1
|
Zhou Y, Tian L, Wang L, Wu W, Liang B, Xiong W, Zhang L, Li X, Chen J. Bisphenol S exposure interrupted human embryonic stem cell derived cardiomyocytes differentiation through ER-NF-κB/ERK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117576. [PMID: 39729939 DOI: 10.1016/j.ecoenv.2024.117576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
Bisphenol S (BPS) has been put into production as a wide range of Bisphenol A (BPA) alternatives, while little is known regarding its cardiac developmental toxicity. To explore the effect of BPS on cardiomyocyte differentiation and its mechanism, our study established the human embryonic stem cell-cardiomyocyte differentiation model (hESC-CM), which was divided into early period of differentiation (DP1:1-8d), anaphase period of differentiation (DP2:9-16d) and whole stage of differentiation (DP3:1-16d) exposed to human-related levels of BPS. We found that the survival rate of cardiomyocytes was more sensitive to BPS at the early stage of differentiation than at the anaphase stage of differentiation, and exposure to higher than 30 µg/mL BPS throughout the differentiation period decreased the expression of cTnT. BPS may affect cardiomyocyte differentiation by activating ERβ-NF-κB/ERK signaling pathway, and the signaling pathway of each stage might be different. During DP1, 3 µg/mL of BPS may increase the inflammatory effect of cardiomyocytes mainly through the ERβ-NF-κB signaling pathway, thereby inhibiting cell proliferation, and leading to impaired cardiac function in early differentiation. During DP2, BPS may activate the ERβ-ERK signaling pathway, increase cardiomyocyte apoptosis, alter the establishment of the outer matrix, and thus affect myocardial differentiation. However, exposure to BPS throughout the differentiation stage may disrupt the immune response and cell differentiation, which in turn interrupts heart function. The benchmark dose lower confidence limit (BMDL) of the relative expression of cTnT mRNA exposed by BPS during DP3 was the lowest among all the BMDLs of a good fit, with BMDL5 of 1.96 × 10-2 µg/mL, which is lower than the current reported exposure levels of BPS in maternal serum (0.03-0.07 ng/mL) and maternal umbilical cord serum (0.03-0.12 ng/mL).
Collapse
Affiliation(s)
- Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Liang Wang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wenjing Wu
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Baofang Liang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wei Xiong
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
2
|
Zhang L, Tian L, Liang B, Wang L, Huang S, Zhou Y, Ni M, Zhang L, Li Y, Chen J, Li X. Construction of an adverse outcome pathway for the cardiac toxicity of bisphenol a by using bioinformatics analysis. Toxicology 2024; 509:153955. [PMID: 39303899 DOI: 10.1016/j.tox.2024.153955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bisphenol A (BPA), a common endocrine disruptor, has shown cardiovascular toxicity in several epidemiological studies, as well as in vivo and in vitro experimental studies. However, the related adverse outcome pathway (AOP) of BPA toxicity remains unraveled. This study aimed to develop an AOP for the cardiac toxicity of BPA through bioinformatics analysis. The interactions among BPA, genes, phenotypes, and cardiac toxicity were retrieved from several databases, including the Comparative Toxicogenomics Database, Computational Toxicology, DisGeNet, and MalaCards. The target genes and part of target phenotypes were obtained by Venn analysis and literature screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed for target genes by using the DAVID online analysis tool to obtain other target phenotypes. AOP hypotheses from BPA exposure to heart disease were established and evaluated comprehensively by a quantitative weight of evidence (QWOE) method. The target genes included ESR2, MAPK1, TGFB1, and ESR1, and the target phenotypes included heart contraction, cardiac muscle contraction, cellular Ca2+ homeostasis, cellular metabolic process, heart development, etc. Overall, the AOP of BPA cardiac toxicity was deduced to be as follows. Initially, BPA bound with ERα/β and then activated the MAPK, AKT, and IL-17 signaling pathways, leading to Ca2+ homeostasis disorder and increased inflammatory response. Subsequently, cardiac function was impaired, causing coronary heart disease, arrhythmia, cardiac dysplasia, and other heart diseases. According to the Bradford-Hill causal considerations, the score of AOP by QWOE was 69, demonstrating a moderate confidence and providing clues on cardiotoxicity-assessment procedure and further studies on BPA.
Collapse
Affiliation(s)
- Leyan Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Baofang Liang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Liang Wang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Shuzhen Huang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yun Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
3
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2024; 198:273-287. [PMID: 38310357 PMCID: PMC10964748 DOI: 10.1093/toxsci/kfae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated-including bisphenol S (BPS) and bisphenol F (BPF)-without a comprehensive understanding of their toxicological profile. Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging. Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures decreased the depolarization spike amplitude, and shortened the field potential, action potential duration, and calcium transient duration (E2 ≥ BPA ≥ BPF ≫ BPS). Cardiomyocyte physiology was largely undisturbed by BPS. BPA-induced effects were exaggerated when coadministered with an L-type calcium channel (LTCC) antagonist or E2, and reduced when coadministered with an LTCC agonist or an estrogen receptor alpha antagonist. E2-induced effects were not exaggerated by coadministration with an LTCC antagonist. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Shatha Salameh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
- Department of Pediatrics, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| |
Collapse
|
4
|
Kang JH, Asai D, Toita R. Bisphenol A (BPA) and Cardiovascular or Cardiometabolic Diseases. J Xenobiot 2023; 13:775-810. [PMID: 38132710 PMCID: PMC10745077 DOI: 10.3390/jox13040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Bisphenol A (BPA; 4,4'-isopropylidenediphenol) is a well-known endocrine disruptor. Most human exposure to BPA occurs through the consumption of BPA-contaminated foods. Cardiovascular or cardiometabolic diseases such as diabetes, obesity, hypertension, acute kidney disease, chronic kidney disease, and heart failure are the leading causes of death worldwide. Positive associations have been reported between blood or urinary BPA levels and cardiovascular or cardiometabolic diseases. BPA also induces disorders or dysfunctions in the tissues associated with these diseases through various cell signaling pathways. This review highlights the literature elucidating the relationship between BPA and various cardiovascular or cardiometabolic diseases and the potential mechanisms underlying BPA-mediated disorders or dysfunctions in tissues such as blood vessels, skeletal muscle, adipose tissue, liver, pancreas, kidney, and heart that are associated with these diseases.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Osaka 564-8565, Japan
| | - Daisuke Asai
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Tokyo 194-8543, Japan;
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Osaka 563-8577, Japan;
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557564. [PMID: 37745451 PMCID: PMC10515916 DOI: 10.1101/2023.09.13.557564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated - including bisphenol S (BPS) and bisphenol F (BPF) - without a comprehensive understanding of their toxicological profile. Objective Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Methods Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging at baseline and in response to chemical exposure (0.001-100 μM). Results Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1,000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures resulted in a decrease in the depolarizing spike amplitude, shorter field potential and action potential duration, shorter calcium transient duration, and decrease in hiPSC-CM contractility (E2 > BPA > BPF >> BPS). Cardiomyocyte physiology was largely undisturbed by BPS exposure. BPA-induced effects were exaggerated when co-administered with an L-type calcium channel antagonist (verapamil) or E2 - and reduced when co-administered with an L-type calcium channel agonist (Bay K8644) or an estrogen receptor alpha antagonist (MPP). E2-induced effects generally mirrored those of BPA, but were not exaggerated by co-administration with an L-type calcium channel antagonist. Discussion Collectively across multiple cardiac endpoints, E2 was the most potent and BPS was the least potent disruptor of hiPSC-CM function. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described in vitro findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
|
6
|
Ma J, Wang NY, Jagani R, Wang HS. Proarrhythmic toxicity of low dose bisphenol A and its analogs in human iPSC-derived cardiomyocytes and human cardiac organoids through delay of cardiac repolarization. CHEMOSPHERE 2023; 328:138562. [PMID: 37004823 PMCID: PMC10121900 DOI: 10.1016/j.chemosphere.2023.138562] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Bisphenol A (BPA) and its analogs are common environmental chemicals with many potential adverse health effects. The impact of environmentally relevant low dose BPA on human heart, including cardiac electrical properties, is not understood. Perturbation of cardiac electrical properties is a key arrhythmogenic mechanism. In particular, delay of cardiac repolarization can cause ectopic excitation of cardiomyocytes and malignant arrhythmia. This can occur as a result of genetic mutations (i.e., long QT (LQT) syndrome), or cardiotoxicity of drugs and environmental chemicals. To define the impact of low dose BPA on electrical properties of cardiomyocytes in a human-relevant model system, we examined the rapid effects of 1 nM BPA in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using patch-clamp and confocal fluorescence imaging. Acute exposure to BPA delayed repolarization and prolonged action potential duration (APD) in hiPSC-CMs through inhibition of the hERG K+ channel. In nodal-like hiPSC-CMs, BPA acutely increased pacing rate through stimulation of the If pacemaker channel. Existing arrhythmia susceptibility determines the response of hiPSC-CMs to BPA. BPA resulted in modest APD prolongation but no ectopic excitation in baseline condition, while rapidly promoted aberrant excitations and tachycardia-like events in myocytes that had drug-simulated LQT phenotype. In hiPSC-CM-based human cardiac organoids, the effects of BPA on APD and aberrant excitation were shared by its analog chemicals, which are often used in "BPA-free" products, with bisphenol AF having the largest effects. Our results reveal that BPA and its analogs have repolarization delay-associated pro-arrhythmic toxicity in human cardiomyocytes, particularly in myocytes that are prone to arrhythmias. The toxicity of these chemicals depends on existing pathophysiological conditions of the heart, and may be particularly pronounced in susceptible individuals. An individualized approach is needed in risk assessment and protection.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | | | - Ravikumar Jagani
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Romero-Martínez BS, Sommer B, Solís-Chagoyán H, Calixto E, Aquino-Gálvez A, Jaimez R, Gomez-Verjan JC, González-Avila G, Flores-Soto E, Montaño LM. Estrogenic Modulation of Ionic Channels, Pumps and Exchangers in Airway Smooth Muscle. Int J Mol Sci 2023; 24:ijms24097879. [PMID: 37175587 PMCID: PMC10178541 DOI: 10.3390/ijms24097879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 05/15/2023] Open
Abstract
To preserve ionic homeostasis (primarily Ca2+, K+, Na+, and Cl-), in the airway smooth muscle (ASM) numerous transporters (channels, exchangers, and pumps) regulate the influx and efflux of these ions. Many of intracellular processes depend on continuous ionic permeation, including exocytosis, contraction, metabolism, transcription, fecundation, proliferation, and apoptosis. These mechanisms are precisely regulated, for instance, through hormonal activity. The lipophilic nature of steroidal hormones allows their free transit into the cell where, in most cases, they occupy their cognate receptor to generate genomic actions. In the sense, estrogens can stimulate development, proliferation, migration, and survival of target cells, including in lung physiology. Non-genomic actions on the other hand do not imply estrogen's intracellular receptor occupation, nor do they initiate transcription and are mostly immediate to the stimulus. Among estrogen's non genomic responses regulation of calcium homeostasis and contraction and relaxation processes play paramount roles in ASM. On the other hand, disruption of calcium homeostasis has been closely associated with some ASM pathological mechanism. Thus, this paper intends to summarize the effects of estrogen on ionic handling proteins in ASM. The considerable diversity, range and power of estrogens regulates ionic homeostasis through genomic and non-genomic mechanisms.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Bettina Sommer
- Laboratorio de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México 14080, Mexico
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Eduardo Calixto
- Departamento de Neurobiología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México 14370, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City 14080, Mexico
| | - Ruth Jaimez
- Laboratorio de Estrógenos y Hemostasis, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México 10200, Mexico
| | - Georgina González-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", México City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
8
|
Cooper BL, Posnack NG. Choice of experimental model determines translational impact: The link between bisphenol A and cardiotoxicity. Food Chem Toxicol 2023; 174:113667. [PMID: 36791906 PMCID: PMC10441008 DOI: 10.1016/j.fct.2023.113667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023]
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States; Children's National Heart Institute, Children's National Hospital, Washington, DC, United States; Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States; Children's National Heart Institute, Children's National Hospital, Washington, DC, United States; Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States; Department of Pediatrics, The George Washington University, Washington, DC, United States.
