1
|
Lin X, Tong X, Zhang Y, Gu W, Huang Q, Zhang Y, Zhuo F, Zhao F, Jin X, Li C, Huang D, Zhang S, Dai Y. Decreased Expression of EZH2 in Granulosa Cells Contributes to Endometriosis-Associated Infertility by Targeting IL-1R2. Endocrinology 2022; 164:6916877. [PMID: 36524678 PMCID: PMC9825353 DOI: 10.1210/endocr/bqac210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
The mechanism by which endometriosis, a common gynecological disease characterized by chronic pelvic pain and infertility, causes infertility remains elusive. Luteinized unruptured follicle syndrome, the most common type of ovulatory dysfunction, is a cause of endometriosis-associated infertility involving reduced numbers of retrieved and mature oocytes. Ovulation is controlled by luteinizing hormone and paracrine signals produced within the follicle microenvironment. Generally, interleukin (IL)-1β is elevated in endometriosis follicular fluid, whereby it amplifies ovulation signals by activating extracellular-regulated kinase 1/2 and CCAAT/enhancer binding protein β pathways. However, this amplification of ovulation by IL-1β does not occur in patients with endometriosis. To illuminate the mechanism of ovulatory dysfunction in endometriosis, we analyzed the effect of oxidative stress and IL-1β expression on endometriosis follicles. We found that oxidative stress decreased EZH2 expression and reduced H3K27Me3 levels in endometriosis ovarian granulosa cells (GCs). Selective Ezh2 depletion in mice ovarian GCs reduced fertility by disturbing cumulus-oocyte complex expansion and reducing epidermal growth factor-like factor expression. Gene expression and H3K27Me3 ChIP-sequencing (ChIP-Seq) of GCs revealed IL-1 receptor 2 (IL-1R2), a high-affinity IL-1β-receptor that suppresses IL-1β-mediated inflammatory cascades during ovulation, as a crucial target gene of the EZH2-H3K27Me3 axis. Moreover, IL-1β addition did not restore ovulation upon Ezh2 knockdown, indicating a vital function of IL-1R2 in endometriosis. Thus, our findings show that reducing EZH2 and H3K27Me3 in GCs suppressed ovulatory signals by increasing IL-1R2 expression, which may ultimately contribute to endometriosis-associated infertility.
Collapse
Affiliation(s)
| | | | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Weijia Gu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
| | - Qianmeng Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 Xueyuan WestRoad, Lucheng District, Wenzhou 325000, China
| | - Yi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
| | - Feng Zhuo
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Fanxuan Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Dong Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Songying Zhang
- Correspondence: Yongdong Dai, PhD, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd, Shangcheng District, Hangzhou 310016, China. ; or Songying Zhang, MD, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd, Shangcheng District, Hangzhou 310016, China.
| | - Yongdong Dai
- Correspondence: Yongdong Dai, PhD, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd, Shangcheng District, Hangzhou 310016, China. ; or Songying Zhang, MD, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd, Shangcheng District, Hangzhou 310016, China.
