with farrowing induced using cloprostenol administration on day 113 of gestation (IP). A significantly higher proportion of lymphocytes was found in colostrum of induced sows compared to colostrum of non-induced sows. No significant differences between NP and IP were found in complement activity, in the proportions of granulocytes, macrophages and lymphocyte subpopulations. Lower lysozyme concentration and higher IL-1β, IL-6, TGFβ1 and TNFα concentrations were found in IP sow colostrum compared to colostrum from NP sows. CONCLUSIONS An increased proportion of colostral lymphocytes can positively influence the cellular immunity transmission from sow to her offspring. On the other hand, a lower lysozyme concentration can adversely affect newborn's intestinal immunity, as well as changes in cytokine concentrations can have an adverse effect on newborn piglet intestinal epithelium development and its defence function.
Collapse
Affiliation(s)
- Karolina Hlavová
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Hana Kudláčková
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| |
Collapse
|
4
|
Makowczenko KG, Jastrzebski JP, Szeszko K, Smolinska N, Paukszto L, Dobrzyn K, Kiezun M, Rytelewska E, Kaminska B, Kaminski T. Transcription Analysis of the Chemerin Impact on Gene Expression Profile in the Luteal Cells of Gilts. Genes (Basel) 2020; 11:E651. [PMID: 32545672 PMCID: PMC7349926 DOI: 10.3390/genes11060651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
Chemerin is a recently discovered adipokine that participates in the regulation of many physiological and disorder-related processes in mammals, including metabolism, inflammatory reactions, obesity, and reproduction. We investigated how chemerin affects the transcriptome profile of porcine luteal cells. The luteal cells were acquired from mature gilts. After the in vitro culturing with and without chemerin, the total RNAs were isolated and high-throughput sequencing was performed. Obtained datasets were processed using bioinformatic tools. The study revealed 509 differentially expressed genes under the chemerin influence. Their products take part in many processes, important for the functions of the corpus luteum, such as steroids and prostaglandins synthesis, NF-κB and JAK/STAT signal transducing pathways, and apoptosis. The expression of the CASP3, HSD3B7, IL1B, and PTGS2 genes, due to their important role in the physiology of the corpus luteum, was validated using the quantitative real-time polymerase chain reaction (qPCR) method. The qPCR confirmed the changes of gene expression. Chemerin in physiological concentrations significantly affects the expression of many genes in luteal cells of pigs, which is likely to result in modification of physiological processes related to reproduction.
Collapse
Affiliation(s)
- Karol G. Makowczenko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Jan P. Jastrzebski
- Bioinformatics Core Facility, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (L.P.)
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Lukasz Paukszto
- Bioinformatics Core Facility, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (L.P.)
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (K.S.); (N.S.); (K.D.); (M.K.); (E.R.); (B.K.)
| |
Collapse
|
5
|
Witek KJ, Ziecik AJ, Małysz‐Cymborska I, Andronowska A. The presence of CC chemokines and their aberrant role in the porcine corpus luteum. Reprod Domest Anim 2020; 55:632-646. [DOI: 10.1111/rda.13663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/22/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Krzysztof Jan Witek
- Department of Hormonal Action Mechanisms Institute of Animal Reproduction and Food Research Polish Academy of Sciences Olsztyn Poland
| | - Adam J. Ziecik
- Department of Hormonal Action Mechanisms Institute of Animal Reproduction and Food Research Polish Academy of Sciences Olsztyn Poland
| | - Izabela Małysz‐Cymborska
- Department of Hormonal Action Mechanisms Institute of Animal Reproduction and Food Research Polish Academy of Sciences Olsztyn Poland
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms Institute of Animal Reproduction and Food Research Polish Academy of Sciences Olsztyn Poland
| |
Collapse
|
6
|
