1
|
Wang H, Ma Z, Cheng X, Tuo B, Liu X, Li T. Physiological and Pathophysiological Roles of Ion Transporter-Mediated Metabolism in the Thyroid Gland and in Thyroid Cancer. Onco Targets Ther 2020; 13:12427-12441. [PMID: 33299328 PMCID: PMC7721308 DOI: 10.2147/ott.s280797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer is the most common type of endocrine tumor and has shown an increasing annual incidence, especially among women. Patients with thyroid cancer have a good prognosis, with a high five-year survival rate; however, the recurrence rate and disease status of thyroid cancer remain a burden for patients, which compels us to further elucidate the pathogenesis of this disease. Recently, ion transporters have gradually become a hot topic in the field of thyroid gland biology and cancer research. Additionally, alterations in the metabolic state of tumor cells and protein molecules have gradually become the focus of scientific research. This review focuses on the progress in understanding the physiological and pathophysiological roles of ion transporter-mediated metabolism in both the thyroid gland and thyroid cancer. We also hope to shed light on new targets for the treatment and prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China.,Digestive Disease Institute of Guizhou Province, Zunyi, People's Republic of China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China.,Digestive Disease Institute of Guizhou Province, Zunyi, People's Republic of China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
2
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Xiong Z, Li X, Yang Q. PTTG has a Dual Role of Promotion-Inhibition in the Development of Pituitary Adenomas. Protein Pept Lett 2019; 26:800-818. [PMID: 37020362 DOI: 10.2174/0929866526666190722145449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/22/2022]
Abstract
Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
4
|
Thompson RJ, Fletcher A, Brookes K, Nieto H, Alshahrani MM, Mueller JW, Fine NH, Hodson DJ, Boelaert K, Read ML, Smith VE, McCabe CJ. Dimerization of the Sodium/Iodide Symporter. Thyroid 2019; 29:1485-1498. [PMID: 31310151 PMCID: PMC6797079 DOI: 10.1089/thy.2019.0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: The ability of thyroid follicular epithelial cells to accumulate iodide via the sodium/iodide symporter (NIS) is exploited to successfully treat most thyroid cancers, although a subset of patients lose functional NIS activity and become unresponsive to radioiodide therapy, with poor clinical outcome. Our knowledge of NIS regulation remains limited, however. While numerous membrane proteins are functionally regulated via dimerization, there is little definitive evidence of NIS dimerization, and whether this might impact upon radioiodide uptake and treatment success is entirely unknown. We hypothesized that NIS dimerizes and that dimerization is a prerequisite for iodide uptake. Methods: Coimmunoprecipitation, proximity ligation, and Förster resonance energy transfer (FRET) assays were used to assess NIS:NIS interaction. To identify residues involved in dimerization, a homology model of NIS structure was built based on the crystal structure of the dimeric bacterial protein vSGLT. Results: Abundant cellular NIS dimerization was confirmed in vitro via three discrete methodologies. FRET and proximity ligation assays demonstrated that while NIS can exist as a dimer at the plasma membrane (PM), it is also apparent in other cellular compartments. Homology modeling revealed one key potential site of dimeric interaction, with six residues <3Å apart. In particular, NIS residues Y242, T243, and Q471 were identified as critical to dimerization. Individual mutation of residues Y242 and T243 rendered NIS nonfunctional, while abrogation of Q471 did not impact radioiodide uptake. FRET data show that the putative dimerization interface can tolerate the loss of one, but not two, of these three clustered residues. Conclusions: We show for the first time that NIS dimerizes in vitro, and we identify the key residues via which this happens. We hypothesize that dimerization of NIS is critical to its trafficking to the PM and may therefore represent a new mechanism that would need to be considered in overcoming therapeutic failure in patients with thyroid cancer.