| |
Collapse
|
9
|
Oliveira N, Marcelino H, Azevedo R, Verde I. Effects of bisphenol A on human umbilical arteries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27670-27681. [PMID: 36385337 DOI: 10.1007/s11356-022-24069-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical widely used in the plastics industry, including food container, toys, and medical equipment. We analyzed the effect of BPA in human umbilical artery contractility and expression of some proteins modulating this function, such as ionic channels and proteins involved in the cGMP pathway. Using standard organ bath technique, rings of human umbilical arteries without endothelium were contracted by 5-HT (1 μM) and histamine (10 μM) and the effect of different concentrations of BPA (1 nM-100 μM) was analyzed. The results showed that BPA is a vasodilator of these arteries in a concentration-dependent way. Besides, qPCR studies on human umbilical smooth muscle cells (HUSMC) allowed to analyze the effects of BPA on gene expression. Thus, 12-h exposition to BPA induced reduction of expression of L-type calcium channels (LTCC), alpha subunit of BKCa channels, and Kvβ1 and Kvβ3 from Kv channels. BPA also decreased the expression of soluble guanylate cyclase (sGC) and natriuretic peptide receptor type A (NPRA), meanwhile increasing that of PKG, proteins involved in vasodilation of human umbilical arteries (HUA) by cGMP. Further studies will be necessary to increase knowledge about the implications of these changes induced by BPA exposure.
Collapse
Affiliation(s)
- Nádia Oliveira
- Faculty of Health Sciences & Health Sciences Research Centre (CICS-UBI; Centro de Investigação em Ciências da Saúde), University of Beira Interior, Av. Infante D. Henrique S/N, 6200-506, Covilhã, Portugal
| | - Helena Marcelino
- Faculty of Health Sciences & Health Sciences Research Centre (CICS-UBI; Centro de Investigação em Ciências da Saúde), University of Beira Interior, Av. Infante D. Henrique S/N, 6200-506, Covilhã, Portugal
| | - Regina Azevedo
- Faculty of Health Sciences & Health Sciences Research Centre (CICS-UBI; Centro de Investigação em Ciências da Saúde), University of Beira Interior, Av. Infante D. Henrique S/N, 6200-506, Covilhã, Portugal
| | - Ignacio Verde
- Faculty of Health Sciences & Health Sciences Research Centre (CICS-UBI; Centro de Investigação em Ciências da Saúde), University of Beira Interior, Av. Infante D. Henrique S/N, 6200-506, Covilhã, Portugal.
| |
Collapse
|
10
|
Ma J, Niklewski PJ, Wang HS. Acute exposure to low-dose bisphenol A delays cardiac repolarization in female canine heart - Implication for proarrhythmic toxicity in large animals. Food Chem Toxicol 2023; 172:113589. [PMID: 36584932 PMCID: PMC9852101 DOI: 10.1016/j.fct.2022.113589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Bisphenol A (BPA) is a common environmental chemical with a range of potential adverse health effects. The impact of environmentally-relevant low dose of BPA on the electrical properties of the hearts of large animals (e.g., dog, human) is poorly defined. Perturbation of cardiac electrical properties is a key arrhythmogenic mechanism. In particular, delay of ventricular repolarization and prolongation of the QT interval of the electrocardiogram is a marker for the risk of malignant arrhythmias. We examined the acute effect of 10-9 M BPA on the electrical properties of female canine ventricular myocytes and tissues. BPA rapidly delayed action potential repolarization and prolonged action potential duration (APD). The dose response curve of BPA on APD was nonmonotonic. BPA rapidly inhibited the IKr K+ current and ICaL Ca2+ current. Computational modeling indicated that the effect of BPA on APD can be accounted for by its suppression of IKr. At the tissue level, BPA acutely prolonged the QT interval in 4 left ventricular wedges. ERβ signaling contributed to the acute effects of BPA on ventricular repolarization. Our results demonstrate that BPA has QT prolongation liability in female canine hearts. These findings have implication for the potential proarrhythmic cardiac toxicity of BPA in large animals.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Paul J Niklewski
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Potential Effects of Bisphenol A on the Heart and Coronary Artery of Adult Male Rats and the Possible Role of L-Carnitine. J Toxicol 2022; 2022:7760594. [PMID: 36601412 PMCID: PMC9807306 DOI: 10.1155/2022/7760594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA) is an environmental toxin utilized for the production of polycarbonate plastics and epoxy resins. Due to BPA's extensive production and environmental contamination, human exposure is unavoidable. The effects of low-dose of BPA on various body tissues and organs remain controversial. Our study investigated the potential of BPA to induce biochemical, histopathological, and immunohistochemical changes in the coronary artery and myocardium and the potential protective role of L-carnitine (LC). 24 adult Wistar albino male rats were divided equally into a control group, a BPA-treated group (40 mg/kg/d, by gavage for 4 weeks), and a BPA plus LC-treated group (received 40 mg/kg/d of BPA and 300 mg/kg/d of LC, by gavage for 4 weeks). BPA-exposed rats demonstrated structural anomalies in the coronary artery tissue including vacuolation of cells in the media and detachment of the endothelium of the intima. Congestion of blood vessels and infiltration by polynuclear cells were observed in the myocardium. There was an enhanced collagen deposition in both tissues indicating fibrosis. Immunohistochemical changes included enhanced eNOS and caspase-3 expression in the coronary artery and myocardium indicating vascular disease and apoptosis, respectively. Oxidative damage was evident in the coronary artery and the myocardium of BPA-treated rats, which was indicated by the reduced level of glutathione (GSH) and elevated malondydehyde (MDA) levels. The coadministration of LC significantly improved BPA-induced structural alterations and oxidative stress. In conclusion, BPA could potentially cause pathologic changes and oxidative damage in the coronary artery and myocardium, which could be improved by LC coadministration.
Collapse
|
12
|
Zhang J, Wang W, Li P, Li Z, Hao L, Zhang X, Ru S. Bisphenol S induces cardiovascular toxicity by disturbing the development of the common cardinal vein and myocardial contractility in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106294. [PMID: 36116344 DOI: 10.1016/j.aquatox.2022.106294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) has been widely used as a substitute for bisphenol A in industrial manufacturing. However, the safety of BPS is controversial, and the mechanism by which BPS exerts cardiovascular toxicity remains unclear. In this study, zebrafish embryos, including wild-type zebrafish and transgenic (flk1:eGFP), (gata1:DsRed) and (cmlc2:eGFP) zebrafish at 2 h postfertilization (hpf), were exposed to BPS at concentrations of 1, 10 and 100 μg/L for 24, 48 and 72 h, respectively. The data showed that BPS accelerated the expansion of the common cardinal vein and inhibited lumen formation between 24 hpf and 72 hpf. Moreover, low-dose BPS disturbed cardiac muscle contraction by breaking the calcium balance in cardiac muscle cells according to the RNA-seq results. As a consequence, increased heart rate and irregular blood circulation were observed in the BPS treatment groups. This result suggested that BPS at environmental relevant concentrations caused cardiovascular toxicity during the development of zebrafish embryos, possibly being an important inducer of cardiovascular injury later in life. These findings provide insight into the rational and safe application of BPS.
Collapse
Affiliation(s)
- Jie Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Peng Li
- Shandong Gold Group Co., Ltd, Jinan 250100, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China.
| |
Collapse
|
13
|
Endocrine-Disrupting Effects of Bisphenol A on the Cardiovascular System: A Review. J Xenobiot 2022; 12:181-213. [PMID: 35893265 PMCID: PMC9326625 DOI: 10.3390/jox12030015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, the plastic monomer and plasticizer bisphenol A (BPA) is one of the most widely used chemicals. BPA is present in polycarbonate plastics and epoxy resins, commonly used in food storage and industrial or medical products. However, the use of this synthetic compound is a growing concern, as BPA is an endocrine-disrupting compound and can bind mainly to estrogen receptors, interfering with different functions at the cardiovascular level. Several studies have investigated the disruptive effects of BPA; however, its cardiotoxicity remains unclear. Therefore, this review’s purpose is to address the most recent studies on the implications of BPA on the cardiovascular system. Our findings suggest that BPA impairs cardiac excitability through intracellular mechanisms, involving the inhibition of the main ion channels, changes in Ca2+ handling, the induction of oxidative stress, and epigenetic modifications. Our data support that BPA exposure increases the risk of developing cardiovascular diseases (CVDs) including atherosclerosis and its risk factors such as hypertension and diabetes. Furthermore, BPA exposure is also particularly harmful in pregnancy, promoting the development of hypertensive disorders during pregnancy. In summary, BPA exposure compromises human health, promoting the development and progression of CVDs and risk factors. Further studies are needed to clarify the human health effects of BPA-induced cardiotoxicity.