| |
Collapse
|
2
|
Kaczynski P, van der Weijden V, Goryszewska-Szczurek E, Baryla M, Ulbrich SE, Waclawik A. Novel role for conceptus signals in mRNA expression regulation by DNA methylation in porcine endometrium during early pregnancy†. Biol Reprod 2022; 108:150-168. [PMID: 36322137 PMCID: PMC9843678 DOI: 10.1093/biolre/ioac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
During early pregnancy, porcine conceptuses (the embryos with associated membranes) secrete estradiol-17β (E2)-their major signal for maternal recognition of pregnancy-and prostaglandin E2 (PGE2). Both hormones induce prominent changes of the endometrial transcriptome in vivo. Studies on endometrial pathologies have shown that E2 affects gene expression by epigenetic mechanisms related to DNA methylation. Herein, we determined the effects of E2 and PGE2 alone, and a combined E2 + PGE2 treatment administered into the uterine lumen in vivo on the expression and activity of DNA-methyltransferases (DNMTs) and on CpG methylation patterns of selected genes in porcine endometrium. To compare the effect of treatment with the physiological effect of pregnancy, endometria from day 12 pregnant/cyclic gilts were included. Both E2 and PGE2 significantly reduced the expression of DNMTs. Likewise, the expressions of DNMT1 and DNMT3A were decreased on day 12 of pregnancy compared to the estrous cycle. DNMT activity increased in endometrial samples following E2 treatment and in gilts on day 12 of pregnancy. Treatment with E2 alone and/or simultaneously with PGE2 altered endometrial DNA methylation of CpG sites of ADAMTS20, ADH1C, BGN, PSAT1, and WNT5A. Different CpG methylation patterns of ADAMTS20, BGN, DMBT1, RASSF1, and WNT5A were found in the endometrium on day 12 of pregnancy compared to day 12 of the estrous cycle. Significant correlations were detected between CpG methylation and gene expression for ADAMTS20, ADH1C, BGN, DMBT1, PSAT1, and WNT5A. Our results indicate that CpG methylation induced by embryonic signals may contribute to regulating endometrial gene expression during pregnancy establishment.
Collapse
Affiliation(s)
- Piotr Kaczynski
- Correspondence: Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland. Tel: +48895393111; E-mail: ; (A. Waclawik); Tel: +48895393180; E-mail: (P. Kaczynski)
| | - Vera van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | | | - Monika Baryla
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Agnieszka Waclawik
- Correspondence: Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland. Tel: +48895393111; E-mail: ; (A. Waclawik); Tel: +48895393180; E-mail: (P. Kaczynski)
| |
Collapse
|
3
|
Applying deductive reasoning and the principles of particle physics to aging research. Aging (Albany NY) 2021; 13:22611-22622. [PMID: 34543232 PMCID: PMC8507302 DOI: 10.18632/aging.203555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/11/2021] [Indexed: 11/25/2022]
Abstract
Aging is debatably one of the biggest mysteries for humanity, a process consisting of myriads of genetic, molecular, environmental, and stochastic deleterious events, leading to a progressive loss of organism functionality. Aging research currently lacks a common conceptual framework, and one challenge in establishing it is the fact that aging is a highly complex process. To help develop a framework of standard aging rules, we suggest the use of deductive reasoning based on particle physics' principles. Specifically, the principles that we suggest applying to study aging are discreteness of processes, transformation as a result of interaction, and understanding of threshold. Using this framework, biological aging may be described as a sequence of highly discrete molecular transformations caused by a combination of various specific internal and external factors. Internal organismal function and interaction of an organism with the environment result in chronic accumulation of molecular damage and other deleterious consequences of metabolism and the consequent loss of system's functionality. The loss of functionality occurs as a series of thresholds the organism reaches before it turns into an utterly non-functional state. We discuss how having a common ground may benefit aging research, introduce the logic of new principles and analyze specific examples of how this framework could be used to study aging and design longevity interventions.
Collapse
|
4
|
Estradiol-17β Regulates Expression of Luteal DNA Methyltransferases and Genes Involved in the Porcine Corpus Luteum Function In Vivo. Int J Mol Sci 2021; 22:ijms22073655. [PMID: 33915762 PMCID: PMC8037867 DOI: 10.3390/ijms22073655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The corpus luteum (CL) is a temporary endocrine gland vital for pregnancy establishment and maintenance. Estradiol-17β (E2) is the major embryonic signal in pigs supporting the CL's function. The mechanisms of the luteoprotective action of E2 are still unclear. The present study aimed to determine the effect of E2 on luteal expression of factors involved in CL function. An in vivo model of intrauterine E2 infusions was applied. Gilts on day 12 of pregnancy and the estrous cycle were used as referential groups. Concentrations of E2 and progesterone were elevated in CLs of gilts receiving E2 infusions, compared to placebo-treated gilts. Estradiol-17β stimulated luteal expression of DNA-methyltransferase 1 (DNMT1), but decreased expression of DNMT3B gene and protein, as well as DNMT3A protein. Similar results for DNMT3A and 3B were observed in CLs on day 12 of pregnancy compared to day 12 of the estrous cycle. Intrauterine infusions of E2 altered luteal expression of the genes involved in CL function: PTGFR, PTGES, STAR, HSD17B1, CYP19A1, and PGRMC1. Our findings indicate a role for E2 in expression regulation of factors related to CL function and a novel potential for E2 to regulate DNA methylation as putative physiological mechanisms controlling luteal gene expression.