Collapse
Affiliation(s)
- Rebecca J. Thompson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Alice Fletcher
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Katie Brookes
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Hannah Nieto
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Mohammed M. Alshahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Jonathan W. Mueller
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Nicholas H.F. Fine
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - David J. Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Kristien Boelaert
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Martin L. Read
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Vicki E. Smith
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
- Vicki E. Smith, PhD, Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham Health Partners, Birmingham B15 2TT, United Kingdom
| | - Christopher J. McCabe
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
- Address correspondence to: Christopher J. McCabe, PhD, Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham Health Partners, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
5
|
Imruetaicharoenchoke W, Fletcher A, Lu W, Watkins RJ, Modasia B, Poole VL, Nieto HR, Thompson RJ, Boelaert K, Read ML, Smith VE, McCabe CJ. Functional consequences of the first reported mutations of the proto-oncogene PTTG1IP/PBF. Endocr Relat Cancer 2017; 24:459-474. [PMID: 28676500 PMCID: PMC5551380 DOI: 10.1530/erc-16-0340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 12/25/2022]
Abstract
Pituitary tumor-transforming gene 1-binding factor (PTTG1IP; PBF) is a multifunctional glycoprotein, which is overexpressed in a wide range of tumours, and significantly associated with poorer oncological outcomes, such as early tumour recurrence, distant metastasis, extramural vascular invasion and decreased disease-specific survival. PBF transforms NIH 3T3 fibroblasts and induces tumours in nude mice, while mice harbouring transgenic thyroidal PBF expression show hyperplasia and macrofollicular lesions. Our assumption that PBF becomes an oncogene purely through increased expression has been challenged by the recent report of mutations in PBF within the Catalogue of Somatic Mutations in Cancer (COSMIC) database. We therefore sought to determine whether the first 10 PBF missense substitutions in human cancer might be oncogenic. Anisomycin half-life studies revealed that most mutations were associated with reduced protein stability compared to wild-type (WT) PBF. Proliferation assays narrowed our interest to two mutational events which significantly altered cell turnover: C51R and R140W. C51R was mainly confined to the endoplasmic reticulum while R140W was apparent in the Golgi apparatus. Both C51R and R140W lost the capacity to induce cellular migration and significantly reduced cell invasion. Colony formation and soft agar assays demonstrated that, in contrast to WT PBF, both mutants were unable to elicit significant colony formation or anchorage-independent growth. However, C51R and R140W retained the ability to repress radioiodide uptake, a functional hallmark of PBF. Our data reveal new insight into PBF function and confirm that, rather than being oncogenic, mutations in PBF are likely to be passenger effects, with overexpression of PBF the more important aetiological event in human cancer.
Collapse
Affiliation(s)
- W Imruetaicharoenchoke
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Department of SurgeryFaculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - A Fletcher
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - W Lu
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - R J Watkins
- Institute of Cancer and Genomic SciencesUniversity of Birmingham, Birmingham, UK
| | - B Modasia
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - V L Poole
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - H R Nieto
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - R J Thompson
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - K Boelaert
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - M L Read
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - V E Smith
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - C J McCabe
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
6
|
Watkins RJ, Imruetaicharoenchoke W, Read ML, Sharma N, Poole VL, Gentilin E, Bansal S, Bosseboeuf E, Fletcher R, Nieto HR, Mallick U, Hackshaw A, Mehanna H, Boelaert K, Smith VE, McCabe CJ. Pro-invasive Effect of Proto-oncogene PBF Is Modulated by an Interaction with Cortactin. J Clin Endocrinol Metab 2016; 101:4551-4563. [PMID: 27603901 PMCID: PMC5155689 DOI: 10.1210/jc.2016-1932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Metastatic disease is responsible for the majority of endocrine cancer deaths. New therapeutic targets are urgently needed to improve patient survival rates. OBJECTIVE The proto-oncogene PTTG1-binding factor (PBF/PTTG1IP) is overexpressed in multiple endocrine cancers and circumstantially associated with tumor aggressiveness. This study aimed to understand the role of PBF in tumor cell invasion and identify possible routes to inhibit its action. Design, Setting, Patients, and Interventions: Thyroid, breast, and colorectal cells were transfected with PBF and cultured for in vitro analysis. PBF and cortactin (CTTN) expression was determined in differentiated thyroid cancer and The Cancer Genome Atlas RNA-seq data. PRIMARY OUTCOME MEASURE Pro-invasive effects of PBF were evaluated by 2D Boyden chamber, 3D organotypic, and proximity ligation assays. RESULTS Our study identified that PBF and CTTN physically interact and co-localize, and that this occurs at the cell periphery, particularly at the leading edge of migrating cancer cells. Critically, PBF induces potent cellular invasion and migration in thyroid and breast cancer cells, which is entirely abrogated in the absence of CTTN. Importantly, we found that CTTN is over-expressed in differentiated thyroid cancer, particularly in patients with regional lymph node metastasis, which significantly correlates with elevated PBF expression. Mutation of PBF (Y174A) or pharmacological intervention modulates the PBF: CTTN interaction and attenuates the invasive properties of cancer cells. CONCLUSION Our results demonstrate a unique role for PBF in regulating CTTN function to promote endocrine cell invasion and migration, as well as identify a new targetable interaction to block tumor cell movement.