Collapse
|
14
|
Cooper BL, Posnack NG. Characteristics of Bisphenol Cardiotoxicity: Impaired Excitability, Contractility, and Relaxation. Cardiovasc Toxicol 2022; 22:273-280. [PMID: 35143014 PMCID: PMC9204785 DOI: 10.1007/s12012-022-09719-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Bisphenol a (BPA) is a high production volume chemical that is frequently used to manufacture epoxy resins and polycarbonate plastics. BPA-containing products are now pervasive, and as a result, biomonitoring studies report widespread exposure in > 90% of adults, adolescents, and children. Both epidemiological and experimental studies have reported associations between BPA exposure and adverse cardiovascular health outcomes. With increasing concerns regarding BPA exposure, a few structurally similar bisphenol chemicals have been introduced as replacements, including bisphenol s (BPS) and bisphenol f (BPF). In accordance with the recently established "Key characteristics of cardiovascular toxicants", we reviewed the literature to highlight the immediate effects of bisphenol chemicals on (1) cardiac excitability, and (2) contractility and relaxation. BPA inhibits key cardiac ion channels, impairs cardiac excitability, and acts as a more potent inhibitor as compared to BPF and BPS. Through the inhibition of calcium current, some studies report that bisphenol chemicals can act as negative inotropic agents. Yet, others suggest that low dose exposures may increase contractility and precipitate triggered arrhythmias via the phosphorylation of key calcium handling proteins. Accordingly, we propose additional considerations for future work to comprehensively address the cardiac safety profile of BPA, as compared to replacement chemicals.
Collapse
Affiliation(s)
- Blake L. Cooper
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA,Department of Pharmacology & Physiology, George Washington University, Washington, DC 20037, USA
| | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, DC, 20010, USA. .,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, 20010, USA. .,Department of Pediatrics, George Washington University, Washington, DC, 20037, USA. .,Department of Pharmacology & Physiology, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
15
|
Schmidt S. Linking Pollutants and Therapeutics to Heart Health: Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:114002. [PMID: 34797164 PMCID: PMC8604046 DOI: 10.1289/ehp10375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
|
16
|
Hyun SA, Lee CY, Ko MY, Chon SH, Kim YJ, Seo JW, Kim KK, Ka M. Cardiac toxicity from bisphenol A exposure in human-induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 2021; 428:115696. [PMID: 34419494 DOI: 10.1016/j.taap.2021.115696] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical that is widely used in a variety of products, including plastics, medical equipment and receipts. Hence, most people are exposed to BPA through the skin, via inhalation and via the digestive system, and such exposure has been linked to cardiovascular diseases including coronary artery disease, hypertension, atherosclerosis, and myocardial infarction. However, the underlying mechanisms of cardiac dysfunction caused by BPA remain poorly understood. In this study, we found that BPA exposure altered cardiac function in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Acute BPA exposure in hiPSC-CMs resulted in reduced field potential, as measured by multielectrode array (MEA). Furthermore, we observed that BPA dose-dependently inhibited ICa, INa or IKr channels. In addition, BPA exposure dose-dependently inhibited calcium transients and contraction in hiPSC-CMs. Our findings suggest that BPA exposure leads to cardiac dysfunction and cardiac risk factors such as arrhythmia.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea; Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chang Youn Lee
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Moon Yi Ko
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sun-Hwa Chon
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Ye-Ji Kim
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Jeong-Wook Seo
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minhan Ka
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
17
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
18
|
Prudencio TM, Swift LM, Guerrelli D, Cooper B, Reilly M, Ciccarelli N, Sheng J, Jaimes R, Posnack NG. Bisphenol S and bisphenol F are less disruptive to cardiac electrophysiology, as compared to bisphenol A. Toxicol Sci 2021; 183:214-226. [PMID: 34240201 DOI: 10.1093/toxsci/kfab083] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bisphenol A (BPA) is a high-production volume chemical used to manufacture consumer and medical-grade plastic products. Due to its ubiquity, the general population can incur daily environmental exposure to BPA, while heightened exposure has been reported in intensive care patients and industrial workers. Due to health concerns, structural analogues are being explored as replacements for BPA. This study aimed to examine the direct effects of BPA on cardiac electrophysiology compared with recently developed alternatives, including BPS (bisphenol S) and BPF (bisphenol F). Whole-cell voltage-clamp recordings were performed on cell lines transfected to express the voltage-gated sodium channel (Nav1.5), L-type voltage-gated calcium channel (Cav1.2), or the rapidly activating delayed rectifier potassium channel (hERG). Cardiac electrophysiology parameters were measured using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and intact, whole rat heart preparations. BPA was the most potent inhibitor of fast/peak (INa-P) and late (INa-L) sodium channel (IC50= 55.3, 23.6 µM, respectively), L-type calcium channel (IC50= 30.8 µM) and hERG channel current (IC50= 127 µM). Inhibitory effects on L-type calcium channels were supported by microelectrode array recordings, which revealed a shortening of the extracellular field potential (akin to QT interval). BPA and BPF exposures slowed atrioventricular (AV) conduction and increased AV node refractoriness in isolated rat heart preparations, in a dose-dependent manner (BPA: +9.2% 0.001 µM, +95.7% 100 µM; BPF: +20.7% 100 µM). BPS did not alter any of the cardiac electrophysiology parameters tested. Results of this study demonstrate that BPA and BPF exert an immediate inhibitory effect on cardiac ion channels, while BPS is markedly less potent. Additional studies are necessary to fully elucidate the safety profile of bisphenol analogues on the heart.
Collapse
Affiliation(s)
- Tomas M Prudencio
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.,Department of Biomedical Engineering, George Washington University, Washington DC, USA
| | - Blake Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.,Department of Pharmacology & Physiology, George Washington University, Washington DC, USA
| | - Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Nina Ciccarelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | | | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.,Department of Pharmacology & Physiology, George Washington University, Washington DC, USA.,Department of Pediatrics, George Washington University, Washington DC, USA
| |
Collapse
|
19
|
Szkudelska K, Okulicz M, Szkudelski T. Bisphenol A disturbs metabolism of primary rat adipocytes without affecting adipokine secretion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23301-23309. [PMID: 33447972 PMCID: PMC8113171 DOI: 10.1007/s11356-021-12411-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is an ubiquitous synthetic chemical exerting numerous adverse effects. Results of rodent studies show that BPA negatively affects adipose tissue. However, the short-term influence of this compound addressing adipocyte metabolism and adipokine secretion is unknown. In the present study, isolated rat adipocytes were exposed for 2 h to 1 and 10 nM BPA. Insulin-induced glucose conversion to lipids along with glucose transport was significantly increased in the presence of BPA. However, basal glucose conversion to lipids, glucose oxidation, and formation of lipids from acetate were unchanged in adipocytes incubated with BPA. It was also shown that BPA significantly increases lipolytic response of adipocytes to epinephrine. However, lipolysis stimulated by dibutyryl-cAMP (a direct activator of protein kinase A) and the antilipolytic action of insulin were not affected by BPA. Moreover, BPA did not influence leptin and adiponectin secretion from adipocytes. Our new results show that BPA is capable of disturbing processes related to lipid accumulation in isolated rat adipocytes. This is associated with the potentiation of insulin and epinephrine action. The effects of BPA appear already after short-term exposure to low doses of this compound. However, BPA fails to change adipokine secretion.
Collapse
Affiliation(s)
- Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Monika Okulicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland.
| |
Collapse
|
20
|
Makowska K, Gonkowski S. Changes Caused by Low Doses of Bisphenol A (BPA) in the Neuro-Chemistry of Nerves Located in the Porcine Heart. Animals (Basel) 2021; 11:ani11030780. [PMID: 33799766 PMCID: PMC7999793 DOI: 10.3390/ani11030780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Bisphenol A (BPA) is a substance commonly used in the plastics industry, which is a part of many everyday items. It may leach from plastics and penetrate food, water, soil and air. It is known that BPA negatively affects living organisms. It impairs the functions of the intestine, neurons, reproductive organs, endocrine glands and immune cells. Previous studies have also reported that BPA negatively influences the cardiovascular system, leading to heart arrhythmia, intensification of atherosclerosis, blood hypertension and increased risk of a heart attack. However, many aspects of the influence of BPA on the heart are still poorly understood. One of these aspects is the BPA impact on heart innervation. Therefore, this article aimed to investigate the influence of low doses of BPA on the number of nerves containing selected active substances taking part in neuronal stimuli conduction located in the porcine heart apex. The results indicate that even relatively low doses of BPA are not neutral to the cardiovascular system, because they affect the neurochemical characterization of nerves in the heart. These changes may underlie the negative effects of BPA on the heart. Abstract Bisphenol A (BPA) contained in plastics used in the production of various everyday objects may leach from these items and contaminate food, water and air. As an endocrine disruptor, BPA negatively affects many internal organs and systems. Exposure to BPA also contributes to heart and cardiovascular system dysfunction, but many aspects connected with this activity remain unknown. Therefore, this study aimed to investigate the impact of BPA in a dose of 0.05 mg/kg body weight/day (in many countries such a dose is regarded as a tolerable daily intake–TDI dose of BPA–completely safe for living organisms) on the neurochemical characterization of nerves located in the heart wall using the immunofluorescence technique. The obtained results indicate that BPA (even in such a relatively low dose) increases the number of nerves immunoreactive to neuropeptide Y, substance P and tyrosine hydroxylase (used here as a marker of sympathetic innervation). However, BPA did not change the number of nerves immunoreactive to vesicular acetylcholine transporter (used here as a marker of cholinergic structures). These observations suggest that changes in the heart innervation may be at the root of BPA-induced circulatory disturbances, as well as arrhythmogenic and/or proinflammatory effects of this endocrine disruptor. Moreover, changes in the neurochemical characterization of nerves in the heart wall may be the first sign of exposure to BPA.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
- Correspondence: ; Tel.: +48-44895234460
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland;
| |
Collapse
|
21
|
Filice M, Leo S, Mazza R, Amelio D, Garofalo F, Imbrogno S, Cerra MC, Gattuso A. The heart of the adult goldfish Carassius auratus as a target of Bisphenol A: a multifaceted analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116177. [PMID: 33290955 DOI: 10.1016/j.envpol.2020.116177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a contaminant whose presence in aquatic environments is increasing. In fish embryos and larvae, it severely affects cardiac development; however, its influence on the heart function of adult fish has been scarcely analyzed. This study investigated the effects of the in vivo exposure to BPA on heart physiology, morphology, and oxidative balance in the goldfish Carassius auratus. Adult fish were exposed for 4 and 10 days to two BPA concentrations (10 μM and 25 μM). Ex vivo working heart preparations showed that high concentrations of BPA negatively affected cardiac hemodynamics, as revealed by an impaired Frank-Starling response. This was paralleled by increased cardio-somatic indices and by myocardial structural changes. An altered oxidative status and a modulation of stress (HSPs) and pro-apoptotic (Bax and Cytochrome C) proteins expression were also observed in the heart of animals exposed to BPA, with detrimental effects at the highest concentration and the longest exposure time. Results suggest that, in the adult goldfish, BPA may induce stressful conditions to the heart with time- and concentration-dependent deleterious morpho-functional alterations.
