4
|
Yang L, Han B, Zhang Z, Wang S, Bai Y, Zhang Y, Tang Y, Du L, Xu L, Wu F, Zuo L, Chen X, Lin Y, Liu K, Ye Q, Chen B, Li B, Tang T, Wang Y, Shen L, Wang G, Ju M, Yuan M, Jiang W, Zhang JH, Hu G, Wang J, Yao H. Extracellular Vesicle-Mediated Delivery of Circular RNA SCMH1 Promotes Functional Recovery in Rodent and Nonhuman Primate Ischemic Stroke Models. Circulation 2020; 142:556-574. [PMID: 32441115 DOI: 10.1161/circulationaha.120.045765] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Stroke is a leading cause of adult disability that can severely compromise the quality of life of patients, yet no effective medication currently exists to accelerate rehabilitation. A variety of circular RNA (circRNA) molecules are known to function in ischemic brain injury. Lentivirus-based expression systems have been widely used in basic studies of circRNAs, but safety issues with such delivery systems have limited exploration of the potential therapeutic roles for circRNAs. METHODS Circular RNA SCMH1 (circSCMH1) was screened from the plasma of patients with acute ischemic stroke by using circRNA microarrays. Engineered rabies virus glycoprotein-circSCMH1-extracellular vesicles were generated to selectively deliver circSCMH1 to the brain. Nissl staining was used to examine infarct size. Behavioral tasks were performed to evaluate motor functions in both rodent and nonhuman primate ischemic stroke models. Golgi staining and immunostaining were used to examine neuroplasticity and glial activation. Proteomic assays and RNA-sequencing data combined with transcriptional profiling were used to identify downstream targets of circSCMH1. RESULTS CircSCMH1 levels were significantly decreased in the plasma of patients with acute ischemic stroke, offering significant power in predicting stroke outcomes. The decreased levels of circSCMH1 were further confirmed in the plasma and peri-infarct cortex of photothrombotic stroke mice. Beyond demonstrating proof-of-concept for an RNA drug delivery technology, we observed that circSCMH1 treatment improved functional recovery after stroke in both mice and monkeys, and we discovered that circSCMH1 enhanced the neuronal plasticity and inhibited glial activation and peripheral immune cell infiltration. CircSCMH1 binds mechanistically to the transcription factor MeCP2 (methyl-CpG binding protein 2), thereby releasing repression of MeCP2 target gene transcription. CONCLUSIONS Rabies virus glycoprotein-circSCMH1-extracellular vesicles afford protection by promoting functional recovery in the rodent and the nonhuman primate ischemic stroke models. Our study presents a potentially widely applicable nucleotide drug delivery technology and demonstrates the basic mechanism of how circRNAs can be therapeutically exploited to improve poststroke outcomes.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Zhiting Zhang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China (Z.Z., K.L.).,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.Z.)
| | - Shuguo Wang
- Department of Neurosurgery, First Affiliation Hospital of Kunming Medical University, Kunming, China (S.W.)
| | - Ying Bai
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Ying Tang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Lingli Du
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ling Xu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Fangfang Wu
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Lei Zuo
- Department of Neurology of Affiliated ZhongDa Hospital, Institute of Neuropsychiatry of Southeast University (L.Z.), Southeast University, Nanjing, China
| | - Xufeng Chen
- Emergency Department, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China (X.C.)
| | - Yu Lin
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Kezhong Liu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qingqing Ye
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Biling Chen
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Bin Li
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Tianci Tang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Yu Wang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Ling Shen
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Guangtian Wang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Minzi Ju
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Mengqin Yuan
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China (M.Y., W.J.)
| | - Wei Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China (M.Y., W.J.)
| | - John H Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China (Z.Z., K.L.).,Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA (J.H.Z.)