Collapse
Affiliation(s)
- Rachel J Watkins
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Waraporn Imruetaicharoenchoke
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Martin L Read
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Neil Sharma
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vikki L Poole
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Erica Gentilin
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sukhchain Bansal
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Emy Bosseboeuf
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Rachel Fletcher
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hannah R Nieto
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ujjal Mallick
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Allan Hackshaw
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hisham Mehanna
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kristien Boelaert
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vicki E Smith
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Christopher J McCabe
- Institute of Metabolism and Systems Research (R.J.W., W.I., M.L.R., N.S., V.L.P., S.B., R.F., H.R.N., K.B., V.E.S., C.J.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Surgery, Faculty of Medicine (W.I.), Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Section of Endocrinology and Internal Medicine (E.G.), University of Ferrara, 44121 Ferrara, Italy; STIM Laboratory (E.B.), University of Poitiers, 86073 Poitiers Cedex 9, France; Northern Centre for Cancer Care (U.M.), Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Cancer Research United Kingdom & UCL Cancer Trials Centre (A.H.), University College London, London WC1E 6BT, United Kingdom; and Institute of Cancer and Genomic Sciences (H.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
7
|
Boelaert K. WOMEN IN CANCER PROFILE: From bedside to bench and back: my journey in thyroid disease. Endocr Relat Cancer 2016; 23:P9-P13. [PMID: 27633515 DOI: 10.1530/erc-16-0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Kristien Boelaert
- Reader in EndocrinologyInstitute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
8
|
Abstract
The cellular influx and efflux of thyroid hormones are facilitated by transmembrane protein transporters. Of these transporters, monocarboxylate transporter 8 (MCT8) is the only one specific for the transport of thyroid hormones and some of their derivatives. Mutations in SLC16A2, the gene that encodes MCT8, lead to an X-linked syndrome with severe neurological impairment and altered concentrations of thyroid hormones. Histopathological analysis of brain tissue from patients who have impaired MCT8 function indicates that brain lesions start prenatally, and are most probably the result of cerebral hypothyroidism. A Slc16a2 knockout mouse model has revealed that Mct8 is an important mediator of thyroid hormone transport, especially T3, through the blood-brain barrier. However, unlike humans with an MCT8 deficiency, these mice do not have neurological impairment. One explanation for this discrepancy could be differences in expression of the T4 transporter OATP1C1 in the blood-brain barrier; OATP1C1 is more abundant in rodents than in primates and permits the passage of T4 in the absence of T3 transport, thus preventing full cerebral hypothyroidism. In this Review, we discuss the relevance of thyroid hormone transporters in health and disease, with a particular focus on the pathophysiology of MCT8 mutations.
Collapse
Affiliation(s)
- Juan Bernal
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Beatriz Morte
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
9
|
Abstract
Congenital hypothyroidism (CH) is the most common congenital endocrine disorder. The early treatment of CH patients has successfully improved the prognosis and management of this disorder. Optimal treatment and management throughout the patient's life, beginning in the neonatal period, are required to ensure long-term health. Affected patients should be offered assessments of associated medical conditions and provided with accurate information about their condition throughout their lives, but particularly during the transition from pediatric to adult services. This review provides a summary of current knowledge about the long-term outcomes of these patients and appropriate management into early adulthood. We carried out a systematic search of the Medline database to identify relevant articles. Despite major improvements in prognosis, the impact of CH is clearly not uniform, and management should take into account a broader range of relevant indicators, including CH severity, associated comorbid conditions and the adequacy of treatment during childhood and adulthood. The early diagnosis and management of associated medical conditions, and better educational strategies to improve compliance with treatment, should improve the long-term prognosis. Further studies are required to explore changes with aging.