Collapse
Affiliation(s)
- Mariacristina Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Serena Leo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Rosa Mazza
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Daniela Amelio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Filippo Garofalo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende (CS), Italy.
| |
Collapse
|
22
|
Oguro A, Sugitani A, Kobayashi Y, Sakuma R, Imaoka S. Bisphenol A stabilizes Nrf2 via Ca 2+ influx by direct activation of the IP 3 receptor. J Toxicol Sci 2021; 46:1-10. [PMID: 33408296 DOI: 10.2131/jts.46.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical used in polycarbonate and epoxy resins. Previously, we found that BPA stabilized the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) by inducing Ca2+ efflux into the cytosol, followed by nitric oxide synthase activation, resulting in the enhanced nitrosylation of Keap1, which is a negative regulator of Nrf2. However, the mechanisms behind the stimulation of Ca2+ efflux by BPA remain unknown. In the present study, we found that BPA stimulated Ca2+ efflux into the cytosol from the ER, but not from outside of cells through the plasma membrane in Hep3B cells. Ca2+ efflux and Nrf2 stabilization by BPA were inhibited by an inhibitor of the inositol 1,4,5-trisphosphate (IP3) receptor, 2-aminoethoxydiphenylborane, in the endoplasmic reticulum. IP3 is produced by activation of phospholipase C (PLC) from a membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP2). The induction of Nrf2 by BPA was not inhibited by a PLC inhibitor, U-73122, suggesting that BPA does not induce the production of IP3 via PLC activation. We found that BPA bound directly to the IP3 binding core domain of the IP3 receptor, and BPA competed with IP3 on this site. In addition, overexpression of this domain of the IP3 receptor in Hep3B cells inhibited the stabilization of Nrf2 by BPA. These results clarified that the IP3 receptor is a new target of BPA, and that BPA induces Ca2+ efflux from the endoplasmic reticulum via activation of the IP3 receptor.
Collapse
Affiliation(s)
- Ami Oguro
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Atsushi Sugitani
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Yukino Kobayashi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Rika Sakuma
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
23
|
Ramadan M, Cooper B, Posnack NG. Bisphenols and phthalates: Plastic chemical exposures can contribute to adverse cardiovascular health outcomes. Birth Defects Res 2020; 112:1362-1385. [PMID: 32691967 DOI: 10.1002/bdr2.1752] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Phthalates and bisphenols are high production volume chemicals that are used in the manufacturing of consumer and medical products. Given the ubiquity of bisphenol and phthalate chemicals in the environment, biomonitoring studies routinely detect these chemicals in 75-90% of the general population. Accumulating evidence suggests that such chemical exposures may influence human health outcomes, including cardiovascular health. These associations are particularly worrisome for sensitive populations, including fetal, infant and pediatric groups-with underdeveloped metabolic capabilities and developing organ systems. In the presented article, we aimed to review the literature on environmental and clinical exposures to bisphenols and phthalates, highlight experimental work that suggests that these chemicals may exert a negative influence on cardiovascular health, and emphasize areas of concern that relate to vulnerable pediatric groups. Gaps in our current knowledge are also discussed, so that future endeavors may resolve the relationship between chemical exposures and the impact on pediatric cardiovascular physiology.
Collapse
Affiliation(s)
- Manelle Ramadan
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Blake Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University, School of Medicine, Washington, District of Columbia, USA.,Department of Pharmacology & Physiology, George Washington University, School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
24
|
Zhang YF, Shan C, Wang Y, Qian LL, Jia DD, Zhang YF, Hao XD, Xu HM. Cardiovascular toxicity and mechanism of bisphenol A and emerging risk of bisphenol S. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137952. [PMID: 32213405 DOI: 10.1016/j.scitotenv.2020.137952] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 05/20/2023]
Abstract
Epidemiological and animal studies indicate that increased exposure to bisphenol A (BPA) induces various human cardiovascular diseases (CVDs), including myocardial infarction, arrhythmias, dilated cardiomyopathy, atherosclerosis, and hypertension. Bisphenol S (BPS), an alternative to BPA, is increasingly present in various consumer products and human bodies worldwide. Recently, emerging evidence has shown that BPS might be related to cardiovascular disorders. In this review, we present striking evidence of the correlation between BPA exposure and various CVDs, and show that a nonmonotonic dose-response curve (NMDRC) was common in studies of the CV effects of BPA in vivo. The CV impairment induced by low doses of BPA should be highlighted, especially during developmental exposure or during coexposure with other risk factors. Furthermore, we explored the possible underlying mechanisms of these effects-particularly nuclear receptor signaling, ion channels, and epigenetic mechanisms-and the possible participation of lipid metabolism, oxidative stress and cell signaling. As the potential risks of BPA exposure in humans are still noteworthy, studies of BPA in CVDs should be strengthened, especially with respect to the mechanisms, prevention and treatment. Moreover, the potential CV risk of BPS reported by in vivo studies calls for immediate epidemiological investigations and animal studies to reveal the relationships of BPS and other BPA alternatives with human CVDs.
Collapse
Affiliation(s)
- Yin-Feng Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Chan Shan
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yu Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Li-Li Qian
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Dong-Dong Jia
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Xiao-Dan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
25
|
Cai S, Rao X, Ye J, Ling Y, Mi S, Chen H, Fan C, Li Y. Relationship between urinary bisphenol a levels and cardiovascular diseases in the U.S. adult population, 2003-2014. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110300. [PMID: 32058166 DOI: 10.1016/j.ecoenv.2020.110300] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/18/2020] [Accepted: 02/04/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Emerging evidence has identified cardiovascular system as a potential target of Bisphenol A (BPA). Although a few studies have revealed the relationship between BPA and the risk of several cardiovascular diseases (CVD) outcomes and CVD risk factors, no published studies have investigated the link between urinary BPA and the risk of stroke. METHODS Data were derived from the United States National Health and Nutrition Examination Surveys (NHANES), with a representative sample aged ≥20 years (n = 9139) from 2003 to 2014. We performed multivariable logistic regression model to estimate associations between quartiles and natural logarithm transformed urinary BPA concentrations and five specific CVD outcomes and total CVD. RESULTS In quartile analysis, highest level of urinary BPA was associated with increased prevalence of myocardial infarction (MI) (OR = 1.73, 95% CI = 1.11-2.69) and stroke (OR = 1.61, 95% CI = 1.09-2.36), when compared with those at the lowest quartile. Per unit (μg/g creatinine) increment in ln-transformed BPA concentration was shown to be significantly associated with 19%, 19%, 25%, 29%, 20%, and 16% increased odds ratios of prevalence of congestive heart failure, coronary heart disease (CHD), angina pectoris, MI, stroke and total CVD among total participants, respectively. Similar associations were found in males rather than in females. CONCLUSION We provided the premier evidence of positive relationship between urinary BPA concentration and stroke in U.S. POPULATION Urinary BPA levels were also positively correlated with congestive heart failure, CHD, angina pectoris, MI, as well as total CVD. These associations were more evident in males. Well-coordinated and prospective studies are warranted to gain the human effects of BPA on CVD.
Collapse
Affiliation(s)
- Shaofang Cai
- Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xianming Rao
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Jianhong Ye
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yuxiao Ling
- Department of Epidemiology and Health Statistics, Hangzhou Medical College School of Public Health, Hangzhou, China
| | - Shuai Mi
- Department of Epidemiology and Health Statistics, Hangzhou Medical College School of Public Health, Hangzhou, China
| | - Hanzhu Chen
- Department of Epidemiology and Health Statistics, Hangzhou Medical College School of Public Health, Hangzhou, China
| | - Chunhong Fan
- Department of Epidemiology and Health Statistics, Hangzhou Medical College School of Public Health, Hangzhou, China
| | - Yingjun Li
- Department of Epidemiology and Health Statistics, Hangzhou Medical College School of Public Health, Hangzhou, China.
| |
Collapse
|
26
|
Shang J, Corriveau J, Champoux-Jenane A, Gagnon J, Moss E, Dumas P, Gaudreau E, Chevrier J, Chalifour LE. Recovery From a Myocardial Infarction Is Impaired in Male C57bl/6 N Mice Acutely Exposed to the Bisphenols and Phthalates That Escape From Medical Devices Used in Cardiac Surgery. Toxicol Sci 2020; 168:78-94. [PMID: 30398665 DOI: 10.1093/toxsci/kfy276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bisphenols and phthalates leach from medical devices, and this exposure is likely to increase in postcardiac surgery patients. Previous studies suggest that such chemical exposure may impact recovery and wound healing, yet the direct effects of bisphenols and phthalates are unknown in this context. To study the direct effect of clinically based chemical exposures, we measured the metabolites representative of 6 bisphenols and 10 phthalates in men before and after cardiac surgery and then replicated this exposure in a mouse model of cardiac surgery and assessed survival, cardiac function and inflammation. Bisphenol A (BPA), di-ethyl hexyl phthalate (DEHP), butylbenzyl phthalate, di-isodecyl phthalate, and di-n-butyl phthalate metabolites were increased after surgery. DEHP exposure predominated, was positively correlated with duration on the cardiopulmonary bypass machine and exceeded its tolerable daily intake limit by 37-fold. In vivo, C57bl/6 N male mice treated with BPA+phthalates during recovery from surgery-induced myocardial infarction had reduced survival, greater cardiac dilation, reduced cardiac function and increased infiltration of neutrophils, monocytes and macrophages suggesting impaired recovery. Of interest, genetic ablation or estrogen receptor beta (ERβ) antagonism did not improve recovery and replacement of DEHP with tri-octyl trimellitate or removal of BPA from the mixture did not ameliorate these effects. To examine the direct effects on inflammation, treatment of human THP-1 macrophages with BPA and phthalates induced a dysfunctional proinflammatory macrophage phenotype with increased expression of M1-type macrophage polarization markers and MMP9 secretion, yet reduced phagocytic activity. These results suggest that chemicals escape from medical devices and may impair patient recovery.