Nio-Kobayashi J, Kudo M, Sakuragi N, Iwanaga T, Duncan WC. Loss of luteotropic prostaglandin E plays an important role in the regulation of luteolysis in women. Mol Hum Reprod 2018; 23:271-281. [PMID: 28333263 DOI: 10.1093/molehr/gax011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/02/2017] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Do intraluteal prostaglandins (PG) contribute to luteal regulation in women? SUMMARY ANSWER Prostaglandin E (PGE), which is produced in human granulosa-lutein cells stimulated with luteotropic hCG, exerts similar luteotropic effects to hCG, and the expression of PG synthetic and metabolic enzymes in the human CL is driven toward less PGE but more prostaglandin F (PGF) during luteolysis. WHAT IS KNOWN ALREADY Uterine PGF is a major luteolysin in many non-primate species but not in women. Increases in the PGF synthase, aldo-ketoreductase family one member C3 (AKR1C3), have been observed in the CL of marmoset monkeys during luteolysis. PGE prevents spontaneous or induced luteolysis in domestic animals. STUDY DESIGN, SIZE, DURATION Human CL tissues staged as the early-luteal (n = 6), mid-luteal (n = 6), late-luteal (n = 5) and menstrual (n = 3) phases were obtained at the time of hysterectomy for benign gynecological conditions. Luteinized granulosa cells (LGCs) were purified from follicular fluids obtained from patients undergoing assisted conception. PARTICIPANTS/MATERIALS, SETTING, METHODS Upon collection, one half of the CL was snap-frozen and the other was fixed with formalin and processed for immunohistochemical analysis of a PGE synthase (PTGES). Quantitative RT-PCR was employed to examine changes in the mRNA abundance of PG synthetic and metabolic enzymes, steroidogenic enzymes, and luteolytic molecules in the staged human CL and in human LGCs in vitro treated with hCG, PGE and PGF. A PGE withdrawal experiment was also conducted in order to reveal the effects of the loss of PGE in LGCs. Progesterone concentrations in the culture medium were measured. MAIN RESULTS AND THE ROLE OF CHANCE The key enzyme for PGE synthesis, PTGES mRNA was abundant in the functional CL during the mid-luteal phase (P < 0.01), while mRNA abundance for genes involved in PGF synthesis (AKR1B1 and AKR1C1-3) increased in the CL during the late-luteal phase and menstruation (P < 0.05-0.001). PTGES mRNA expression positively correlated with that of 3β-hydroxysteroid dehydrogenase (HSD3B1; r = 0.7836, P < 0.001), while AKR1C3 expression inversely correlated with that of HSD3B1 (r = -0.7514, P = 0.0012) and PTGES (r = -0.6923, P = 0.0042). PGE exerted similar effects to hCG-promoting genes, such as steroidogenic acute regulatory protein (STAR) and HSD3B1, to produce progesterone and luteotropic PGE, suppress PGF synthetic enzymes and down-regulate luteolytic molecules such as βA- and βB-inhibin subunits (INHBA and INHBB) and bone morphogenetic proteins (BMP2, BMP4 and BMP6). PGE withdrawal resulted in reductions in the enzymes that produce progesterone (STAR; P < 0.001) and PGE (PTGES; P < 0.001), and the capacity to produce PGE decreased, while the capacity to produce PGF increased during the culture. The addition of PGF did not recapitulate the luteolytic effects of PGE withdrawal. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION Changes in mRNA expression of PG synthetic and metabolic enzymes may not represent actual increases in PGF during luteolysis in the CL. The effects of PGF on luteal cells currently remain unclear and the mechanisms responsible for decreases in the synthesis of PGE in vitro and at luteolysis have not been elucidated in detail. WIDER IMPLICATIONS OF THE FINDINGS The results obtained strongly support a luteotropic function of PGE in regulation of the human CL. They suggest that the main PG produced in human luteal tissue changes from PGE to PGF during the maturation and regression of the CL, and the loss of PGE is more important than the effects of PGF during luteolysis in women. This may be accompanied by reduced effects of LH/hCG in luteal cells, particularly decreased activation of cAMP/protein kinase A; however, the underlying mechanisms remain unknown. STUDY FUNDING AND COMPETING INTEREST(S) This study was supported by the Cunningham Trust to WCD, a Postdoctoral Fellowship for Research Abroad from the Japan Society for the Promotion of Science and the Suntory Foundation for Life Sciences to J.N.-K.; W.C.D. is supported by an MRC Centre Grant G1002033 and a Scottish Senior Clinical Fellowship. The authors have nothing to disclose.