Collapse
Affiliation(s)
- Juliane Léger
- Assistance Publique-Hôpitaux de ParisHôpital Robert Debré, Service d'Endocrinologie Diabétologie Pédiatrique, Centre de Référence des Maladies Endocriniennes Rares de la Croissance, F-75019 Paris, FranceUniversité Paris DiderotSorbonne Paris Cité, F-75019 Paris, FranceInstitut National de la Santé et de la Recherche Médicale (Inserm)Unité 1141, DHU Protect, F-75019 Paris, France Assistance Publique-Hôpitaux de ParisHôpital Robert Debré, Service d'Endocrinologie Diabétologie Pédiatrique, Centre de Référence des Maladies Endocriniennes Rares de la Croissance, F-75019 Paris, FranceUniversité Paris DiderotSorbonne Paris Cité, F-75019 Paris, FranceInstitut National de la Santé et de la Recherche Médicale (Inserm)Unité 1141, DHU Protect, F-75019 Paris, France Assistance Publique-Hôpitaux de ParisHôpital Robert Debré, Service d'Endocrinologie Diabétologie Pédiatrique, Centre de Référence des Maladies Endocriniennes Rares de la Croissance, F-75019 Paris, FranceUniversité Paris DiderotSorbonne Paris Cité, F-75019 Paris, FranceInstitut National de la Santé et de la Recherche Médicale (Inserm)Unité 1141, DHU Protect, F-75019 Paris, France
| |
Collapse
|
10
|
Fischer J, Kleinau G, Müller A, Kühnen P, Zwanziger D, Kinne A, Rehders M, Moeller LC, Führer D, Grüters A, Krude H, Brix K, Biebermann H. Modulation of monocarboxylate transporter 8 oligomerization by specific pathogenic mutations. J Mol Endocrinol 2015; 54:39-50. [PMID: 25527620 DOI: 10.1530/jme-14-0272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The monocarboxylate transporter 8 (MCT8) is a member of the major facilitator superfamily (MFS). These membrane-spanning proteins facilitate translocation of a variety of substrates, MCT8 specifically transports iodothyronines. Mutations in MCT8 are the underlying cause of severe X-linked psychomotor retardation. At the molecular level, such mutations led to deficiencies in substrate translocation due to reduced cell-surface expression, impaired substrate binding, or decreased substrate translocation capabilities. However, the causal relationships between genotypes, molecular features of mutated MCT8, and patient characteristics have not yet been comprehensively deciphered. We investigated the relationship between pathogenic mutants of MCT8 and their capacity to form dimers (presumably oligomeric structures) as a potential regulatory parameter of the transport function of MCT8. Fourteen pathogenic variants of MCT8 were investigated in vitro with respect to their capacity to form oligomers. Particular mutations close to the substrate translocation channel (S194F, A224T, L434W, and R445C) were found to inhibit dimerization of MCT8. This finding is in contrast to those for other transporters or transmembrane proteins, in which substitutions predominantly at the outer-surface inhibit oligomerization. Moreover, specific mutations of MCT8 located in transmembrane helix 2 (del230F, V235M, and ins236V) increased the capacity of MCT8 variants to dimerize. We analyzed the localization of MCT8 dimers in a cellular context, demonstrating differences in MCT8 dimer formation and distribution. In summary, our results add a new link between the functions (substrate transport) and protein organization (dimerization) of MCT8, and might be of relevance for other members of the MFS. Finally, the findings are discussed in relationship to functional data combined with structural-mechanistical insights into MCT8.
Collapse
Affiliation(s)
- Jana Fischer
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Anne Müller
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Peter Kühnen
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Denise Zwanziger
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Anita Kinne
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Maren Rehders
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Lars C Moeller
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Dagmar Führer
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Annette Grüters
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Heiko Krude
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Klaudia Brix
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| |
Collapse
|
11
|
Read ML, Seed RI, Modasia B, Kwan PPK, Sharma N, Smith VE, Watkins RJ, Bansal S, Gagliano T, Stratford AL, Ismail T, Wakelam MJO, Kim DS, Ward ST, Boelaert K, Franklyn JA, Turnell AS, McCabe CJ. The proto-oncogene PBF binds p53 and is associated with prognostic features in colorectal cancer. Mol Carcinog 2014; 55:15-26. [PMID: 25408419 DOI: 10.1002/mc.22254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/08/2014] [Accepted: 10/22/2014] [Indexed: 12/20/2022]
Abstract
The PTTG1-binding factor (PBF) is a transforming gene capable of eliciting tumor formation in xenograft models. However, the precise role of PBF in tumorigenesis and its prognostic value as a cancer biomarker remain largely uncharacterised, particularly in malignancies outside the thyroid. Here, we provide the first evidence that PBF represents a promising prognostic marker in colorectal cancer. Examination of a total of 39 patients demonstrated higher PBF expression at both the mRNA (P = 0.009) and protein (P < 0.0001) level in colorectal tumors compared to matched normal tissue. Critically, PBF was most abundant in colorectal tumors associated with Extramural Vascular Invasion (EMVI), increased genetic instability (GI) and somatic TP53 mutations, all features linked with recurrence and poorer patient survival. We further demonstrate by glutathione-S-transferase (GST) pull-down and coimmunoprecipitation that PBF binds to the tumor suppressor protein p53, as well as to p53 mutants (Δ126-132, M133K, V197E, G245D, I255F and R273C) identified in the colorectal tumors. Importantly, overexpression of PBF in colorectal HCT116 cells interfered with the transcriptional activity of p53-responsive genes such as mdm2, p21 and sfn. Diminished p53 stability (> 90%; P < 0.01) was also evident with a concurrent increase in ubiquitinated p53. Human colorectal tumors with wild-type TP53 and high PBF expression also had low p53 protein levels (P < 0.05), further emphasizing a putative interaction between these genes in vivo. Overall, these results demonstrate an emerging role for PBF in colorectal tumorigenesis through regulating p53 activity, with implications for PBF as a prognostic indicator for invasive tumors.