Collapse
Affiliation(s)
- Jijun Shang
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | | | | | - Julie Gagnon
- Jewish General Hospital, Montréal, Québec H3T 1E, Canada
| | - Emmanuel Moss
- Jewish General Hospital, Montréal, Québec H3T 1E, Canada
| | - Pierre Dumas
- Institut National de Santé Publique du Québec (INSPQ), Centre de Toxicologie du Québec (CTQ), Québec G1V 5B3, Canada
| | - Eric Gaudreau
- Institut National de Santé Publique du Québec (INSPQ), Centre de Toxicologie du Québec (CTQ), Québec G1V 5B3, Canada
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine
| | - Lorraine E Chalifour
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Jewish General Hospital, Montréal, Québec H3T 1E, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec H3A 1A2, Canada
| |
Collapse
|
27
|
Reventun P, Sanchez-Esteban S, Cook A, Cuadrado I, Roza C, Moreno-Gomez-Toledano R, Muñoz C, Zaragoza C, Bosch RJ, Saura M. Bisphenol A induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep 2020; 10:4190. [PMID: 32144343 PMCID: PMC7060177 DOI: 10.1038/s41598-020-61014-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies link long term exposure to xenoestrogen Bisphenol-A to adverse cardiovascular effects. Our previous results show that BPA induces hypertension by a mechanism involving CamKII activation and increased redox stress caused by eNOS uncoupling. Recently, CamKII sustained activation has been recognized as a central mediator of programmed cell death in cardiovascular diseases, including necroptosis. However, the role of necroptosis in cardiac response to BPA had not yet been explored. Mice exposed to BPA for 16 weeks showed altered heart function, electrical conduction, and increased blood pressure. Besides, a stress test showed ST-segment depression, indicative of cardiac ischemia. The hearts exhibited cardiac hypertrophy and reduced vascularization, interstitial edema, and large hemorrhagic foci accompanied by fibrinogen deposits. BPA initiated a cardiac inflammatory response, up-regulation of M1 macrophage polarization, and increased oxidative stress, coinciding with the increased expression of CamKII and the necroptotic effector RIP3. In addition, cell death was especially evident in coronary endothelial cells within hemorrhagic areas, and Evans blue extravasation indicated a vascular leak in response to Bisphenol-A. Consistent with the in vivo findings, BPA increased the necroptosis/apoptosis ratio, the expression of RIP3, and CamKII activation in endothelial cells. Necrostatin-1, an inhibitor of necroptosis, alleviated BPA induced cardiac dysfunction and prevented the inflammatory and hemorrhagic response in mice. Mechanistically, silencing of RIP3 reversed BPA-induced necroptosis and CamKII activation in endothelial cells, while inhibition of CamKII activation by KN-93 had no effect on RIP3 expression but decreased necroptotic cell death suggesting that BPA induced necroptosis is mediated by a RIP 3/CamKII dependent pathway. Our results reveal a novel pathogenic role of BPA on the coronary circulation. BPA induces endothelial cell necroptosis, promotes the weakening of coronary vascular wall, which caused internal ventricular hemorrhages, delaying the reparative process and ultimately leading to cardiac dysfunction.
Collapse
Affiliation(s)
- P Reventun
- Biology systems Dpt, University Alcalá (UAH), Madrid, Spain
| | | | - A Cook
- Biology systems Dpt, University Alcalá (UAH), Madrid, Spain
| | - I Cuadrado
- Pharmacology, Pharmacognosy and Botanics Dpt, Complutense University (UCM), Madrid, Spain
| | - C Roza
- Biology systems Dpt, University Alcalá (UAH), Madrid, Spain
| | | | - C Muñoz
- Biology systems Dpt, University Alcalá (UAH), Madrid, Spain
| | - C Zaragoza
- Joint Unit of Cardiovascular Research University Francisco de Vitoria and Hospital Ramon y Cajal, Madrid, Spain
| | - R J Bosch
- Biology systems Dpt, University Alcalá (UAH), Madrid, Spain
| | - M Saura
- Biology systems Dpt, University Alcalá (UAH), Madrid, Spain.
| |
Collapse
|
28
|
Kim SS, Hwang KS, Yang JY, Chae JS, Kim GR, Kan H, Jung MH, Lee HY, Song JS, Ahn S, Shin DS, Lee KR, Kim SK, Bae MA. Neurochemical and behavioral analysis by acute exposure to bisphenol A in zebrafish larvae model. CHEMOSPHERE 2020; 239:124751. [PMID: 31518922 DOI: 10.1016/j.chemosphere.2019.124751] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is a chemical monomer widely used in the production of hard plastics for food containers and personal items. Through improper industrial control and disposal, BPA has become a pervasive environmental contaminant, and toxicological studies have shown potent xenobiotic endocrine disruptor activity. Prenatal exposure in particular can lead to infertility and nervous system disorders characterized by behavioral aggression, depression, and cognitive impairment, thus necessitating careful hazard assessment. In this study, we evaluated BPA accumulation rate, blood-brain barrier (BBB) permeability, lethality, cardiotoxicity, behavioral effects, and impacts on multiple neurochemical pathways in zebrafish larvae. The bioconcentration factor (BCF) ranged from 1.95 to 10.0, resulting in a high rate of accumulation in the larval body. Also, high BBB permeability allowed BPA to accumulate at similar rates in both zebrafish and adult mouse (blood to brain concentration ratios of 3.2-6.7 and 1.8 to 5.5, respectively). In addition, BPA-exposed zebrafish larvae exhibited developmental deformities, reduced heart rate, and impaired behavioral patterns, including decreased total distance traveled, slower movement velocity, and altered color-preference. These impairments were associated with inhibition of the phenylalanine to dopamine synthesis pathway and an imbalance between excitatory and inhibitory neurotransmitter systems. Our results suggest that behavioral alteration in BPA-exposed zebrafish result from high accumulation and ensuing dysregulation of serotonergic, kynurenergic, dopaminergic, cholinergic, and GABAergic neurotransmitter systems. In conclusion, similarities in toxic responses to mammalian models highlight the utility of the zebrafish larva as a convenient model for screening environmental toxins.
Collapse
Affiliation(s)
- Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Kyu-Seok Hwang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jung Yoon Yang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin Sil Chae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Geum Ran Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hyemin Kan
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Myeong Hun Jung
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ha-Yeon Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Sook Song
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea
| | - Sunjoo Ahn
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea
| | - Dae-Seop Shin
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea.
| |
Collapse
|
29
|
Amin DM. Role of copeptin as a novel biomarker of bisphenol A toxic effects on cardiac tissues: biochemical, histological, immunohistological, and genotoxic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36037-36047. [PMID: 31713131 DOI: 10.1007/s11356-019-06855-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Copeptin is a precursor for arginine vasopressin which is usually elevated in acute stress and cardiac emergencies. Bisphenol A (BPA) is an ideal plasticizing factor used in manufacturing of plastics and epoxy resins. To evaluate the cardio toxicity of bisphenol A and to assess copeptin as a cardio toxic diagnostic and prognostic biomarker in Wistar rats. Sixty Wistar rats were classified into three groups: group I, naive group received regular diet and water; group II, vehicle group administered corn oil; and group III, each rat received BPA daily with (30 mg/kg/day S.C). After 4 weeks, blood samples were collected for estimating serum copeptin levels. Then, the hearts were subjected to histological, immunohistochemical, and electron microscopic examination. Cell suspensions from the hearts were examined to determine the extent of DNA damage by comet assay. Bisphenol A induced a significant increase in mean values of serum copeptin level, histopathological changes in the form of dilated congested blood vessels and extensive collagen fiber deposition in the myocardium. Ultrastructurally, disturbed indented nuclei, focal lysis of myofibrils, normal cross striations loss, mitochondrial swelling, and intercalated disks distortion were noticed. Immunohistochemical study showed a significant increase in TLR2 immunoreactions in the myocytes of BPA administered rats. In addition, comet assay showed that bisphenol A exposure produced DNA damage in cardiac cells. We concluded that bisphenol A has deleterious effects on cardiac tissues mean, while copeptin is a good diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Dalia Mohamed Amin
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
30
|
Bisphenol S rapidly depresses heart function through estrogen receptor-β and decreases phospholamban phosphorylation in a sex-dependent manner. Sci Rep 2019; 9:15948. [PMID: 31685870 PMCID: PMC6828810 DOI: 10.1038/s41598-019-52350-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/15/2019] [Indexed: 11/08/2022] Open
Abstract
The health effects of the endocrine disruptor Bisphenol A (BPA) led to its partial replacement with Bisphenol S (BPS) in several products including food containers, toys, and thermal paper receipts. The acute effects of BPS on myocardial contractility are unknown. We perfused mouse hearts from both sexes for 15 min with physiologically relevant doses of BPS or BPA. In females BPS (1 nM) decreased left ventricular systolic pressure by 5 min, whereas BPA (1 nM) effects were delayed to 10 min. BPS effects in male mice were attenuated. In both sexes ER-β antagonism abolished the effects of BPS. Cardiac myofilament function was not impacted by BPS or BPA in either sex, although there were sex-dependent differences in troponin I phosphorylation. BPS increased phospholamban phosphorylation at S16 only in female hearts, whereas BPA reduced phosphorylation in both sexes. BPA decreased phospholamban phosphorylation at T17 in both sexes while BPS caused dephosphorylation only in females. This is the first study to compare sex differences in the acute myocardial response to physiologically relevant levels of BPS and BPA, and demonstrates a rapid ability of both to depress heart function. This study raises concerns about the safety of BPS as a replacement for BPA.
Collapse
|
31
|
Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
32
|
Valokola MG, Karimi G, Razavi BM, Kianfar M, Jafarian AH, Jaafari MR, Imenshahidi M. The protective activity of nanomicelle curcumin in bisphenol A-induced cardiotoxicity following subacute exposure in rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:319-329. [PMID: 30496632 DOI: 10.1002/tox.22687] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA), an estrogenic compound, is used in manufacture of polycarbonate plastics and epoxy resins. Curcumin, the active ingredient of turmeric, is a potent protective compound against cardiac diseases. In this study the protective effect of nanomicelle curcumin on BPA-induced subchronic cardiotoxicity in rats was evaluated. Rats were divided into 6 groups including control, nanomicelle curcumin (50 mg/kg, gavage), BPA (50 mg/kg, gavage), nanomicelle curcumin (10, 25, and 50 mg/kg) plus BPA. The treatments were continued for 4 weeks. Results revealed that BPA significantly induced histophatological injuries including focal lymphatic inflammation, nuclear degenerative changes and cytoplasmic vacuolation, increased body weight, systolic and diastolic blood pressures, malondialdehyde and Creatine phosphokinase-MB level and decreased glutathione content in comparison with control group. In addition, in electrocardiographic graph, RR, QT, and PQ intervals were increased by BPA. Western blot analysis showed that BPA up-regulated phosphorylated p38 (p38-mitogen-activated protein kinase) and JNK (c-jun NH2 terminal kinases), while down-regulated phosphorylated AKT (Protein Kinase B) and ERK1/2 (extracellular signal-regulated protein kinases 1 and 2). However, nanomicelle curcumin (50 mg/kg) significantly improved these toxic effects of BPA in rat heart tissue. The results provide evidence that nanomicelle curcumin showed preventive effects on subchronic exposure to BPA induced toxicity in the heart tissue in rats.