Collapse
|
5
|
Zhang L, Tian S, Zhao M, Yang T, Quan S, Song L, Yang X. SUV39H1-Mediated DNMT1 is Involved in the Epigenetic Regulation of Smad3 in Cervical Cancer. Anticancer Agents Med Chem 2021; 21:756-765. [PMID: 32698743 DOI: 10.2174/1871520620666200721110016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND SMAD3 is a pivotal intracellular mediator for participating in the activation of multiple immune signal pathways. OBJECTIVE The epigenetic regulation mechanism of the positive immune factor SMAD3 in cervical cancer remains unknown. Therefore, the epigenetic regulation on SMAD3 is investigated in this study. METHODS The methylation status of SMAD3 was detected by Methylation-Specific PCR (MS-PCR) and Quantitative Methylation-Specific PCR (MS-qPCR) in cervical cancer tissues and cell lines. The underlying molecular mechanisms of SUV39H1-DNMT1-SMAD3 regulation were elucidated using cervical cancer cell lines containing siRNA or/and over-expression systems. The regulation of DNMT1 by SUV39H1 was confirmed using Chromatin Immunoprecipitation-qPCR (ChIP-qPCR). The statistical methods used for comparing samples between groups were paired t-tests and one-way ANOVAs. RESULTS H3K9me3 protein regulated by SUV39H1 directly interacts with the DNMT1 promoter region to regulate its expression in cervical cancer cells, resulting in the reduced expression of the downstream target gene DNMT1. In addition, DNMT1 mediates the epigenetic modulation of the SMAD3 gene by directly binding to its promoter region. The depletion of DNMT1 effectively restores the expression of SMAD3 in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1-DNMT1 was found to correlate with SMAD3 expression in accordance with the expression at the cellular level. Notably, the promoter region of SMAD3 was hypermethylated in cervical cancer tissues, and this hypermethylation inhibited the subsequent gene expression. CONCLUSION These results indicate that SUV39H1-DNMT1 is a crucial SMAD3 regulatory axis in cervical cancer. SUV39H1-DNMT1 axis may provide a potential therapeutic target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minyi Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shimin Quan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lihua Song
- Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Zhang L, Tian S, Zhao M, Yang T, Quan S, Yang Q, Song L, Yang X. SUV39H1-DNMT3A-mediated epigenetic regulation of Tim-3 and galectin-9 in the cervical cancer. Cancer Cell Int 2020; 20:325. [PMID: 32699524 PMCID: PMC7370487 DOI: 10.1186/s12935-020-01380-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background Methylation of histone 3 at lysine 9 (H3K9) and DNA methylation are epigenetic marks correlated with genes silencing. The tumor microenvironment significantly influences therapeutic responses and clinical outcomes. The epigenetic-regulation mechanism of the costimulatory factors Tim-3 and galectin-9 in cervical cancer remains unknown. Methods The methylation status of HAVCR2 and LGALS9 were detected by MS-PCR in cervical cancer tissues and cell lines. The underlying molecular mechanism of SUV39H1-DNMT3A-Tim-3/galectin-9 regulation was elucidated using cervical cancer cell lines containing siRNA or/and over-expression system. Confirmation of the regulation of DNMT3A by SUV39H1 used ChIP-qPCR. Results SUV39H1 up-regulates H3K9me3 expression at the DNMT3A promoter region, which in turn induced expression of DNMT3A in cervical cancer. In addition, the mechanistic studies indicate that DNMT3A mediates the epigenetic modulation of the HAVCR2 and LGALS9 genes by directly binding to their promoter regions in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1 up-regulates the level of H3K9me3 at the DNMT3A promoter region was found to correlate with Tim-3 and galectin-9 cellular expression level. Conclusion These results indicate that SUV39H1-DNMT3A is a crucial Tim-3 and galectin-9 regulatory axis in cervical cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Minyi Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Shimin Quan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Qing Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| | - Lihua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061 China
| |
Collapse
|
7
|