Collapse
Affiliation(s)
- Martin L Read
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Robert I Seed
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Bhavika Modasia
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Perkin P K Kwan
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Neil Sharma
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Vicki E Smith
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Rachel J Watkins
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Sukhchain Bansal
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | | | - Anna L Stratford
- Department of Pediatrics, University of British Columbia, Canada
| | - Tariq Ismail
- School of Cancer Sciences, University of Birmingham, UK
| | | | - Dae S Kim
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Stephen T Ward
- Centre for Liver Research and NIHR Centre for Biomedical Research Unit, University of Birmingham, UK
| | - Kristien Boelaert
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Jayne A Franklyn
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | | | | |
Collapse
|
12
|
Read ML, Seed RI, Fong JCW, Modasia B, Ryan GA, Watkins RJ, Gagliano T, Smith VE, Stratford AL, Kwan PK, Sharma N, Dixon OM, Watkinson JC, Boelaert K, Franklyn JA, Turnell AS, McCabe CJ. The PTTG1-binding factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells. Endocrinology 2014; 155:1222-34. [PMID: 24506068 PMCID: PMC4759943 DOI: 10.1210/en.2013-1646] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The PTTG1-binding factor (PBF/PTTG1IP) has an emerging repertoire of roles, especially in thyroid biology, and functions as a protooncogene. High PBF expression is independently associated with poor prognosis and lower disease-specific survival in human thyroid cancer. However, the precise role of PBF in thyroid tumorigenesis is unclear. Here, we present extensive evidence demonstrating that PBF is a novel regulator of p53, a tumor suppressor protein with a key role in maintaining genetic stability, which is infrequently mutated in differentiated thyroid cancer. By coimmunoprecipitation and proximity-ligation assays, we show that PBF binds specifically to p53 in thyroid cells and significantly represses transactivation of responsive promoters. Further, we identify that PBF decreases p53 stability by enhancing ubiquitination, which appears dependent on the E3 ligase activity of Mdm2. Impaired p53 function was evident in a transgenic mouse model with thyroid-specific PBF overexpression (transgenic PBF mice), which had significantly increased genetic instability as indicated by fluorescent inter simple sequence repeat-PCR analysis. Consistent with this, approximately 40% of all DNA repair genes examined were repressed in transgenic PBF primary cultures, including genes with critical roles in maintaining genomic integrity such as Mgmt, Rad51, and Xrcc3. Our data also revealed that PBF induction resulted in up-regulation of the E2 enzyme Rad6 in murine thyrocytes and was associated with Rad6 expression in human thyroid tumors. Overall, this work provides novel insights into the role of the protooncogene PBF as a negative regulator of p53 function in thyroid tumorigenesis, in which PBF is generally overexpressed and p53 mutations are rare compared with other tumor types.