Collapse
Affiliation(s)
- Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Masataka Kudo
- Department of Reproductive Endocrinology and Oncology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Noriaki Sakuragi
- Department of Reproductive Endocrinology and Oncology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, EdinburghEH16 4TJ, UK
| |
Collapse
|
7
|
Walusimbi SS, Wetzel LM, Townson DH, Pate JL. Isolation of luteal endothelial cells and functional interactions with T lymphocytes. Reproduction 2017; 153:519-533. [PMID: 28174320 DOI: 10.1530/rep-16-0578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/13/2017] [Accepted: 02/07/2017] [Indexed: 12/23/2022]
Abstract
The objectives of this study were to optimize the isolation of luteal endothelial cells (LEC) and examine their functional interactions with autologous T lymphocytes. Analysis by flow cytometry showed that the purity of LEC isolated by filtration was nearly 90% as indicated by Bandeiraea simplicifolia (BS)-1 lectin binding. LEC expressed mRNA for progesterone receptor (PGR), prostaglandin receptors (PTGFR, PTGER2 and 4, and PTGIR), tumor necrosis factor receptors (TNFRSF1A&B) and interleukin (IL) 1B receptors (IL1R1&2). LEC were pretreated with either vehicle, progesterone (P4; 0-20 µM), prostaglandin (PG) E2 or PGF2α (0-0.2 µM), and further treated with or without TNF and IL1B (50 ng/mL each). LEC were then incubated with autologous T lymphocytes in an adhesion assay. Fewer lymphocytes adhered to LEC after exposure to high compared to low P4 concentrations (cubic response; P < 0.05). In contrast, 0.2 µM PGE2 and PGF2α each increased T lymphocyte adhesion in the absence of cytokines (P < 0.05). LEC induced IL2 receptor alpha (CD25) expression and proliferation of T lymphocytes. In conclusion, filtration is an effective way of isolating large numbers of viable LEC. It is proposed that PGs and P4 modulate the ability of endothelial cells to bind T lymphocytes, potentially regulating extravasation, and that LEC activate T lymphocytes migrating into or resident in the CL.
Collapse
Affiliation(s)
- S S Walusimbi
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - L M Wetzel
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - D H Townson
- Department of Animal and Veterinary SciencesUniversity of Vermont, Burlington, Vermont, USA
| | - J L Pate
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
8
|
Przygrodzka E, Kaczmarek MM, Kaczynski P, Ziecik AJ. Steroid hormones, prostanoids, and angiogenic systems during rescue of the corpus luteum in pigs. Reproduction 2015; 151:135-47. [PMID: 26577025 DOI: 10.1530/rep-15-0332] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023]
Abstract
In order to characterize the transition of the corpora lutea (CL) from acquisition of luteolytic sensitivity to rescue of luteal function: i) the expression of 38 factors associated with steroids, prostanoids, and angiogenic systems and ii) concentrations of the main hormones responsible for maintenance of CL function in cyclic and pregnant pigs were examined. Additionally, the effect of prostaglandin (PG) E2 and F2 α on luteal function during the estrous cycle and pregnancy was evaluated in vitro. Significantly up-regulated gene expression was revealed in CL collected on day 14 of the estrous cycle (CYP19A1, ESR2, PTGS2, HIF1A, and EDN1) and on days 12-14 of pregnancy (SCARB1, PGRMC1, STAR, HSD3B1, NR5A1, PTGFR, PTGER4, and VEGFA). Elevated concentrations of estradiol-17β and PGE2 occurred in CL on days 12 and 14 of pregnancy respectively, while an increased intraluteal PGF2 α content was noted on day 14 of the estrous cycle. Both PGs increased the synthesis of progesterone by cultured luteal slices obtained on day 14 of pregnancy, in contrast to the action of PGF2 α on the corresponding day of the estrous cycle. PGE2 stimulated cAMP production via PTGER2 and PTGER4, while PGF2 α elevated the content of CREB in cultured luteal slices from CL of pregnant pigs. In silico analysis showed that infiltration of lymphocytes and apoptosis of microvascular endothelium were activated in CL on day 12 of the estrous cycle vs pregnancy. Summarizing, an abundance of E2 and PGE2 during pregnancy regulates specific pathways responsible for steroidogenesis, the prostanoid signaling system and angiogenesis during rescue from luteolysis in porcine CL.