Tahir MS, Nguyen LT, Schulz BL, Boe-Hansen GA, Thomas MG, Moore SS, Lau LY, Fortes MRS. Proteomics Recapitulates Ovarian Proteins Relevant to Puberty and Fertility in Brahman Heifers ( Bos indicus L.). Genes (Basel) 2019; 10:E923. [PMID: 31726744 PMCID: PMC6895798 DOI: 10.3390/genes10110923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
High fertility and early puberty in Bos indicus heifers are desirable and genetically correlated traits in beef production. The hypothalamus-pituitary-ovarian (HPO) axis synthesizes steroid hormones, which contribute to the shift from the pre-pubertal state into the post-pubertal state and influence subsequent fertility. Understanding variations in abundance of proteins that govern steroid synthesis and ovarian signaling pathways remains crucial to understanding puberty and fertility. We used whole ovaries of six pre-pubertal and six post-pubertal Brahman heifers to conduct differential abundance analyses of protein profiles between the two physiological states. Extracted proteins were digested into peptides followed by identification and quantification with massspectrometry (MS) by sequential window acquisition of all instances of theoretical fragment ion mass spectrometry (SWATH-MS). MS and statistical analysis identified 566 significantly differentially abundant (DA) proteins (adjusted p < 0.05), which were then analyzed for gene ontology and pathway enrichment. Our data indicated an up-regulation of steroidogenic proteins contributing to progesterone synthesis at luteal phase post-puberty. Proteins related to progesterone signaling, TGF-β, retinoic acid, extracellular matrix, cytoskeleton, and pleiotrophin signaling were DA in this study. The DA proteins probably relate to the formation and function of the corpus luteum, which is only present after ovulation, post-puberty. Some DA proteins might also be related to granulosa cells signaling, which regulates oocyte maturation or arrest in ovaries prior to ovulation. Ten DA proteins were coded by genes previously associated with reproductive traits according to the animal quantitative trait loci (QTL) database. In conclusion, the DA proteins and their pathways were related to ovarian activity in Bos indicus cattle. The genes that code for these proteins may explain some known QTLs and could be targeted in future genetic studies.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Gry A. Boe-Hansen
- School of Veterinary Sciences, University of Queensland, Brisbane 4343, Queensland, Australia;
| | - Milton G. Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Li Yieng Lau
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| |
Collapse
|
8
|
Huang Z, Zhang J, Hazihan W, Cai Z, Xin G, Feng X, Gu Y. Cloning expression and immunogenicity analysis of inhibin gene in Ye Mule Aries sheep. PeerJ 2019; 7:e7761. [PMID: 31579621 PMCID: PMC6765352 DOI: 10.7717/peerj.7761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/26/2019] [Indexed: 11/20/2022] Open
Abstract
Background Ye Mule Aries sheep is one of the most important sheep breeds in Xinjiang, China. This breed is well adapted to harsh environmental conditions and displays strong disease resistance, fast growth, and high cold tolerance. To analyze the clonal expression and immunogenicity of the Ye Mule Aries sheep inhibin gene, total RNA was extracted from sheep ovarian tissue and used as a template to generate a eukaryotic expression vector and study inhibin immunogenicity. Methods Primers were designed to amplify the inhibin A gene via polymerase chain reaction and the amplified product was cloned between the ScalI and EcoRI restriction sites of the expression vector pEGFP-N1 to construct a recombinant plasmid, pEGFP-INHα. Following the validation of successful cloning, the pEGFP-INHα plasmid was transfected into BHK cells to verify expression in eukaryotes and subsequently utilized as an antigen in rabbits. Rabbits were tested for anti-inhibin antibodies and serum follicle-stimulating hormone (FSH) concentrations. Results The analysis of the INHα gene sequence revealed that INHα is 1109 bp long and is translated to an approximately 40 KDa protein. Bioinformatics approach indicated that the INHα gene is highly conserved between organisms. Immunization with the eukaryotic expression vector, pEGFP-INHα, which expresses the INHα gene elicited immune