Collapse
Affiliation(s)
- Martin L Read
- School of Clinical and Experimental Medicine (M.L.R., R.I.S., J.C.W.F., B.M., G.A.R., R.J.W., V.E.S., P.K.K., N.S., O.M.D., K.B., J.A.F., C.J.M.) and School of Cancer Sciences (A.S.T.), University of Birmingham, Birmingham, United Kingdom; Department of Medical Sciences (T.G.), University of Ferrara, Ferrara, Italy; Department of Pediatrics (A.L.S.), University of British Columbia, Vancouver, British Columbia, Canada; and University Hospitals Birmingham National Health Service Foundation Trust (J.C.W.), Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Müller J, Mayerl S, Visser TJ, Darras VM, Boelen A, Frappart L, Mariotta L, Verrey F, Heuer H. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency. Endocrinology 2014; 155:315-25. [PMID: 24248460 DOI: 10.1210/en.2013-1800] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The monocarboxylate transporter Mct10 (Slc16a10; T-type amino acid transporter) facilitates the cellular transport of thyroid hormone (TH) and shows an overlapping expression with the well-established TH transporter Mct8. Because Mct8 deficiency is associated with distinct tissue-specific alterations in TH transport and metabolism, we speculated that Mct10 inactivation may compromise the tissue-specific TH homeostasis as well. However, analysis of Mct10 knockout (ko) mice revealed normal serum TH levels and tissue TH content in contrast to Mct8 ko mice that are characterized by high serum T3, low serum T4, decreased brain TH content, and increased tissue TH concentrations in the liver, kidneys, and thyroid gland. Surprisingly, mice deficient in both TH transporters (Mct10/Mct8 double knockout [dko] mice) showed normal serum T4 levels in the presence of elevated serum T3, indicating that the additional inactivation of Mct10 partially rescues the phenotype of Mct8 ko mice. As a consequence of the normal serum T4, brain T4 content and hypothalamic TRH expression were found to be normalized in the Mct10/Mct8 dko mice. In contrast, the hyperthyroid situation in liver, kidneys, and thyroid gland of Mct8 ko mice was even more severe in Mct10/Mct8 dko animals, suggesting that in these organs, both transporters contribute to the TH efflux. In summary, our data indicate that Mct10 indeed participates in tissue-specific TH transport and also contributes to the generation of the unusual serum TH profile characteristic for Mct8 deficiency.
Collapse
Affiliation(s)
- Julia Müller
- Leibniz Institute for Age Research/Fritz Lipmann Institute (J.M., S.M., L.F., H.H.), Jena, Germany; Department of Internal Medicine (T.J.V.), Erasmus Medical Center, Rotterdam, The Netherlands; Laboratory of Comparative Endocrinology (V.M.D.), Biology Department, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Endocrinology and Metabolism (A.B.), Academic Medical Center, Amsterdam, The Netherlands; Institute of Physiology and Zürich Center for Integrative Human Physiology (L.M., F.V.), University of Zürich, Zürich, Switzerland; and Leibniz Institute for Environmental Medicine (H.H.), Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fu J, Refetoff S, Dumitrescu AM. Inherited defects of thyroid hormone-cell-membrane transport: review of recent findings. Curr Opin Endocrinol Diabetes Obes 2013; 20:434-40. [PMID: 23974772 PMCID: PMC4061907 DOI: 10.1097/01.med.0000432531.03233.ad] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the most significant findings over the last year regarding human and animal models deficient in thyroid hormone cell-membrane transporters (THCMTs). Although several THCMTs have been modelled in genetically engineered mice, the only THCMT defect known in humans is that caused by mutations in the monocarboxylate transporter 8 (MCT8) gene. RECENT FINDINGS The importance of several amino acid residues has been assessed in vitro to further our understanding on the structure-function of the MCT8. The administration of the thyromimetic compound, diiodothyropropionic acid, has been tested in patients with MCT8 gene mutations, following studies of its use in mice. Another thyroid hormone analogue, 3,3',5,5'-tetraiodothyroacetic acid, was tested in Mct8-deficient mice. The phenotypes of L-type aminoacid transporter 2 and organic anion transporting polypeptide 1C1 deficiencies have been studied in mouse models. Mct8/organic anion transporting polypeptide 1C1 double knockout mice have been shown to manifest neurodevelopmental deficits. Zebrafish is emerging as another vertebrate model that may be useful to study the role of Mct8 in brain development. SUMMARY Studies on the pathogenesis and therapy of MCT8 deficiency are in progress, and new vertebrate models that are suitable to study the neurological consequences of the syndrome are being explored.