Collapse
Affiliation(s)
- E Przygrodzka
- Department of Hormonal Action Mechanisms and Molecular Biology LaboratoryInstitute of Animal Reproduction and Food Research of the Polish Academy of Sciences (IARFR PAS), Tuwima 10, 10-748 Olsztyn, Poland
| | - M M Kaczmarek
- Department of Hormonal Action Mechanisms and Molecular Biology LaboratoryInstitute of Animal Reproduction and Food Research of the Polish Academy of Sciences (IARFR PAS), Tuwima 10, 10-748 Olsztyn, Poland
| | - P Kaczynski
- Department of Hormonal Action Mechanisms and Molecular Biology LaboratoryInstitute of Animal Reproduction and Food Research of the Polish Academy of Sciences (IARFR PAS), Tuwima 10, 10-748 Olsztyn, Poland
| | - A J Ziecik
- Department of Hormonal Action Mechanisms and Molecular Biology LaboratoryInstitute of Animal Reproduction and Food Research of the Polish Academy of Sciences (IARFR PAS), Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
9
|
Induction of chemokines and prostaglandin synthesis pathways in luteinized human granulosa cells: potential role of luteotropin withdrawal and prostaglandin F2α in regression of the human corpus luteum. Reprod Biol 2015; 15:247-56. [PMID: 26679166 DOI: 10.1016/j.repbio.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 01/08/2023]
Abstract
Our objective was to determine the effects of prostaglandin F2α (PGF2α) and withdrawal of luteotropic stimulants (forskolin or hCG) on expression of chemokines and prostaglandin-endoperoxide synthase 2 (PTGS2) in luteinized human granulosa cells. Human granulosa cells were collected from 12 women undergoing oocyte retrieval and were luteinized in vitro with forskolin or hCG. In first experiment, granulosa-lutein cells were treated with PGF2α, the primary luteolytic hormone in most species. In second experiment, granulosa cells that had been luteinized for 8 d had luteotropins withdrawn for 1, 2, or 3 d. Treatment with PGF2α induced mRNA for chemokine (c-x-c motif) ligand 2 (CXCL2) and CXC ligand 8 (CXCL8; also known as interleukin-8) in granulosa cells luteinized for 8 d but not in cells that were only luteinized for 2 d. Similarly, luteinization of human granulosa cells for 8 d with forskolin or hCG followed by withdrawal of luteotropic stimulants, not only decreased P4 production, but also increased mRNA concentrations for CXCL8, CXCL-2 (after forskolin withdrawal), and PTGS2. These results provide evidence for two key steps in differentiation of luteolytic capability in human granulosa cells. During 8 d of luteinization, granulosa cells acquire the ability to respond to luteolytic factors, such as PGF2α, with induction of genes involved in immune function and PG synthesis. Finally, a decline in luteotropic stimuli triggers similar pathways leading to induction of PTGS2 and possibly intraluteal PGF2α production, chemokine expression, leukocyte infiltration and activation, and ultimately luteal regression.
