1
|
Santiago-Andres Y, Golan M, Fiordelisio T. Functional Pituitary Networks in Vertebrates. Front Endocrinol (Lausanne) 2021; 11:619352. [PMID: 33584547 PMCID: PMC7873642 DOI: 10.3389/fendo.2020.619352] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The pituitary is a master endocrine gland that developed early in vertebrate evolution and therefore exists in all modern vertebrate classes. The last decade has transformed our view of this key organ. Traditionally, the pituitary has been viewed as a randomly organized collection of cells that respond to hypothalamic stimuli by secreting their content. However, recent studies have established that pituitary cells are organized in tightly wired large-scale networks that communicate with each other in both homo and heterotypic manners, allowing the gland to quickly adapt to changing physiological demands. These networks functionally decode and integrate the hypothalamic and systemic stimuli and serve to optimize the pituitary output into the generation of physiologically meaningful hormone pulses. The development of 3D imaging methods and transgenic models have allowed us to expand the research of functional pituitary networks into several vertebrate classes. Here we review the establishment of pituitary cell networks throughout vertebrate evolution and highlight the main perspectives and future directions needed to decipher the way by which pituitary networks serve to generate hormone pulses in vertebrates.
Collapse
Affiliation(s)
- Yorgui Santiago-Andres
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Matan Golan
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Rishon Lezion, Israel
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
2
|
Meda P. Gap junction proteins are key drivers of endocrine function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:124-140. [PMID: 28284720 DOI: 10.1016/j.bbamem.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland.
| |
Collapse
|
3
|
Wada I, Sakuma E, Shirasawa N, Wakabayashi K, Otsuka T, Hattori K, Yashiro T, Herbert DC, Soji T. Intercellular communications within the rat anterior pituitary. XVI: postnatal changes of distribution of S-100 protein positive cells, connexin 43 and LH-RH positive sites in the pars tuberalis of the rat pituitary gland. An immunohistochemical and electron microscopic study. Tissue Cell 2013; 46:33-9. [PMID: 24216131 DOI: 10.1016/j.tice.2013.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 01/21/2023]
Abstract
The architecture of luteinizing hormone-releasing hormone (LH-RH) nerve ends and the S-100 protein containing folliculo-stellate cells forming gap junctions in the pars tuberalis is basically important in understanding the regulation of the hormone producing mechanism of anterior pituitary glands. In this study, intact male rats 5-60 days old were prepared for immunohistochemistry and electron microscopy. From immunostained sections, the S-100 containing cells in pars tuberalis were first detected on day 30 and increased in number to day 60; this was parallel to the immunohistochemical staining of gap junction protein, connexin 43. LH-RH positive sites were clearly observed on just behind the optic chiasm and on the root of pituitary stalk on day 30. On day 60, the width of layer increased, while follicles and gap junctions were frequently observed between agranular cells in 10 or more layers of pars tuberalis. In the present study, we investigated the sexual maturation of the anterior pituitary glands through the postnatal development of S-100 positive cells, connexin 43 and LH-RH nerves. It is suggested that the folliculo-stellate cell system including the LH-RH neurons in the pars tuberalis participates in the control of LH secretion along with the portal vein system.