Collapse
Affiliation(s)
- Jiao Fu
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Samuel Refetoff
- Departments of Medicine, Pediatrics and Genetics, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
15
|
Ock S, Ahn J, Lee SH, Kang H, Offermanns S, Ahn HY, Jo YS, Shong M, Cho BY, Jo D, Abel ED, Lee TJ, Park WJ, Lee IK, Kim J. IGF-1 receptor deficiency in thyrocytes impairs thyroid hormone secretion and completely inhibits TSH-stimulated goiter. FASEB J 2013; 27:4899-908. [PMID: 23982142 DOI: 10.1096/fj.13-231381] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although thyroid-stimulating hormone (TSH) is known to be a major regulator of thyroid hormone biosynthesis and thyroid growth, insulin-like growth factor 1 (IGF-1) is required for mediating thyrocyte growth in concert with TSH in vitro. We generated mice with thyrocyte-selective ablation of IGF-1 receptor (TIGF1RKO) to explore the role of IGF-1 receptor signaling on thyroid function and growth. In 5-wk-old TIGF1RKO mice, serum thyroxine (T4) concentrations were decreased by 30% in concert with a 43% down-regulation of the monocarboxylate transporter 8 (MCT8), which is involved in T4 secretion. Despite a 3.5-fold increase in circulating concentrations of TSH, thyroid architecture and size were normal. Furthermore, thyrocyte area was increased by 40% in WT thyroids after 10 d TSH injection, but this effect was absent in TSH-injected TIGF1RKO mice. WT mice treated with methimazole and sodium perchlorate for 2 or 6 wk exhibited pronounced goiter development (2.0 and 5.4-fold, respectively), but in TIGF1RKO mice, goiter development was completely abrogated. These data reveal an essential role for IGF-1 receptor signaling in the regulation of thyroid function and TSH-stimulated goitrogenesis.
Collapse
Affiliation(s)
- Sangmi Ock
- 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University, 224-1 Heuk Seok-dong, Dongjak-ku Seoul 156-755, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Smith VE, Sharma N, Watkins RJ, Read ML, Ryan GA, Kwan PP, Martin A, Watkinson JC, Boelaert K, Franklyn JA, McCabe CJ. Manipulation of PBF/PTTG1IP phosphorylation status; a potential new therapeutic strategy for improving radioiodine uptake in thyroid and other tumors. J Clin Endocrinol Metab 2013; 98:2876-86. [PMID: 23678037 PMCID: PMC4207948 DOI: 10.1210/jc.2012-3640] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The clinical effectiveness of ablative radioiodine treatment of thyroid tumors is limited by the availability of the sodium iodide symporter (NIS) at the plasma membrane (PM) for uptake of ¹³¹I. A significant proportion of well-differentiated thyroid tumors are unable to concentrate sufficient radioiodine for effective therapy, and in other tumor models such as breast tumors, where radioiodine uptake would be an attractive therapeutic option, uptake is insufficient. OBJECTIVE Pituitary tumor-transforming gene-binding factor (PBF; PTTG1IP) is overexpressed in multiple cancers and significantly decreases NIS expression at the PM. The goal of this study was to identify a method by which PBF repression of NIS may be overcome in human tumors. RESULTS Here, we identify PBF as a tyrosine phosphoprotein that specifically binds the proto-oncogene tyrosine protein kinase Src in mass spectrometry, glutathione S-transferase pulldown and coimmunoprecipitation assays. Src induction leads to phosphorylation at PBF residue Y174. Abrogation of this residue results in PM retention and a markedly reduced ability to bind NIS. The Src inhibitor PP1 inhibits PBF phosphorylation in multiple cell lines in vitro, including human primary thyroid cells. Of direct clinical importance to the treatment of thyroid cancer, PP1 stimulates iodide uptake by transfected NIS in TPC1 thyroid carcinoma cells and entirely overcomes PBF repression of iodide uptake in human primary thyroid cells. CONCLUSIONS We propose that targeting PBF phosphorylation at residue Y174 via tyrosine kinase inhibitors may be a novel therapeutic strategy to enhance the efficacy of ablative radioiodine treatment in thyroid and other endocrine and endocrine-related tumors.