response and generatigeneration on of anti-INHα antibody. The antibody had a significant regulatory effect on the serum concentration of FSH in rabbits and led to higher levels of FSH, indicating increased ovary function. Conclusions The present work resulted in a successful construction of eukaryotic expression plasmid pEGFP-INHα and verified the immunogenicity of this highly conserved protein. Further, the expression of pEGFP-INHα was shown to have a significant impact on the secretion of FSH, indicating a potential regulatory role in ovarian function. In conclusion, our current findings can serve as a working model for studying the effect of INHα on the breeding performance of Ye Mule Aries sheep, providing a novel strategy to improve their reproduction rates.
Collapse
Affiliation(s)
- Zengwen Huang
- Agriculture College, Ningxia University, Yinchuan, China
| | - Juan Zhang
- Agriculture College, Ningxia University, Yinchuan, China
| | - WuReliHazi Hazihan
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhengyun Cai
- Agriculture College, Ningxia University, Yinchuan, China
| | - Guosheng Xin
- Agriculture College, Ningxia University, Yinchuan, China
| | - Xiaofang Feng
- Agriculture College, Ningxia University, Yinchuan, China
| | - Yaling Gu
- Agriculture College, Ningxia University, Yinchuan, China
| |
Collapse
|
9
|
Zama AM, Bhurke A, Uzumcu M. Effects of Endocrine-disrupting Chemicals on Female Reproductive Health. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are increasingly prevalent in the environment and the evidence demonstrates that they affect reproductive health, has been accumulating for the last few decades. In this review of recent literature, we present evidence of the effects of estrogen-mimicking EDCs on female reproductive health especially the ovaries and uteri. As representative EDCs, data from studies with a pharmaceutical estrogen, diethylstilbestrol (DES), an organochlorine pesticide methoxychlor (MXC), a phytoestrogen (genistein), and a chemical used in plastics, bisphenol a (BPA) have been presented. We also discuss the effects of a commonly found plasticizer in the environment, a phthalate (DEHP), even though it is not a typical estrogenic EDC. Collectively, these studies show that exposures during fetal and neonatal periods cause developmental reprogramming leading to adult reproductive disease. Puberty, estrous cyclicity, ovarian follicular development, and uterine functions are all affected by exposure to these EDCs. Evidence that epigenetic modifications are involved in the progression to adult disease is also presented.
Collapse
|
10
|
Gao F, Das SK. Epigenetic regulations through DNA methylation and hydroxymethylation: clues for early pregnancy in decidualization. Biomol Concepts 2015; 5:95-107. [PMID: 25372745 DOI: 10.1515/bmc-2013-0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/04/2014] [Indexed: 12/25/2022] Open
Abstract
DNA methylation at cytosines is an important epigenetic modification that participates in gene expression regulation without changing the original DNA sequence. With the rapid progress of high-throughput sequencing techniques, whole-genome distribution of methylated cytosines and their regulatory mechanism have been revealed gradually. This has allowed the uncovering of the critical roles played by DNA methylation in the maintenance of cell pluripotency, determination of cell fate during development, and in diverse diseases. Recently, rediscovery of 5-hydroxymethylcytosine, and other types of modification on DNA, have uncovered more dynamic aspects of cell methylome regulation. The interaction of DNA methylation and other epigenetic changes remodel the chromatin structure and determine the state of gene transcription, not only permanently, but also transiently under certain stimuli. The uterus is a reproductive organ that experiences dramatic hormone stimulated changes during the estrous cycle and pregnancy, and thus provides us with a unique model for studying the dynamic regulation of epigenetic modifications. In this article, we review the current findings on the roles of genomic DNA methylation and hydroxymethylation in the regulation of gene expression, and discuss the progress of studies for these epigenetic changes in the uterus during implantation and decidualization.