Collapse
Affiliation(s)
- Ikuo Wada
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Eisuke Sakuma
- Department of Functional Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Nobuyuki Shirasawa
- Department of Anatomy and Structural Science, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Kenjiro Wakabayashi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kazuki Hattori
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takashi Yashiro
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Damon C Herbert
- Department of Cellular and Structural Biology, Dental School, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Tsuyoshi Soji
- Department of Functional Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
4
|
Tsukada T, Kouki T, Fujiwara K, Ramadhani D, Horiguchi K, Kikuchi M, Yashiro T. Reassembly of anterior pituitary organization by hanging drop three-dimensional cell culture. Acta Histochem Cytochem 2013; 46:121-7. [PMID: 24023396 PMCID: PMC3766829 DOI: 10.1267/ahc.13015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/09/2013] [Indexed: 11/22/2022] Open
Abstract
The anterior pituitary gland comprises 5 types of hormone-producing cells and non-endocrine cells, such as folliculostellate (FS) cells. The cells form a lobular structure surrounded by extracellular matrix (ECM) but are not randomly distributed in each lobule; hormone-producing cells have affinities for specific cell types (topographic affinity), and FS cells form a homotypic meshwork. To determine whether this cell and ECM organization can be reproduced in vitro, we developed a 3-dimensional (3D) model that utilizes hanging drop cell culture. We found that the topographic affinities of hormone-producing cells were indeed maintained (ie, GH to ACTH cells, GH to TSH cells, PRL to LH/FSH cells). Fine structures in hormone-producing cells retained their normal appearance. In addition, FS cells displayed well-developed cytoplasmic protrusions, which interconnected with adjacent FS cells to form a 3D meshwork. In addition, reassembly of gap junctions and pseudofollicles among FS cells was observed in cell aggregates. Major ECM components—collagens and laminin—were deposited and distributed around the cells. In sum, the dissociated anterior pituitary cells largely maintained their in vivo anterior pituitary architectures. This culture system appears to be a powerful experimental tool for detailed analysis of anterior pituitary cell organization.
Collapse
Affiliation(s)
- Takehiro Tsukada
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Tom Kouki
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Ken Fujiwara
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Dini Ramadhani
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Kotaro Horiguchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Motoshi Kikuchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| | - Takashi Yashiro
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine
| |
Collapse
|
5
|
Nishikawa N, Kanematsu A, Negoro H, Imamura M, Sugino Y, Okinami T, Yoshimura K, Hashitani H, Ogawa O. PTHrP is endogenous relaxant for spontaneous smooth muscle contraction in urinary bladder of female rat. Endocrinology 2013; 154:2058-68. [PMID: 23546599 DOI: 10.1210/en.2012-2142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Acute bladder distension causes various morphologic and functional changes, in part through altered gene expression. We aimed to investigate the physiologic role of PTHrP, which is up-regulated in an acute bladder distension model in female rats. In the control Empty group, bladders were kept empty for 6 hours, and in the Distension group, bladders were kept distended for 3 hours after an artificial storing-voiding cycle for 3 hours. In the Distention group bladder, up-regulation of transcripts was noted for 3 genes reported to be up-regulated by stretch in the cultured bladder smooth muscle cells in vitro. Further transcriptome analysis by microarray identified PTHrP as the 22nd highest gene up-regulated in Distension group bladder, among more than 27,000 genes. Localization of PTHrP and its functional receptor, PTH/PTHrP receptor 1 (PTH1R), were analyzed in the untreated rat bladders and cultured bladder cells using real-time RT-PCR and immunoblotting, which revealed that PTH1R and PTHrP were more predominantly expressed in smooth muscle than in urothelium. Exogenous PTHrP peptide (1-34) increased intracellular cAMP level in cultured bladder smooth muscle cells. In organ bath study using bladder strips, the PTHrP peptide caused a marked reduction in the amplitude of spontaneous contraction but caused only modest suppression for carbachol-induced contraction. In in vivo functional study by cystometrogram, the PTHrP peptide decreased voiding pressure and increased bladder compliance. Thus, PTHrP is a potent endogenous relaxant of bladder contraction, and autocrine or paracrine mechanism of the PTHrP-PTH1R axis is a physiologically relevant pathway functioning in the bladder.
Collapse
MESH Headings
- Animals
- Carbachol/pharmacology
- Cells, Cultured
- Cholinergic Agonists/pharmacology
- Cyclic AMP/metabolism
- Female
- Gene Expression Profiling
- Immunoblotting
- In Vitro Techniques
- Muscle Contraction/genetics
- Muscle Contraction/physiology
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oligonucleotide Array Sequence Analysis
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/metabolism
- Parathyroid Hormone-Related Protein/physiology
- Peptide Fragments/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Parathyroid Hormone, Type 1/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Urinary Bladder/metabolism
- Urinary Bladder/physiopathology
- Urinary Retention/genetics
- Urinary Retention/metabolism
- Urinary Retention/physiopathology
Collapse
Affiliation(s)
- Nobuyuki Nishikawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|