Collapse
Affiliation(s)
- V E Smith
- School of Clinical and Experimental Medicine, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chapel A, Kieffer-Jaquinod S, Sagné C, Verdon Q, Ivaldi C, Mellal M, Thirion J, Jadot M, Bruley C, Garin J, Gasnier B, Journet A. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol Cell Proteomics 2013; 12:1572-88. [PMID: 23436907 PMCID: PMC3675815 DOI: 10.1074/mcp.m112.021980] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 02/01/2013] [Indexed: 12/22/2022] Open
Abstract
Lysosomes are membrane-bound endocytic organelles that play a major role in degrading cell macromolecules and recycling their building blocks. A comprehensive knowledge of the lysosome function requires an extensive description of its content, an issue partially addressed by previous proteomic analyses. However, the proteins underlying many lysosomal membrane functions, including numerous membrane transporters, remain unidentified. We performed a comparative, semi-quantitative proteomic analysis of rat liver lysosome-enriched and lysosome-nonenriched membranes and used spectral counts to evaluate the relative abundance of proteins. Among a total of 2,385 identified proteins, 734 proteins were significantly enriched in the lysosomal fraction, including 207 proteins already known or predicted as endo-lysosomal and 94 proteins without any known or predicted subcellular localization. The remaining 433 proteins had been previously assigned to other subcellular compartments but may in fact reside on lysosomes either predominantly or as a secondary location. Many membrane-associated complexes implicated in diverse processes such as degradation, membrane trafficking, lysosome biogenesis, lysosome acidification, signaling, and nutrient sensing were enriched in the lysosomal fraction. They were identified to an unprecedented extent as most, if not all, of their subunits were found and retained by our screen. Numerous transporters were also identified, including 46 novel potentially lysosomal proteins. We expressed 12 candidates in HeLa cells and observed that most of them colocalized with the lysosomal marker LAMP1, thus confirming their lysosomal residency. This list of candidate lysosomal proteins substantially increases our knowledge of the lysosomal membrane and provides a basis for further characterization of lysosomal functions.
Collapse
Affiliation(s)
- Agnès Chapel
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Sylvie Kieffer-Jaquinod
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Corinne Sagné
- the ‖Université Paris Descartes, Sorbonne Paris Cité, CNRS, UMR 8192, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75006 Paris, France
| | - Quentin Verdon
- the ‖Université Paris Descartes, Sorbonne Paris Cité, CNRS, UMR 8192, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75006 Paris, France
- §§Graduate School ED 419, Université Paris-Sud 11, Hôpital Bicêtre, F-94276 Le Kremlin Bicêtre France, and
| | - Corinne Ivaldi
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Mourad Mellal
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Jaqueline Thirion
- the **Unité de Recherche en Physiologie Moléculaire, Namur Research Institute for Life Sciences, University of Namur (FUNDP), 61, Rue de Bruxelles B,-5000, Namur, Belgium
| | - Michel Jadot
- the **Unité de Recherche en Physiologie Moléculaire, Namur Research Institute for Life Sciences, University of Namur (FUNDP), 61, Rue de Bruxelles B,-5000, Namur, Belgium
| | - Christophe Bruley
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Jérôme Garin
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Bruno Gasnier
- the ‖Université Paris Descartes, Sorbonne Paris Cité, CNRS, UMR 8192, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75006 Paris, France
| | - Agnès Journet
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| |
Collapse
|
18
|
Kersseboom S, Kremers GJ, Friesema ECH, Visser WE, Klootwijk W, Peeters RP, Visser TJ. Mutations in MCT8 in patients with Allan-Herndon-Dudley-syndrome affecting its cellular distribution. Mol Endocrinol 2013; 27:801-13. [PMID: 23550058 DOI: 10.1210/me.2012-1356] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Monocarboxylate transporter 8 (MCT8) is a thyroid hormone (TH)-specific transporter. Mutations in the MCT8 gene are associated with Allan-Herndon-Dudley Syndrome (AHDS), consisting of severe psychomotor retardation and disturbed TH parameters. To study the functional consequences of different MCT8 mutations in detail, we combined functional analysis in different cell types with live-cell imaging of the cellular distribution of seven mutations that we identified in patients with AHDS. We used two cell models to study the mutations in vitro: 1) transiently transfected COS1 and JEG3 cells, and 2) stably transfected Flp-in 293 cells expressing a MCT8-cyan fluorescent protein construct. All seven mutants were expressed at the protein level and showed a defect in T3 and T4 transport in uptake and metabolism studies. Three mutants (G282C, P537L, and G558D) had residual uptake activity in Flp-in 293 and COS1 cells, but not in JEG3 cells. Four mutants (G221R, P321L, D453V, P537L) were expressed at the plasma membrane. The mobility in the plasma membrane of P537L was similar to WT, but the mobility of P321L was altered. The other mutants studied (insV236, G282C, G558D) were predominantly localized in the endoplasmic reticulum. In essence, loss of function by MCT8 mutations can be divided in two groups: mutations that result in partial or complete loss of transport activity (G221R, P321L, D453V, P537L) and mutations that mainly disturb protein expression and trafficking (insV236, G282C, G558D). The cell type-dependent results suggest that MCT8 mutations in AHDS patients may have tissue-specific effects on TH transport probably caused by tissue-specific expression of yet unknown MCT8-interacting proteins.
Collapse
Affiliation(s)
- Simone Kersseboom
- Department of Internal Medicine, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|