1
|
Lei S, Li X, Zuo A, Ruan S, Guo Y. CTRP9 alleviates diet induced obesity through increasing lipolysis mediated by enhancing autophagy-initiation complex formation. J Nutr Biochem 2024; 131:109694. [PMID: 38906337 DOI: 10.1016/j.jnutbio.2024.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Recently, emerging evidence has suggested that obesity become a prevalent health threat worldwide. Reportedly, CTRP9 can ameliorate HFD induced obesity. However, the molecular mechanism underlying the role of CTRP9 in obesity remains elusive. In this study, we reported its major function in the regulation of lipolysis. First, we found that the expression of CTRP9 was decreased in mature adipocytes and white adipose tissue of obese mice. Then, we showed that overexpression adipose tissue CTRP9 alleviated diet-induced obesity and adipocytes hypertrophy, improved glucose intolerance and raised energy expenditure. Moreover, CTRP9 increased the lipolysis in vitro and vivo. Additionally, we determined that CTRP9 enhanced autophagy flux in adipocytes. Intriguingly, knock down Beclin1 by SiRNA abolished the effect of CTRP9 on lipolysis. Mechanically, CTRP9 enhanced the expression of SNX26. We demonstrated that SNX26 was a component of the ATG14L-Beclin1-VPS34 complex and enhanced the assembly of the autophagy-initiation complex. Collectively, our results suggested that CTRP9 alleviated diet induced obesity through enhancing lipolysis mediated by autophagy-initiation complex formation.
Collapse
Affiliation(s)
- Shengyun Lei
- Department of General Medicine, Qilu Hospital of Shandong University,107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012,Jinan,Shandong, China
| | - Xuehui Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, Shandong, China
| | - Anju Zuo
- Department of General Medicine, Qilu Hospital of Shandong University,107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012,Jinan,Shandong, China
| | - Shiyan Ruan
- Department of General Medicine, Qilu Hospital of Shandong University,107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012,Jinan,Shandong, China
| | - Yuan Guo
- Department of General Medicine, Qilu Hospital of Shandong University,107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012,Jinan,Shandong, China.
| |
Collapse
|
2
|
Gu W, Wu G, Chen G, Meng X, Xie Z, Cai S. Polyphenols alleviate metabolic disorders: the role of ubiquitin-proteasome system. Front Nutr 2024; 11:1445080. [PMID: 39188976 PMCID: PMC11345163 DOI: 10.3389/fnut.2024.1445080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic disorders include obesity, nonalcoholic fatty liver disease, insulin resistance and type 2 diabetes. It has become a major health issue around the world. Ubiquitin-proteasome system (UPS) is essential for nearly all cellular processes, functions as a primary pathway for intracellular protein degradation. Recent researches indicated that dysfunctions in the UPS may result in the accumulation of toxic proteins, lipotoxicity, oxidative stress, inflammation, and insulin resistance, all of which contribute to the development and progression of metabolic disorders. An increasing body of evidence indicates that specific dietary polyphenols ameliorate metabolic disorders by preventing lipid synthesis and transport, excessive inflammation, hyperglycemia and insulin resistance, and oxidative stress, through regulation of the UPS. This review summarized the latest research progress of natural polyphenols improving metabolic disorders by regulating lipid accumulation, inflammation, oxidative stress, and insulin resistance through the UPS. In addition, the possible mechanisms of UPS-mediated prevention of metabolic disorders are comprehensively proposed. We aim to provide new angle to the development and utilization of polyphenols in improving metabolic disorders.
Collapse
Affiliation(s)
- Wei Gu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Xianghui Meng
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Shanbao Cai
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
3
|
Guo Y, Wang Y, Liu H, Jiang X, Lei S. High glucose environment induces NEDD4 deficiency that impairs angiogenesis and diabetic wound healing. J Dermatol Sci 2023; 112:148-157. [PMID: 37932175 DOI: 10.1016/j.jdermsci.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Healing of diabetic wounds, characterized by impaired angiogenesis, remains a clinical challenge. E3 ligase have been identified as potential therapeutic targets of wound healing. OBJECTIVE We assessed the role of E3 ligase NEDD4 in the context of angiogenesis and diabetic wound healing. METHODS The mRNA expression levels of NEDD4, TSP1 and VEGF were determined by real-time PCR. Western blotting was used to evaluate the protein expression of NEDD4, TSP1 and VEGF. The ubiquitination of TSP1 was evaluated by immunoprecipitation. MTT assay, wound healing assay and tube formation assay were performed to assess the proliferation, migration and angiogenic functions of endothelial cells. The epigenetic modification in the promoter of NEDD4 was confirmed using BSP assay and ChIP-qPCR assay. The role of NEDD4 in wound healing was further verified in diabetic mouse model. RESULTS NEDD4 promotes proliferation, migration and tube formation of endothelial cells. It binds to and ubiquitinates TSP1, which lead to TSP1 degradation and thus increased VEGF expression. The inhibitory effect of NEDD4 silencing on the angiogenesis ability of endothelial cells can be restored by TSP1 knockdown. NEDD4 is reduced in diabetic patients, which may due to hypermethylation of NEDD4 promoter mediated via DNMT1 under high glucose condition. Furthermore, inhibition of NEDD4 represses wound healing in diabetic mouse model. CONCLUSION NEDD4 might promote angiogenesis and wound healing by inhibiting TSP1 via ubiquitination in diabetic patients.