Collapse
Affiliation(s)
- Mahmoud Gorji Valokola
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Kianfar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
The Neurochemical Characterization of Parasympathetic Nerve Fibers in the Porcine Uterine Wall Under Physiological Conditions and After Exposure to Bisphenol A (BPA). Neurotox Res 2019; 35:867-882. [PMID: 30788711 PMCID: PMC6469660 DOI: 10.1007/s12640-019-00013-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Bisphenol A, a substance commonly used in plastic manufacturing, is relatively well known as an endocrine disruptor, which may bind to estrogen receptors and has multidirectional negative effects on both human and animal organisms. Previous studies have reported that BPA may act on the reproductive organs, but knowledge concerning BPA-induced changes within the nerves located in the uterine wall is extremely scant. The aim of this study was to investigate the impact of various doses of BPA on the parasympathetic nerves located in the corpus and horns of the uterus using a single and double immunofluorescence method. The obtained results have shown that BPA may change not only the expression of vesicular acetylcholine transporter (VAChT—a marker of parasympathetic nervous structures) in the uterine intramural nerve fibers, but also the degree of colocalization of this substance with other neuronal factors, including substance P (SP), vasoactive intestinal polypeptide (VIP), galanin (GAL), and calcitonin gene–related peptide (CGRP). Moreover, BPA caused changes in the density of the overall populations of fibers immunoreactive to the particular neuropeptides mentioned above. The characteristics of the changes clearly depended on the part of the uterus, the neuronal factors studied, and the dosage of BPA. The mechanisms of the observed fluctuations are probably connected with the neurotoxic and/or pro-inflammatory activity of BPA. Moreover, the results have shown that even low doses of BPA are not neutral to living organisms. Changes in the neurochemical characterization of nerves supplying the uterine wall may be the first subclinical sign of intoxication with this substance.
Collapse
|
34
|
Bahey NG, Abd Elaziz HO, Elsayed Gadalla KK. Potential Toxic Effect of Bisphenol A on the Cardiac Muscle of Adult Rat and the Possible Protective Effect of Omega-3: A Histological and Immunohistochemical Study. J Microsc Ultrastruct 2019; 7:1-8. [PMID: 31008050 PMCID: PMC6442328 DOI: 10.4103/jmau.jmau_53_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bisphenol A (BPA) is intensely used in the production of polycarbonate plastics and epoxy resins. Recently, BPA has been receiving increased attention due to its link to various health problems that develop after direct or indirect human exposure. Previous studies have shown the harmful effect of high doses of BPA; however, the effect of small doses of BPA on disease development is controversial. The aim of this study was to investigate the effect of a low dose of BPA on the rat myocardium and to explore the outcome of coadministration of Omega-3 fatty acid (FA). Thirty adult male rats were divided equally into control group, BPA-treated group (1.2 mg/kg/day, intraperitoneally for 3 weeks), and BPA and Omega-3-treated group (received BPA as before plus Omega-3 at a daily dose of 300 mg/kg/day orally) for 3 weeks. Exposure to BPA resulted in structural anomalies in the rat myocardium in the form of disarrangement of myofibers, hypertrophy of myocytes, myocardial fibrosis, and dilatation of intramyocardial arterioles. On the other hand, mast cell density and media-to-lumen area ratio were not significantly altered. Interestingly, concomitant administration of Omega-3 FAs with BPA significantly reduced BPA-induced changes and provided a protective effect to the myocardium. In conclusion, exposure to a low dose of BPA could potentially lead to pathological alterations in the myocardium, which could be prevented by administration of Omega-3 FA.
Collapse
Affiliation(s)
- Noha Gamal Bahey
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta University, Egypt
| | | | - Kamal Kamal Elsayed Gadalla
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt.,Center for Discovery Brain Science, Edinburgh University, United Kingdom
| |
Collapse
|
35
|
Kasneci A, Lee JS, Yun TJ, Shang J, Lampen S, Gomolin T, Cheong CC, Chalifour LE. From the Cover: Lifelong Exposure of C57bl/6n Male Mice to Bisphenol A or Bisphenol S Reduces Recovery From a Myocardial Infarction. Toxicol Sci 2018; 159:189-202. [PMID: 28903498 DOI: 10.1093/toxsci/kfx133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bisphenol A (BPA) leaches from plastics to contaminate foodstuffs. Analogs, such as bisphenol S (BPS), are now used increasingly in manufacturing. Greater BPA exposure has been correlated with exacerbation of cardiovascular disease, including myocardial infarction (MI). To test the hypothesis that bisphenol exposure impairs cardiac healing, we exposed C57bl/6n mice to water containing 25ng/ml BPA or BPS from conception and surgically induced an MI in adult male progeny. Increased early death and cardiac dilation, and reduced cardiac function were found post-MI in BPA- and BPS-exposed mice. Flow cytometry revealed increased monocyte and macrophage infiltration that correlated with increased chemokine C-C motif ligand-2 expression in the infarct. In vitro BPA and BPS addition increased matrix metalloproteinase-9 (MMP) protein and secreted activity in RAW264.7 macrophage cells suggesting that invivo increases in MMP2 and MMP9 in exposed infarcts were myeloid-derived. Bone marrow-derived monocytes isolated from exposed mice had greater expression of pro-inflammatory polarization markers when chemokine stimulated indicating an enhanced susceptibility to develop a pro-inflammatory monocyte population. Chronic BPA exposure of estrogen receptor beta (ERβ) deficient mice did not worsen early death, cardiac structure/function, or expression of myeloid markers after an MI. In contrast, BPS exposure of ERβ-deficient mice resulted in greater death and expression of myeloid markers. We conclude that lifelong exposure to BPA or BPS augmented the monocyte/macrophage inflammatory response and adverse remodeling from an MI thereby reducing the ability to survive and successfully recover, and that the adverse effect of BPA, but not BPS, is downstream of ERβ signaling.
Collapse
Affiliation(s)
- Amanda Kasneci
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Jun Seong Lee
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Tae Jin Yun
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Jijun Shang
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Shaun Lampen
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Tamar Gomolin
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Cheolho C Cheong
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec H3A 1A2, Canada
| | - Lorraine E Chalifour
- Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec H3A 1A2, Canada
| |
Collapse
|
36
|
Moreman J, Takesono A, Trznadel M, Winter MJ, Perry A, Wood ME, Rogers NJ, Kudoh T, Tyler CR. Estrogenic Mechanisms and Cardiac Responses Following Early Life Exposure to Bisphenol A (BPA) and Its Metabolite 4-Methyl-2,4-bis( p-hydroxyphenyl)pent-1-ene (MBP) in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6656-6665. [PMID: 29738667 DOI: 10.1021/acs.est.8b01095] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Environmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA. We investigated the estrogenic effects and estrogen receptor signaling pathway(s) of BPA and MBP following early life exposure using a transgenic, estrogen responsive (ERE-TG) zebrafish and a targeted morpholino approach to knockdown the three fish estrogen receptor (ER) subtypes. The functional consequences of BPA exposure on the cardiovascular system of zebrafish larvae were also examined. The heart atrioventricular valves and the bulbus arteriosus were primary target tissues for both BPA and MBP in the ERE-TG zebrafish, and MBP was approximately 1000-fold more potent than BPA as an estrogen in these tissues. Estrogen receptor knockdown with morpholinos indicated that the estrogenic responses in the heart for both BPA and MBP were mediated via an estrogen receptor 1 (esr1) dependent pathway. At the highest BPA concentration tested (2500 μg/L), alterations in the atrial:ventricular beat ratio indicated a functional impact on the heart of 5 days post fertilization (dpf) larvae, and there was also a significantly reduced heart rate in these larvae at 14 dpf. Our findings indicate that some of the reported adverse effects on heart function associated with BPA exposure (in mammals) may act through an estrogenic mechanism, but that fish are unlikely to be susceptible to adverse effects on heart development for environmentally relevant exposures.
Collapse
Affiliation(s)
- John Moreman
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Aya Takesono
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Maciej Trznadel
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Alexis Perry
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Mark E Wood
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Nicola J Rogers
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| |
Collapse
|
37
|
Ramadan M, Sherman M, Jaimes R, Chaluvadi A, Swift L, Posnack NG. Disruption of neonatal cardiomyocyte physiology following exposure to bisphenol-a. Sci Rep 2018; 8:7356. [PMID: 29743542 PMCID: PMC5943481 DOI: 10.1038/s41598-018-25719-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
Bisphenol chemicals are commonly used in the manufacturing of polycarbonate plastics, polyvinyl chloride plastics, resins, and thermal printing applications. Humans are inadvertently exposed to bisphenols through contact with consumer products and/or medical devices. Recent reports have shown a link between bisphenol-a (BPA) exposure and adverse cardiovascular outcomes; although these studies have been limited to adult subjects and models. Since cardiac physiology differs significantly between the developing and adult heart, we aimed to assess the impact of BPA exposure on cardiac function, using a neonatal cardiomyocyte model. Neonatal rat ventricular myocytes were monitored to assess cell viability, spontaneous beating rate, beat rate variability, and calcium-handling parameters in the presence of control or bisphenol-supplemented media. A range of doses were tested to mimic environmental exposure (10-9-10-8M), maximum clinical exposure (10-5M), and supraphysiological exposure levels (10-4M). Acute BPA exposure altered cardiomyocyte functionality, resulting in a slowed spontaneous beating rate and increased beat rate variability. BPA exposure also impaired intracellular calcium handling, resulting in diminished calcium transient amplitudes, prolonged calcium transient upstroke and duration time. Alterations in calcium handling also increased the propensity for alternans and skipped beats. Notably, the effect of BPA-treatment on calcium handling was partially reversible. Our data suggest that acute BPA exposure could precipitate secondary adverse effects on contractile performance and/or electrical alternans, both of which are dependent on intracellular calcium homeostasis.
Collapse
Affiliation(s)
- Manelle Ramadan
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children's National Health System, Washington, USA
- Children's National Heart Institute, Children's National Health System, Washington, USA
| | - Meredith Sherman
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children's National Health System, Washington, USA
| | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children's National Health System, Washington, USA
- Children's National Heart Institute, Children's National Health System, Washington, USA
| | - Ashika Chaluvadi
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children's National Health System, Washington, USA
| | - Luther Swift
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children's National Health System, Washington, USA
- Children's National Heart Institute, Children's National Health System, Washington, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children's National Health System, Washington, USA.
- Children's National Heart Institute, Children's National Health System, Washington, USA.