Collapse
|
11
|
|
12
|
Walters BJ, Zovkic IB. Building up and knocking down: an emerging role for epigenetics and proteasomal degradation in systems consolidation. Neuroscience 2015; 300:39-52. [PMID: 25967264 DOI: 10.1016/j.neuroscience.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/18/2015] [Accepted: 05/03/2015] [Indexed: 01/30/2023]
Abstract
Memory formation is a protracted process in which recently acquired events are consolidated to produce stable and specific associations. Initially, newly acquired information undergoes cellular consolidation in the hippocampus, which transiently supports the storage of recently acquired memories. In contrast, remote, or "old" memories are maintained in the cortex and show almost complete independence from the hippocampus. Memories are transferred from the hippocampus to the cortex through a process termed systems consolidation. Emerging evidence suggests that recurrent activation, or "training" of the cortex by the hippocampus is vital to systems consolidation. This process involves prolonged waves of memory-related gene activity in the hippocampus and cortex long after the learning event has terminated. Indeed, molecular events occurring within hours and days of fear conditioning are essential for stabilizing and eventually transitioning the memory to the cortex. It is increasingly evident that molecular mechanisms that exhibit a capacity for prolonged activation may underlie systems consolidation. Processes that have the capacity to control protein abundance over long time scales, such as epigenetic modifications, are prime candidates for the molecular mechanism of systems consolidation. Indeed, recent work has established two types of epigenetic modifications as integral for systems consolidation. First, localized nucleosomal histone variant exchange and histone modifications are integral for early stages of systems consolidation, whereas DNA methylation appears to be utilized to form stable marks that support memory maintenance. Since systems consolidation also requires discrete and time-sensitive changes in protein abundance, additional mechanisms, such as protein degradation, need also be considered, although their role in systems consolidation has yet to be investigated. Here, we discuss the role of molecular mechanisms in systems consolidation and their implications for understanding how memories persist over time.
Collapse
Affiliation(s)
- B J Walters
- The Hospital for Sick Children, Department of Neuroscience and Mental Health, Toronto, ON, Canada
| | - I B Zovkic
- University of Toronto Mississauga, Department of Psychology, Mississauga, ON, Canada.
| |
Collapse
|
13
|
Qiang M, Li JG, Denny AD, Yao JM, Lieu M, Zhang K, Carreon S. Epigenetic mechanisms are involved in the regulation of ethanol consumption in mice. Int J Neuropsychopharmacol 2015; 18:pyu072. [PMID: 25522411 PMCID: PMC4368896 DOI: 10.1093/ijnp/pyu072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Repeated alcohol exposure is known to increase subsequent ethanol consumption in mice. However, the underlying mechanisms have not been fully elucidated. One postulated mechanism involves epigenetic modifications, including histone modifications and DNA methylation of relevant genes such as NR2B or BDNF. METHODS To investigate the role of epigenetic mechanisms in the development of alcohol drinking behavior, an established chronic intermittent ethanol exposure reinforced ethanol drinking mouse model with vapor inhalation over two 9-day treatment regimens was used. The DNA methyltransferase inhibitor, 5-azacytidine or the histone deacetylase inhibitor, Trichostatin A was administered (intraperitoneally) to C57BL/6 mice 30 min before daily exposure to chronic intermittent ethanol. Changes in ethanol consumption were measured using the 2-bottle choice test. RESULTS The results indicated that systemic administration of Trichostatin A (2.5 µg/g) facilitated chronic intermittent ethanol-induced ethanol drinking, but systemic administration of 5-azacytidine (2 µg/g) did not cause the same effect. However, when 5-azacytidine was administered by intracerebroventricular injection, it facilitated chronic intermittent ethanol-induced ethanol drinking. Furthermore, the increased drinking caused by chronic intermittent ethanol was prevented by injection of a methyl donor, S-adenosyl-L-methionine. To provide evidence that chronic intermittent ethanol- or Trichostatin A-induced DNA demethylation and histone modifications of the NR2B promoter may underlie the altered ethanol consumption, we examined epigenetic modifications and NR2B expression in the prefrontal cortex of these mice. Chronic intermittent ethanol or Trichostatin A decreased DNA methylation and increased histone acetylation in the NR2B gene promoter, as well as mRNA levels of NR2B in these mice. CONCLUSIONS Taken together, these results indicate that epigenetic modifications are involved in regulating ethanol drinking behavior, partially through altering NR2B expression.