Collapse
|
10
|
Xu C, Liu W, You X, Leimert K, Popowycz K, Fang X, Wood SL, Slater DM, Sun Q, Gu H, Olson DM, Ni X. PGF2α modulates the output of chemokines and pro-inflammatory cytokines in myometrial cells from term pregnant women through divergent signaling pathways. Mol Hum Reprod 2015; 21:603-14. [PMID: 25882540 DOI: 10.1093/molehr/gav018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/08/2015] [Indexed: 02/07/2023] Open
Abstract
Prostaglandin F2α (PGF2α) plays a critical role in the initiation and process of parturition. Since human labor has been described as an inflammatory event, we investigated the role of PGF2α in the inflammatory process using cultured human uterine smooth muscle cells (HUSMCs) isolated from term pregnant women as a model. Using a multiplex assay, HUSMCs treated with PGF2α changed their output of a number of cytokines and chemokines, with a distinct response pattern that differed between HUSMCs isolated from the upper and lower segment region of the uterus. Confirmatory enzyme-linked immunosorbent assays (ELISAs) showed that PGF2α stimulated increased output of interleukin (IL) 1β, IL6, IL8 (CXCL8) and monocyte chemotactic protein-1 (MCP1, also known as chemokine (c-c motif) ligand 2, CCL2) by HUSMCs isolated from both upper and lower uterine segments. In contrast, PGF2α inhibited tumor necrosis factor α (TNFα) release by HUMSCs from the lower uterine segment while the output of TNFα was undetectable in the upper segment. Small interfering (si) RNA mediated knockdown of the PGF2α receptor prevented the changes in cytokine and chemokine output by the HUSMCs. Since the PGF2α receptor (PTGFR) couples via the Gq protein and subsequently activates the phospholipase C (PLC) and protein kinase C (PKC) signaling pathways, we examined the role of these pathways in PGF2α modulation of the cytokines. Inhibition of PLC and PKC reversed the effects of PGF2α. PGF2α activated multiple signaling pathways including extracellular signal-regulated kinases (ERK) 1/2, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), P38, calcineurin/nuclear factor of activated T-cells (NFAT) and NF-κB signaling. Inhibition of ERK reversed PGF2α-induced IL1β, IL6 and CCL2 output, while inhibition of PI3K blocked the effect of PGF2α on IL6, CXCL8 and CCL2 output and inhibition of NF-κB reversed PGF2α-induced IL1β and CCL2 output. NFAT was involved in PGF2α modulation of CCL2 and TNFα output. In conclusion, our results support a role of PGF2α in creating an inflammatory environment during the late stage of human pregnancy.
Collapse
Affiliation(s)
- Chen Xu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Weina Liu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xingji You
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Kelycia Leimert
- Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Krystyn Popowycz
- Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Xin Fang
- Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Stephen L Wood
- Department of Obstetrics and Gynecology, University of Calgary, Calgary T2N1N4, Canada
| | - Donna M Slater
- Department of Obstetrics and Gynecology, University of Calgary, Calgary T2N1N4, Canada Departments of Physiology and Pharmacology, University of Calgary, Calgary T2N1N4, Canada
| | - Qianqian Sun
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hang Gu
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - David M Olson
- Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
11
|
Sakumoto R, Hayashi KG, Hosoe M, Iga K, Kizaki K, Okuda K. Gene expression profiles in the bovine corpus luteum (CL) during the estrous cycle and pregnancy: possible roles of chemokines in regulating CL function during pregnancy. J Reprod Dev 2014; 61:42-8. [PMID: 25382605 PMCID: PMC4354230 DOI: 10.1262/jrd.2014-101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To determine functional differences between the corpus luteum (CL) of the estrous cycle and pregnancy in cows, gene expression profiles were compared using a 15 K bovine oligo DNA microarray. In the pregnant CL at days 20–25, 40–45 and 150–160, the expressions of 138, 265 and 455 genes differed by a factor of > 2-fold (P < 0.05) from their expressions in the cyclic CL (days 10–12 of the estrous cycle). Messenger RNA expressions of chemokines (eotaxin, lymphotactin and ENA-78) and their receptors (CCR3, XCR1 and CXCR2) were validated by quantitative real-time PCR. Transcripts of eotaxin were more abundant in the CL at days 40–45 and 150–160 of pregnancy than in the cyclic CL (P < 0.01). In contrast, the mRNA expressions of lymphotactin, ENA-78 and XCR1 were lower in the CL of pregnancy (P <
0.05). Messenger RNAs of CCR3 and CXCR2 were similarly detected both in the cyclic and pregnant CL. Tissue protein levels of eotaxin were significantly higher in the CL at days 150–160 of pregnancy than in the CL at other stages, whereas the lymphotactin protein levels in the CL at days 20–25 of pregnancy were lower (P < 0.05). Immunohistochemical staining showed that CCR3 was expressed in the luteal cells and that XCR1 was expressed in both the luteal cells and endothelial cells. Collectively, the different gene expression profiles may contribute to functional differences between the cyclic and pregnant CL, and chemokines including eotaxin and lymphotactin may regulate CL function during pregnancy in cows.