- Department of Pediatrics, Department of Pharmacology & Physiology, School of Medicine and Health Sciences, George Washington University, Washington, USA.
| |
Collapse
|
38
|
Gonçalves R, Zanatta AP, Cavalari FC, do Nascimento MAW, Delalande-Lecapitaine C, Bouraïma-Lelong H, Silva FRMB. Acute effect of bisphenol A: Signaling pathways on calcium influx in immature rat testes. Reprod Toxicol 2018; 77:94-102. [PMID: 29476780 DOI: 10.1016/j.reprotox.2018.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
We investigated the acute effect of low concentrations of BPA on calcium influx and the mechanism of action of BPA in this rapid response in the rat testis. BPA increased calcium influx at 1 pM and 1 nM at 300 s of incubation, in a similar manner to that of estradiol. At 1 pM, BPA stimulated calcium influx independently of classical estrogen receptors, consistent with a G-protein coupled receptor. This effect also involves the modulation of ionic channels, such as K+, TRPV1 and Cl- channels. Furthermore, BPA is able to modulate calcium from intracellular storages by inhibiting SERCA and activating IP3 receptor/Ca2+ channels at the endoplasmic reticulum and activate kinase proteins, such as PKA and PKC. The rapid responses of BPA on calcium influx could, in turn, trigger a cross talk by MEK and p38MAPK activation and also mediate genomic responses.
Collapse
Affiliation(s)
- Renata Gonçalves
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; UNOCHAPECÓ, Brazil; Normandie Univ, France; UNICAEN, Laboratoire Estrogènes, Reproduction, Cancer, CAEN cedex 5, France
| | | | - Fernanda Carvalho Cavalari
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Monica Andressa Wessner do Nascimento
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Christelle Delalande-Lecapitaine
- Normandie Univ, France; UNICAEN, Laboratoire Estrogènes, Reproduction, Cancer, CAEN cedex 5, France; INRA USC 2006, CAEN cedex 5, France
| | - Hélène Bouraïma-Lelong
- Normandie Univ, France; UNICAEN, Laboratoire Estrogènes, Reproduction, Cancer, CAEN cedex 5, France; INRA USC 2006, CAEN cedex 5, France
| | - Fátima Regina Mena Barreto Silva
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
39
|
Machuki J, Zhang H, Harding S, Sun H. Molecular pathways of oestrogen receptors and β-adrenergic receptors in cardiac cells: Recognition of their similarities, interactions and therapeutic value. Acta Physiol (Oxf) 2018; 222. [PMID: 28994249 PMCID: PMC5813217 DOI: 10.1111/apha.12978] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/07/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Oestrogen receptors (ERs) and β-adrenergic receptors (βARs) play important roles in the cardiovascular system. Moreover, these receptors are expressed in cardiac myocytes and vascular tissues. Numerous experimental observations support the hypothesis that similarities and interactions exist between the signalling pathways of ERs (ERα, ERβ and GPR30) and βARs (β1 AR, β2 AR and β3 AR). The recently discovered oestrogen receptor GPR30 shares structural features with the βARs, and this forms the basis for the interactions and functional overlap. GPR30 possesses protein kinase A (PKA) phosphorylation sites and PDZ binding motifs and interacts with A-kinase anchoring protein 5 (AKAP5), all of which enable its interaction with the βAR pathways. The interactions between ERs and βARs occur downstream of the G-protein-coupled receptor, through the Gαs and Gαi proteins. This review presents an up-to-date description of ERs and βARs and demonstrates functional synergism and interactions among these receptors in cardiac cells. We explore their signalling cascades and the mechanisms that orchestrate their interactions and propose new perspectives on the signalling patterns for the GPR30 based on its structural resemblance to the βARs. In addition, we explore the relevance of these interactions to cell physiology, drugs (especially β-blockers and calcium channel blockers) and cardioprotection. Furthermore, a receptor-independent mechanism for oestrogen and its influence on the expression of βARs and calcium-handling proteins are discussed. Finally, we highlight promising therapeutic avenues that can be derived from the shared pathways, especially the phosphatidylinositol-3-OH kinase (PI3K/Akt) pathway.
Collapse
Affiliation(s)
- J.O. Machuki
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - H.Y. Zhang
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - S.E. Harding
- National Heart and Lung Institute; Imperial College; London UK
| | - H. Sun
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| |
Collapse
|
40
|
Villar-Pazos S, Martinez-Pinna J, Castellano-Muñoz M, Alonso-Magdalena P, Marroqui L, Quesada I, Gustafsson JA, Nadal A. Molecular mechanisms involved in the non-monotonic effect of bisphenol-a on ca2+ entry in mouse pancreatic β-cells. Sci Rep 2017; 7:11770. [PMID: 28924161 PMCID: PMC5603522 DOI: 10.1038/s41598-017-11995-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022] Open
Abstract
In regulatory toxicology, the dose-response relationship is a key element towards fulfilling safety assessments and satisfying regulatory authorities. Conventionally, the larger the dose, the greater the response, following the dogma “the dose makes the poison”. Many endocrine disrupting chemicals, including bisphenol-A (BPA), induce non-monotonic dose response (NMDR) relationships, which are unconventional and have tremendous implications in risk assessment. Although several molecular mechanisms have been proposed to explain NMDR relationships, they are largely undemonstrated. Using mouse pancreatic β-cells from wild-type and oestrogen receptor ERβ−/− mice, we found that exposure to increasing doses of BPA affected Ca2+ entry in an NMDR manner. Low doses decreased plasma membrane Ca2+ currents after downregulation of Cav2.3 ion channel expression, in a process involving ERβ. High doses decreased Ca2+ currents through an ERβ-mediated mechanism and simultaneously increased Ca2+ currents via oestrogen receptor ERα. The outcome of both molecular mechanisms explains the NMDR relationship between BPA and Ca2+ entry in β-cells.
Collapse
Affiliation(s)
- Sabrina Villar-Pazos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Juan Martinez-Pinna
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Manuel Castellano-Muñoz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Paloma Alonso-Magdalena
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Laura Marroqui
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Ivan Quesada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA.,Department of Biosciences and Nutrition, Karolinska Institut, Huddinge, Sweden
| | - Angel Nadal
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain.
| |
Collapse
|
41
|
Ma J, Hong K, Wang HS. Progesterone Protects Against Bisphenol A-Induced Arrhythmias in Female Rat Cardiac Myocytes via Rapid Signaling. Endocrinology 2017; 158:778-790. [PMID: 28324061 PMCID: PMC5460806 DOI: 10.1210/en.2016-1702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is an estrogenic endocrine-disrupting chemical (EDC) that has a range of potential adverse health effects. Previously we showed that acute exposure to BPA promoted arrhythmias in female rat hearts through estrogen receptor rapid signaling. Progesterone (P4) and estrogen have antagonistic or complementary actions in a number of tissues and systems. In the current study, we examined the influence and possible protective effect of P4 on the rapid cardiac actions of BPA in female rat cardiac myocytes. Preincubation with physiological concentration (1 nM) of P4 abolished BPA-induced triggered activities in female cardiac myocytes. Further, P4 abrogated BPA-induced alterations in Ca2+ handling, including elevated sarcoplasmic reticulum Ca2+ leak and Ca2+ load. Key to the inhibitory effect of P4 is its blockade of BPA-induced increase in the phosphorylation of phospholamban. At myocyte and protein levels, these inhibitory actions of P4 were blocked by pretreatment with the nuclear P4 receptor (nPR) antagonist RU486. Analysis using membrane-impermeable bovine serum albumin-conjugated P4 suggested that the actions of P4 were mediated by membrane-initiated signaling. Inhibitory G (Gi) protein and phophoinositide-3 kinase (PI3K), but not tyrosine protein kinase activation, were involved in the observed effects of P4. In conclusion, P4 exerts an acute protective effect against BPA-induced arrhythmogenesis in female cardiac myocytes through nPR and the Gi/PI3K signaling pathway. Our findings highlight the importance of considering the impact of EDCs in the context of native hormonals and may provide potential therapeutic strategies for protection against the cardiac toxicities associated with BPA exposure.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Kui Hong
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hong-Sheng Wang
- Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| |
Collapse
|
42
|
Zhang R, Pessah IN. Divergent Mechanisms Leading to Signaling Dysfunction in Embryonic Muscle by Bisphenol A and Tetrabromobisphenol A. Mol Pharmacol 2017; 91:428-436. [PMID: 28143888 DOI: 10.1124/mol.116.107342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/26/2017] [Indexed: 11/22/2022] Open
Abstract
Bisphenol A (BPA) and its brominated derivative tetrabromobisphenol A (TBBPA) are high production volume chemicals used in the manufacture of various consumer products. Although regarded as endocrine disruptors, these chemicals are suspected to exert nongenomic actions on muscle function that are not well understood. Using skeletal muscle microsomes, we examined the effects of BPA and TBBPA on ryanodine receptor type 1 (RyR1), dihydropyridine receptor (DHPR), and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). We assessed the impact of these chemicals on Ca2+ dynamics and signaling in embryonic skeletal myotubes through fluorescent Ca2+ imaging and measurement of resting membrane potential (Vm). TBBPA activated RyR1 and inhibited DHPR and SERCA, inducing a net efflux of Ca2+ from loaded microsomes, whereas BPA exhibited little or no activity at these targets. Regardless, both compounds disrupted the function of intact myotubes. TBBPA diminished and eventually abrogated Ca2+ transients, altered intracellular Ca2+ equilibrium, and caused Vm depolarization. For some cells, BPA caused rapid Ca2+ transient loss without marked changes in cytosolic and sarcoplasmic reticulum Ca2+ levels, likely owing to altered cellular excitability as a result of BPA-induced Vm hyperpolarization. BPA and TBBPA both interfere with skeletal muscle function through divergent mechanisms that impair excitation-contraction coupling and may be exemplary of their adverse outcomes in other muscle types.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis (R.Z., I.N.P.), and The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento (I.N.P.), California
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis (R.Z., I.N.P.), and The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento (I.N.P.), California
| |
Collapse
|
43
|
Enhancement of contraction and L-type Ca2+ current by murrayafoline-A via protein kinase C in rat ventricular myocytes. Eur J Pharmacol 2016; 784:33-41. [DOI: 10.1016/j.ejphar.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 11/17/2022]
|
44
|
Soriano S, Ripoll C, Alonso-Magdalena P, Fuentes E, Quesada I, Nadal A, Martinez-Pinna J. Effects of Bisphenol A on ion channels: Experimental evidence and molecular mechanisms. Steroids 2016; 111:12-20. [PMID: 26930576 DOI: 10.1016/j.steroids.2016.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/21/2016] [Accepted: 02/25/2016] [Indexed: 02/03/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) produced in huge quantities in the manufacture of polycarbonate plastics and epoxy resins. It is present in most humans in developed countries, acting as a xenoestrogen and it is considered an environmental risk factor associated to several diseases. Among the whole array of identified mechanisms by which BPA can interfere with physiological processes in living organisms, changes on ion channel activity is one of the most poorly understood. There is still little evidence about BPA regulation of ion channel expression and function. However, this information is key to understand how BPA disrupts excitable and non-excitable cells, including neurons, endocrine cells and muscle cells. This report is the result of a comprehensive literature review on the effects of BPA on ion channels. We conclude that there is evidence to say that these important molecules may be key end-points for EDCs acting as xenoestrogens. However, more research on channel-mediated BPA effects is needed. Particularly, mechanistic studies to unravel the pathophysiological actions of BPA on ion channels at environmentally relevant doses.