Collapse
Affiliation(s)
- Mei Qiang
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (Drs Qiang, Li, Denny, Lieu, and Carreon); Department of Neurology, Third Hospital of Guangxi Medical University, Nanning, Guangxi, China (Dr Yao); Department of Psychiatry, First Clinical Medical College (Dr Zhang), and School of Public Health, Shanxi Medical University, Taiyuan, China (Dr Qiang).
| | | | | | | | | | | | | |
Collapse
|
14
|
Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, Mayo KE, Woodruff TK. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev 2014; 35:747-94. [PMID: 25051334 PMCID: PMC4167436 DOI: 10.1210/er.2014-1003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis. Although the physiological role of inhibin as an activin antagonist in other organ systems is not as well defined as it is in the pituitary-gonadal axis, inhibin also modulates biological processes in other organs through paracrine, autocrine, and/or endocrine mechanisms. Inhibin and components of its signaling pathway are expressed in many organs. Diagnostically, inhibin is used for prenatal screening of Down syndrome as part of the quadruple test and as a biochemical marker in the assessment of ovarian reserve. In this review, we provide a comprehensive summary of our current understanding of the biological role of inhibin, its relationship with activin, its signaling mechanisms, and its potential value as a diagnostic marker for reproductive function and pregnancy-associated conditions.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Department of Obstetrics and Gynecology (Y.M., J.Z., C.H., W.P.S.W., T.K.W.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60610; Center for Molecular Innovation and Drug Discovery (R.M., C.H.), Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208; and Department of Molecular Biosciences (N.B.S., K.E.M., T.K.W.), Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Cruz G, Foster W, Paredes A, Yi KD, Uzumcu M. Long-term effects of early-life exposure to environmental oestrogens on ovarian function: role of epigenetics. J Neuroendocrinol 2014; 26:613-24. [PMID: 25040227 PMCID: PMC4297924 DOI: 10.1111/jne.12181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/22/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Oestrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is considered that developmental exposure to environmental oestrogens can disrupt neural and reproductive tract development, potentially resulting in long-term alterations in neurobehaviour and reproductive function. Many chemicals have been shown to have oestrogenic activity, whereas others affect oestrogen production and turnover, resulting in the disruption of oestrogen signalling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on oestrogen-sensitive target tissues. Hence, alternative mechanisms are assumed to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including oestrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying the disruption of ovarian follicular development. In addition, we discuss how exposure to environmental oestrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology.