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China (G.H.)
| | - Jianhong Wang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,National Resource Center for Non-Human Primates (Kunming Primate Research Center) (J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science & Yunnan Province, (J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases (J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China.,Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease (H.Y.), Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China (H.Y.)
| |
Collapse
|
5
|
Krishnaraj R, Haase F, Coorey B, Luca EJ, Wong I, Boyling A, Ellaway C, Christodoulou J, Gold WA. Genome-wide transcriptomic and proteomic studies of Rett syndrome mouse models identify common signaling pathways and cellular functions as potential therapeutic targets. Hum Mutat 2019; 40:2184-2196. [PMID: 31379106 DOI: 10.1002/humu.23887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
The discovery that Rett syndrome is caused by mutations in the MECP2 gene has provided a major breakthrough in our understanding of the disorder. However, despite this, there is still limited understanding of the underlying pathophysiology of the disorder hampering the development of curative treatments. Over the years, a number of animal models have been developed contributing to our knowledge of the role of MECP2 in development and improving our understanding of how subtle expression levels affect brain morphology and function. Transcriptomic and proteomic studies of animal models are useful in identifying perturbations in functional pathways and providing avenues for novel areas of research into disease. This review focuses on published transcriptomic and proteomic studies of mouse models of Rett syndrome with the aim of providing a summary of all the studies, the reported dysregulated genes and functional pathways that are found to be perturbed. The 36 articles identified highlighted a number of dysfunctional pathways as well as perturbed biological networks and cellular functions including synaptic dysfunction and neuronal transmission, inflammation, and mitochondrial dysfunction. These data reveal biological insights that contribute to the disease process which may be targeted to investigate curative treatments.
Collapse
Affiliation(s)
- Rahul Krishnaraj
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Florencia Haase
- Molecular Neurobiology Research Group, Kids Research, Sydney Children's Hospitals Network, Westmead, Australia
| | - Bronte Coorey
- Molecular Neurobiology Research Group, Kids Research, Sydney Children's Hospitals Network, Westmead, Australia
| | - Edward J Luca
- University Library, The University of Sydney, Sydney, New South Wales, Australia
| | - Ingar Wong
- Molecular Neurobiology Research Group, Kids Research, Sydney Children's Hospitals Network, Westmead, Australia
| | - Alexandra Boyling
- Molecular Neurobiology Research Group, Kids Research, Sydney Children's Hospitals Network, Westmead, Australia
| | - Carolyn Ellaway
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia.,Genetic Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia.,Genetic Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, and Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Wendy A Gold
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Molecular Neurobiology Research Group, Kids Research, Sydney Children's Hospitals Network, Westmead, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, The Children's Hospital at Westmead, Kids Research, Westmead, NSW, Australia
| |
Collapse
|
7
|
Zhang R, Zhou J, Ren J, Sun S, Di Y, Wang H, An X, Zhang K, Zhang J, Qian Z, Shi M, Qiao Y, Ren W, Tian Y. Transcriptional and splicing dysregulation in the prefrontal cortex in valproic acid rat model of autism. Reprod Toxicol 2018; 77:53-61. [PMID: 29427782 DOI: 10.1016/j.reprotox.2018.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 01/02/2023]
Abstract
Gene-environmental interaction could be the major cause of autism. The aim of the current study is to detect the effects of valproic acid on gene expression profiles and alternatively spliced genes in the prefrontal cortex in rat models of autism. Female rats received a single intraperitoneal injection of 600 mg/kg valproic acid at day 12.5 post-conception, and controls were injected with saline. Only male offspring were employed in the current study. RNA sequencing was used to investigate transcriptome in the prefrontal cortex of VPA-exposed rats. There were 3228 differently expressed genes and 637 alternative spliced genes, in VPA rats compared to controls. Pathways enrichment among the differently expressed genes and alternatively spliced genes were associated with neurological diseases and neural system development. The results implied VPA affected transcriptional and splicing events genome-wide and the transcriptional and splicing events may be associated with the autistic behaviors of VPA rats.
Collapse
Affiliation(s)
- Ruoxin Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, Shaanxi, 710062, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jinlong Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Junrong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Siqi Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yuanyuan Di
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Hanyu Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xiaoqin An
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Kexin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Junfeng Zhang
- Department of Anatomy, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Zhaoqiang Qian
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, Shaanxi, 710062, China
| | - Meimei Shi
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, Shaanxi, 710062, China
| | - Yanning Qiao
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, Shaanxi, 710062, China
| | - Wei Ren
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, Shaanxi, 710062, China
| | - Yingfang Tian
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, Shaanxi, 710062, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|