Collapse
Affiliation(s)
- Ryosuke Sakumoto
- Animal Physiology Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-0901, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Comparative transcriptomic analysis to identify differentially expressed genes in fat tissue of adult Berkshire and Jeju Native Pig using RNA-seq. Mol Biol Rep 2014; 41:6305-15. [PMID: 25008993 DOI: 10.1007/s11033-014-3513-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Pork is a major source of animal protein for humans. The subcutaneous, intermuscular and the intramuscular fat are the factors responsible for meat quality. RNA-seq is rapidly adopted for the profiling of the transcriptomes in the studies related to gene regulation. The discovery of differentially expressed genes (DEGs) between adult animals of Jeju Native Pig (JNP) and Berkshire breeds are of particular interest for the current study. RNA-seq was used to investigate the transcriptome profiling in the fat tissue. Sequence reads were obtained from Ilumina HiSeq2000 and mapped to the pig genome using Tophat2. Total 153 DEGs were identified and 71 among the annotated genes, have BLAST matches in the non- redundant database. Metabolic, immune response and protein binding are enriched pathways in the fat tissue. In our study, biological adhesion, cellular, developmental and multicellular organismal processes in fat were up-regulated in JNP as compare to Berkshire. Multicellular organismal process, developmental process, embryonic morphogenesis and skeletal system development were the most significantly enriched terms in fat of JNP and Berkshire breeds (p = 1.17E-04, 0.044, 3.47E-04 and 4.48E-04 respectively). COL10A1, COL11A2, PDK4 and PNPLA3 genes responsible for skeletal system morphogenesis and body growth were down regulated in JNP. This study is the first statistical analysis for the detection of DEGs from RNA-seq data generated from fat tissue sample. This analysis can be used as stepping stone to understand the difference in the genetic mechanisms that might influence the identification of novel transcripts, sequence polymorphisms, isoforms and noncoding RNAs.
Collapse
|
13
|
Laursen H, Jensen HE, Leifsson PS, Jensen LK, Christiansen JG, Trebbien R, Nielsen OL. Immunohistochemical detection of interleukin-8 in inflamed porcine tissues. Vet Immunol Immunopathol 2014; 159:97-102. [PMID: 24698104 DOI: 10.1016/j.vetimm.2014.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/16/2014] [Accepted: 01/30/2014] [Indexed: 01/01/2023]
Abstract
The objective of this study was to identify the specific localization of interleukin-8 (IL-8) in cells in situ in a variety of inflammatory processes in different tissues from pigs. Our hypothesis was that IL-8 primarily is a neutrophil related cytokine present in all extravascular neutrophils while expression also occurs in other cell types in response to an inflammatory stimulus. Using IL-8 immunohistochemistry we discovered that neutrophils were the predominant IL-8 positive cell population while epithelial cell types and endothelium of postcapillary venules could be positive when situated in close vicinity of an inflammatory lesion. Furthermore, endothelial cells of newly formed vessels in granulation tissue were positive in some specimens. Some sub-populations of inflammatory neutrophils were, however, IL-8 negative which could reflect some phase of neutrophil swarming.