Collapse
Affiliation(s)
- Gonzalo Cruz
- Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Correspondence to: Gonzalo Cruz, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile. 2360102, Tel. 56 32 2508015,
| | - Warren Foster
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Alfonso Paredes
- Laboratorio de Neurobioquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - Kun Don Yi
- Syngenta Crop Protection, LLC. Greensboro, NC
| | - Mehmet Uzumcu
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
16
|
Cecconi S, Rossi G, Castellucci A, D’Andrea G, Maccarrone M. Endocannabinoid signaling in mammalian ovary. Eur J Obstet Gynecol Reprod Biol 2014; 178:6-11. [DOI: 10.1016/j.ejogrb.2014.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/17/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022]
|
17
|
Kelly MP, Adamowicz W, Bove S, Hartman AJ, Mariga A, Pathak G, Reinhart V, Romegialli A, Kleiman RJ. Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal 2013; 26:383-97. [PMID: 24184653 DOI: 10.1016/j.cellsig.2013.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/13/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022]
Abstract
3',5'-cyclic nucleotide phosphodiesterases (PDEs) are the only known enzymes to compartmentalize cAMP and cGMP, yet little is known about how PDEs are dynamically regulated across the lifespan. We mapped mRNA expression of all 21 PDE isoforms in the adult rat and mouse central nervous system (CNS) using quantitative polymerase chain reaction (qPCR) and in situ hybridization to assess conservation across species. We also compared PDE mRNA and protein in the brains of old (26 months) versus young (5 months) Sprague-Dawley rats, with select experiments replicated in old (9 months) versus young (2 months) BALB/cJ mice. We show that each PDE isoform exhibits a unique expression pattern across the brain that is highly conserved between rats, mice, and humans. PDE1B, PDE1C, PDE2A, PDE4A, PDE4D, PDE5A, PDE7A, PDE8A, PDE8B, PDE10A, and PDE11A showed an age-related increase or decrease in mRNA expression in at least 1 of the 4 brain regions examined (hippocampus, cortex, striatum, and cerebellum). In contrast, mRNA expression of PDE1A, PDE3A, PDE3B, PDE4B, PDE7A, PDE7B, and PDE9A did not change with age. Age-related increases in PDE11A4, PDE8A3, PDE8A4/5, and PDE1C1 protein expression were confirmed in hippocampus of old versus young rodents, as were age-related increases in PDE8A3 protein expression in the striatum. Age-related changes in PDE expression appear to have functional consequences as, relative to young rats, the hippocampi of old rats demonstrated strikingly decreased phosphorylation of GluR1, CaMKIIα, and CaMKIIβ, decreased expression of the transmembrane AMPA regulatory proteins γ2 (a.k.a. stargazin) and γ8, and increased trimethylation of H3K27. Interestingly, expression of PDE11A4, PDE8A4/5, PDE8A3, and PDE1C1 correlate with these functional endpoints in young but not old rats, suggesting that aging is not only associated with a change in PDE expression but also a change in PDE compartmentalization.
Collapse
Affiliation(s)
- Michy P Kelly
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology & Neuroscience, 6439 Garners Ferry Rd, Columbia, SC 29209, USA.
| | - Wendy Adamowicz
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Susan Bove
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Alexander J Hartman
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology & Neuroscience, 6439 Garners Ferry Rd, Columbia, SC 29209, USA
| | - Abigail Mariga
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Geetanjali Pathak
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology & Neuroscience, 6439 Garners Ferry Rd, Columbia, SC 29209, USA
| | - Veronica Reinhart
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA
| | - Alison Romegialli
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Robin J Kleiman
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| |
Collapse
|
18
|
Chaffin CL, VandeVoort CA. Follicle growth, ovulation, and luteal formation in primates and rodents: A comparative perspective. Exp Biol Med (Maywood) 2013; 238:539-48. [DOI: 10.1177/1535370213489437] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ovarian function has a great deal of functional overlap between species; antral follicles grow in response to FSH, ovulation involves proteolysis, and the steroidogenic pathway is largely the same. However, embedded in these similarities are important differences that reflect the evolutionary and natural history of species and may focus future research into these critical areas. This review compares ovarian function of rats and mice with primates, focusing on estradiol and follicle growth, steroidogenesis and rupture during the periovulatory interval, and the formation of a functional corpus luteum, drawing the conclusion that careful comparison of species yields more functional information about both than studying them in isolation.
Collapse
Affiliation(s)
- Charles L Chaffin
- Department of OB/GYN & Reproductive Sciences, University of Maryland Baltimore, Baltimore, MD, USA
| | - Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, CA, USA
| |
Collapse
|