Collapse
Affiliation(s)
- Sergi Soriano
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | - Cristina Ripoll
- Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Spain
| | - Paloma Alonso-Magdalena
- Departamento de Biología Aplicada and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Spain
| | - Esther Fuentes
- Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Spain
| | - Ivan Quesada
- Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Spain
| | - Angel Nadal
- Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Spain.
| | - Juan Martinez-Pinna
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain.
| |
Collapse
|
45
|
Kinch CD, Kurrasch DM, Habibi HR. Adverse morphological development in embryonic zebrafish exposed to environmental concentrations of contaminants individually and in mixture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:286-98. [PMID: 27107150 DOI: 10.1016/j.aquatox.2016.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 05/07/2023]
Abstract
Exposure to environmental contaminants has been linked to developmental and reproductive abnormalities leading to infertility, spontaneous abortion, reduced number of offspring, and metabolic disorders. In addition, there is evidence linking environmental contaminants and endocrine disruption to abnormal developmental rate, defects in heart and eye morphology, and alterations in behavior. Notably, these effects could not be explained by interaction with a single hormone receptor. Here, using a whole-organism approach, we investigated morphological changes to developing zebrafish caused by exposure to a number of environmental contaminants, including bisphenol A (BPA), di(2-ethylhexyl)phthalate (DEHP), nonylphenol, and fucosterol at concentrations measured in a local water body (Oldman River, AB), individually and in mixture. Exposure to nanomolar contaminant concentrations resulted in abnormal morphological development, including changes to body length, pericardia (heart), and the head. We also characterize the spatiotemporal expression profiles of estrogen, androgen, and thyroid hormone receptors to demonstrate that localization of these receptors might be mediating contaminant effects on development. Finally, we examined the effects of contaminants singly and in mixture. Combined, our results support the hypothesis that adverse effects of contaminants are not mediated by single hormone receptor signaling, and adversity of contaminants in mixture could not be predicted by simple additive effect of contaminants. The findings provide a framework for better understanding of developmental toxicity of environmental contaminants in zebrafish and other vertebrate species.
Collapse
Affiliation(s)
- Cassandra D Kinch
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada; Department of Medical Genetics, Cummings School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada.
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cummings School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada.
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
46
|
Ljunggren SA, Iggland M, Rönn M, Lind L, Lind PM, Karlsson H. Altered heart proteome in fructose-fed Fisher 344 rats exposed to bisphenol A. Toxicology 2016; 347-349:6-16. [PMID: 26930160 DOI: 10.1016/j.tox.2016.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/18/2016] [Accepted: 02/25/2016] [Indexed: 01/01/2023]
Abstract
Bisphenol A (BPA), is an artificial estrogen initially produced for medical purposes but is today widely used in polycarbonate plastics and epoxy resins. Exposure-related reproductive disorders have been found, but recently it has also been suggested that BPA may be involved in obesity, diabetes, myocardial hypertrophy and myocardial infarction in humans. To mimic a modern lifestyle, female rats were fed with fructose or fructose plus BPA (0.25mg/L drinking water). The myocardial left ventricle proteome of water controls, fructose-fed and fructose-fed plus BPA supplemented rats was explored. The proteome was investigated using nano-liquid chromatography tandem mass spectrometry and two-dimensional gel electrophoresis followed by matrix assisted laser desorption/ionization mass spectrometry identification. In total, 41 proteins were significantly altered by BPA exposure compared to water or fructose controls. Principal component analysis and cellular process enrichment analysis of altered proteins suggested increased fatty acid transport and oxidation, increased ROS generation and altered structural integrity of the myocardial left ventricle in the fructose-fed BPA-exposed rats, indicating unfavorable effects on the myocardium. In conclusion, BPA exposure in the rats induces major alterations in the myocardial proteome.
Collapse
Affiliation(s)
- S A Ljunggren
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - M Iggland
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - M Rönn
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
| | - L Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden.
| | - P M Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
| | - H Karlsson
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
47
|
Muka T, Vargas KG, Jaspers L, Wen KX, Dhana K, Vitezova A, Nano J, Brahimaj A, Colpani V, Bano A, Kraja B, Zaciragic A, Bramer WM, van Dijk GM, Kavousi M, Franco OH. Estrogen receptor β actions in the female cardiovascular system: A systematic review of animal and human studies. Maturitas 2016; 86:28-43. [PMID: 26921926 DOI: 10.1016/j.maturitas.2016.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 12/27/2022]
Abstract
Five medical databases were searched for studies that assessed the role of ERβ in the female cardiovascular system and the influence of age and menopause on ERβ functioning. Of 9472 references, 88 studies met our inclusion criteria (71 animal model experimental studies, 15 human model experimental studies and 2 population based studies). ERβ signaling was shown to possess vasodilator and antiangiogenic properties by regulating the activity of nitric oxide, altering membrane ionic permeability in vascular smooth muscle cells, inhibiting vascular smooth muscle cell migration and proliferation and by regulating adrenergic control of the arteries. Also, a possible protective effect of ERβ signaling against left ventricular hypertrophy and ischemia/reperfusion injury via genomic and non-genomic pathways was suggested in 27 studies. Moreover, 5 studies reported that the vascular effects of ERβ may be vessel specific and may differ by age and menopause status. ERβ seems to possess multiple functions in the female cardiovascular system. Further studies are needed to evaluate whether isoform-selective ERβ-ligands might contribute to cardiovascular disease prevention.
Collapse
Affiliation(s)
- Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Kris G Vargas
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Loes Jaspers
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ke-xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Anna Vitezova
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Adela Brahimaj
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Veronica Colpani
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Arjola Bano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Bledar Kraja
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania; University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Gaby M van Dijk
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Patel BB, Raad M, Sebag IA, Chalifour LE. Sex-specific cardiovascular responses to control or high fat diet feeding in C57bl/6 mice chronically exposed to bisphenol A. Toxicol Rep 2015; 2:1310-1318. [PMID: 28962473 PMCID: PMC5598525 DOI: 10.1016/j.toxrep.2015.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022] Open
Abstract
The increased pericardial fat which often accompanies overall obesity is thought to alter cardiac structure/function and increase the risk for atrial fibrillation. We hypothesized that chronic exposure to bisphenol A (BPA) would induce pericardial fat, cardiac hypertrophy or arrhythmia. C57bl/6n dams were exposed to BPA (25 ng/ml drinking water) beginning on gestation day 11 and progeny continued on 2.5 ng BPA/ml drinking water. The progeny of control dams (VEH) and dams treated with diethylstilbestrol (DES, 1 μg/kg/day, gestation days 1114) had tap water. After weaning progeny were fed either a control (CD) or high fat diet (HFD) for 3 months. Pericardial fat was present in CD-BPA and CD-DES and not CD-VEH mice, and was increased in all HFD mice. Catecholamine challenge revealed no differences in males, but BPA-exposed females had longer P-wave and QRS complex duration. Only CD-BPA and CD-DES females developed cardiac hypertrophy which was independent of increased blood pressure. Calcium homeostasis protein expression changes in HFD-BPA and HFD-DES mice predict reduced SERCA2 activity in males and increased SERCA2 activity in females. Thus, chronic BPA exposure induced pericardial fat in the absence of HFD, and female-specific changes in cardiac hypertrophy development and cardiac electrical conduction after a catecholamine challenge.
Collapse
Affiliation(s)
- Bhavini B Patel
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montreal, Quebec H3T 1E2, Canada
| | - Mohamad Raad
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montreal, Quebec H3T 1E2, Canada
| | - Igal A Sebag
- Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montreal, Quebec H3T 1E2, Canada
| | - Lorraine E Chalifour
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montreal, Quebec H3T 1E2, Canada.,Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montreal, Quebec H3T 1E2, Canada.,Division of Endocrinology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada
| |
Collapse
|
49
|
Abstract
The ubiquitous nature of plastics has raised concerns pertaining to continuous exposure to plastic polymers and human health risks. Of particular concern is the use of endocrine-disrupting chemicals in plastic production, including di(2-ethylhexyl)phthalate (DEHP) and bisphenol A (BPA). Widespread and continuous exposure to DEHP and BPA occurs through dietary intake, inhalation, dermal and intravenous exposure via consumer products and medical devices. This article reviews the literature examining the relationship between DEHP and BPA exposure and cardiac toxicity. In vitro and in vivo experimental reports are outlined, as well as epidemiological studies which examine the association between these chemicals and cardiovascular outcomes. Gaps in our current knowledge are also discussed, along with future investigative endeavors that may help resolve whether DEHP and/or BPA exposure has a negative impact on cardiovascular physiology.
Collapse
Affiliation(s)
- Nikki Gillum Posnack
- Pharmacology and Physiology Department, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street NW, Washington, DC, 20052, USA,
| |
Collapse
|
50
|
Mita L, Grumiro L, Rossi S, Bianco C, Defez R, Gallo P, Mita DG, Diano N. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor. JOURNAL OF HAZARDOUS MATERIALS 2015; 291:129-135. [PMID: 25781217 DOI: 10.1016/j.jhazmat.2015.02.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems.
Collapse
Affiliation(s)
- Luigi Mita
- National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples, Italy; Institute of Genetic and Biophysics "ABT", Via P. Castellino, 111, 80131 Naples Italy
| | - Laura Grumiro
- National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples, Italy
| | - Sergio Rossi
- Institute of Genetic and Biophysics "ABT", Via P. Castellino, 111, 80131 Naples Italy
| | - Carmen Bianco
- Institute of Biosciences and BioResources, Via P. Castellino, 111, 80131 Naples, Italy
| | - Roberto Defez
- Institute of Biosciences and BioResources, Via P. Castellino, 111, 80131 Naples, Italy
| | - Pasquale Gallo
- Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055 Portici, Naples, Italy
| | - Damiano Gustavo Mita
- National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples, Italy; Institute of Genetic and Biophysics "ABT", Via P. Castellino, 111, 80131 Naples Italy.
| | - Nadia Diano
- National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples, Italy; Department of Experimental Medicine, Second University of Naples, Via S.M. di Costantinopoli, 16, 80138 Naples Italy
| |
Collapse
|