Collapse
Affiliation(s)
- Henriette Laursen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Henrik E Jensen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Páll S Leifsson
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Louise K Jensen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Johanna G Christiansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Ramona Trebbien
- Virology Section, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870 Frederiksberg C, Denmark
| | - Ole L Nielsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Lack of complete regression of the Day 5 corpus luteum after one or two doses of PGF2α in nonlactating Holstein cows. Theriogenology 2013; 81:389-95. [PMID: 24252637 DOI: 10.1016/j.theriogenology.2013.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 01/03/2023]
Abstract
The early corpus luteum (CL) (before Day 6) does not regress after a single PGF2α treatment. We hypothesized that increasing PGF2α dose or number of treatments would allow regression of the early CL (Day 5). Nonlactating Holstein cows (N = 22) were synchronized using the Ovsynch protocol. On Day 5 (Day 0 = second GnRH treatment), cows were assigned to: (1) control (N = 5): no further treatment; (2) 1PGF (N = 6): one dose of 25 mg PGF2α; (3) 2PGF (N = 5): two doses of 25 mg PGF2α (50 mg) given 8 hours apart (second PGF2α on Day 5 at the same time as the other PGF2α treatments); (4) DPGF (N = 6): double dose of 25 mg PGF2α (50 mg) given on Day 5. Blood samples were collected to monitor progesterone (P4) profiles in two periods. In the first period (0 to 24 hours), there were effects of treatment (P = 0.01), time (P < 0.01), and an interaction of treatment and time (P = 0.02). Group 1PGF versus control was different only at 12 hours (P = 0.02). Cows treated with DPGF were different than control at 4 hours (P = 0.04), 12 hours (P < 0.01), and 24 hours (P < 0.01). Only cows treated with 2PGF had lower P4 than control during the entire period and low P4 (0.37 ± 0.17 ng/mL) at 24 hours, usually indicative of luteolysis. In the second period (Day 5 to 15 of the cycle), there were effects of treatment (P < 0.01), time (P < 0.01), and interaction of treatment and time (P = 0.002). Group 1PGF was not different than control from Day 5 to 13 and P4 was greater than control on Day 14 (P = 0.01) and 15 (P < 0.01). Circulating P4 in DPGF cows was lower than control from Day 7 (P = 0.05) through 12 (P < 0.01). Likewise, there were differences between control and 2PGF from Day 7 to 13, but not on Day 14 and 15. On Day 15, all PGF2α-treated groups had circulating P4 consistent with an active CL. Ultrasound evaluation confirmed that no CL from any group completely regressed during the experiment and no new ovulations occurred to account for functional CL later in cycle. In summary, a double dose of PGF2α (twice on Day 5 or 8 hours apart) can dramatically decrease P4, consistent with classical definitions of luteolysis; however, these CL recover and become fully functional. Thus, the Day 5 CL of mature Holstein cows do not regress even to two doses of PGF2α.
Collapse
|
15
|
Nivet AL, Vigneault C, Blondin P, Sirard MA. Changes in granulosa cells' gene expression associated with increased oocyte competence in bovine. Reproduction 2013; 145:555-65. [PMID: 23564726 DOI: 10.1530/rep-13-0032] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the challenges in mammalian reproduction is to understand the basic physiology of oocyte quality. It is believed that the follicle status is linked to developmental competence of the enclosed oocyte. To explore the link between follicles and competence in cows, previous research at our laboratory has developed an ovarian stimulation protocol that increases and then decreases oocyte quality according to the timing of oocyte recovery post-FSH withdrawal (coasting). Using this protocol, we have obtained the granulosa cells associated with oocytes of different qualities at selected times of coasting. Transcriptome analysis was done with Embryogene microarray slides and validation was performed by real-time PCR. Results show that the major changes in gene expression occurred from 20 to 44 h of coasting, when oocyte quality increases. Secondly, among upregulated genes (20-44 h), 25% were extracellular molecules, highlighting potential granulosa signaling cascades. Principal component analysis identified two patterns: one resembling the competence profile and another associated with follicle growth and atresia. Additionally, three major functional changes were identified: (i) the end of follicle growth (BMPR1B, IGF2, and RELN), involving interactions with the extracellular matrix (TFPI2); angiogenesis (NRP1), including early hypoxia, and potentially oxidative stress (GFPT2, TF, and VNN1) and (ii) apoptosis (KCNJ8) followed by iii) inflammation (ANKRD1). This unique window of analysis indicates a progressive hypoxia during coasting mixed with an increase in apoptosis and inflammation. Potential signaling pathways leading to competence have been identified and will require downstream testing. This preliminary analysis supports the potential role of the follicular differentiation in oocyte quality both during competence increase and decrease phases.
Collapse
Affiliation(s)
- Anne-Laure Nivet
- Département des sciences animales, Pavillon INAF, Faculté des sciences de l'agriculture et de l'alimentation, Centre de recherche en biologie de la reproduction, Université Laval, Quebec, Quebec, Canada G1V 0A6
| | | | | | | |
Collapse
|
16
|
Walusimbi SS, Pate JL. Physiology and Endocrinology Symposium: role of immune cells in the corpus luteum. J Anim Sci 2013; 91:1650-9. [PMID: 23422006 DOI: 10.2527/jas.2012-6179] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The immune system is essential for optimal function of the reproductive system. The corpus luteum (CL) is an endocrine organ that secretes progesterone, which is responsible for regulating the length of the estrous cycle, and for the establishment and maintenance of pregnancy in mammals. This paper reviews literature that addresses 2 areas; i) how immune cells are recruited to the CL, and ii) how immune cells communicate with luteal cells to affect the formation, development, and regression of the CL. Immune cells, primarily recruited to the ovulatory follicle from lymphoid organs after the LH surge, facilitate ovulation and populate the developing CL. During the luteal phase, changes in the population of macrophages, eosinophils, neutrophils, and T lymphocytes occur at critical functional stages of the CL. In addition to their role in facilitating ovulation, immune cells may have an important role in luteal function. Evidence shows that cytokines secreted by immune cells modulate both luteotropic and luteolytic processes. However, the decision to pursue either function may depend on the environment provided by luteal cells. It is suggested that understanding the role immune cells play could lead to identification of new strategies to improve fertility in dairy cattle and other species.
Collapse
Affiliation(s)
- S S Walusimbi
- Center for Reproductive Biology and Health, Department of Animal Science, Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|
17
|
Pate JL, Johnson-Larson CJ, Ottobre JS. Life or death decisions in the corpus luteum. Reprod Domest Anim 2013; 47 Suppl 4:297-303. [PMID: 22827384 DOI: 10.1111/j.1439-0531.2012.02089.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The corpus luteum (CL) is an ephemeral endocrine organ. During its lifespan, it undergoes a period of extremely rapid growth that involves hypertrophy, proliferation and differentiation of the steroidogenic cells, as well as extensive angiogenesis. The growth phase is followed by a period in which remodelling of the tissue ceases, but it engages in unparalleled production of steroids, resulting in extraordinarily high metabolic activity within the tissue. It is during this stage that a critical juncture occurs. In the non-fertile cycle, uterine release of prostaglandin (PG)F(2α) initiates a cascade of events that result in rapid loss of steroidogenesis and destruction of the luteal tissue. Alternatively, if a viable embryo is present, signals are produced that result in rescue of the CL. This review article summarizes the major concepts related to the fate of the CL, with particular focus on recent insights into the mechanisms associated with the ability of PGF(2α) to bring about complete luteolysis. It has become clear that the achievement of luteolysis depends on repeated exposure to PGF(2α) and involves coordinated actions of heterogeneous cell types within the CL. Together, these components of the process bring about not only the loss in progesterone production, but also the rapid demise of the structure itself.
Collapse
Affiliation(s)
- J L Pate
- Department of Animal Science, Pennsylvania State University, University Park, PA, USA.
| | | | | |
Collapse
|