Collapse
Affiliation(s)
- Yu Guo
- Department of Plastic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yongjie Wang
- Department of Plastic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Haiwei Liu
- Department of Plastic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xulei Jiang
- Department of Plastic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Shaorong Lei
- Department of Plastic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
4
|
Xu J, Liu Z, Zhang J, Chen S, Wang W, Zhao X, Zhen M, Huang X. N-end Rule-Mediated Proteasomal Degradation of ATGL Promotes Lipid Storage. Diabetes 2023; 72:210-222. [PMID: 36346641 PMCID: PMC9871197 DOI: 10.2337/db22-0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Cellular lipid storage is regulated by the balance of lipogenesis and lipolysis. The rate-limiting triglyceride hydrolase ATGL (desnutrin/PNPLA2) is critical for lipolysis. The control of ATGL transcription, localization, and activation has been intensively studied, while regulation of the protein stability of ATGL is much less explored. In this study, we showed that the protein stability of ATGL is regulated by the N-end rule in cultured cells and in mice. The N-end rule E3 ligases UBR1 and UBR2 reduce the level of ATGL and affect lipid storage. The N-end rule-resistant ATGL(F2A) mutant, in which the N-terminal phenylalanine (F) of ATGL is substituted by alanine (A), has increased protein stability and enhanced lipolysis activity. ATGLF2A/F2A knock-in mice are protected against high-fat diet (HFD)-induced obesity, hepatic steatosis, and insulin resistance. Hepatic knockdown of Ubr1 attenuates HFD-induced hepatic steatosis by enhancing the ATGL level. Finally, the protein levels of UBR1 and ATGL are negatively correlated in the adipose tissue of obese mice. Our study reveals N-end rule-mediated proteasomal regulation of ATGL, a finding that may potentially be beneficial for treatment of obesity.
Collapse
Affiliation(s)
- Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Corresponding authors: Jiesi Xu, , and Xun Huang,
| | - Zhenglong Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianxin Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuefan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Zhen
- Lunenfeld–Tanebaum Research Institute, Departments of Molecular Genetics and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Corresponding authors: Jiesi Xu, , and Xun Huang,
| |
Collapse
|
5
|
Gupta A, Behl T, Aleya L, Rahman MH, Yadav HN, Pal G, Kaur I, Arora S. Role of UPP pathway in amelioration of diabetes-associated complications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19601-19614. [PMID: 33660172 DOI: 10.1007/s11356-021-12781-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Type 2 diabetes (T2D) is one of the most widely spread metabolic disorder also called as "life style" disease. Due to the alarming number of patients, there is great need to therapies targeting functions which can help in maintaining the homeostasis of glucose levels and improving insulin sensitivity. Detailed analysis was done through various research and review papers which was searched using MEDLINE, BIOSIS, and EMBASE using various keywords. This search retrieved the most appropriate content on these molecules targeting UPP pathway. From this extensive review involving UPP pathway, it was concluded that the role of ubiquitin's is not only limited to neurodegenerative disorders but also plays a critical role in progression of diabetes including obesity, insulin resistance, and various neurogenerative disorders but it also targets proteasomal degradation including mediation of cellular signaling pathways. Thus, drugs targeting UPP not only may show effect against diabetes but also are therapeutically beneficial in the treatment of diabetes-associated complications which may be obtained. Thus, based on the available information and data on UPP functions, it can be concluded that regulation of UPP pathway via downstream regulators mainly E1, E2, and E3 may bring promising results. Drugs targeting these transcriptional factors may emerge as a novel therapy in the treatment of diabetes and diabetes-associated complications.
Collapse
Affiliation(s)
- Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | | | - Giridhari Pal
- Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
6
|
Yan C, Zhao M, Li S, Liu T, Xu C, Liu L, Geng T, Gong D. Increase of E3 ubiquitin ligase NEDD4 expression leads to degradation of its target proteins PTEN/IGF1R during the formation of goose fatty liver. J Anim Sci 2020; 98:5897041. [PMID: 32841331 DOI: 10.1093/jas/skaa270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/22/2020] [Indexed: 11/12/2022] Open
Abstract
Goose fatty liver may have a unique protective mechanism as it does not show a pathological injury even in the case of severe steatosis. Although neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) participates in repair and regeneration of injured liver through its target proteins, its role in nonalcoholic fatty liver disease remains unknown. Using quantitative polymerase chain reaction (PCR) and immunoblot analyses, here, we found that the messenger RNA (mRNA) and protein expressions of NEDD4 were induced in goose fatty liver compared with normal liver. The mRNA expression of the gene of phosphate and tension homology deleted on chromosome ten (PTEN) and insulin-like growth factor 1 receptor (IGF1R) was also induced in goose fatty liver; however, their protein expression was or tended to be suppressed. Moreover, the co-immunoprecipitation analysis indicated that there was a physical association between NEDD4 and PTEN in goose liver, which was consistent with the ubiquitination of PTEN in goose fatty liver. Furthermore, NEDD4 overexpression in goose primary hepatocytes suppressed the PTEN and IGF1R protein levels without a significant effect on their mRNA expression. In conclusion, the increased expression of NEDD4 leads to the degradation of PTEN and IGF1R proteins through ubiquitination in goose fatty liver, suggesting that NEDD4 may protect goose fatty liver from severe steatosis-associated injury via its target proteins during the development of goose fatty liver.
Collapse
Affiliation(s)
- Chunchi Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Shuo Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Tongjun Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Cheng Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| |
Collapse
|
7
|
Wang ZW, Hu X, Ye M, Lin M, Chu M, Shen X. NEDD4 E3 ligase: Functions and mechanism in human cancer. Semin Cancer Biol 2020; 67:92-101. [PMID: 32171886 DOI: 10.1016/j.semcancer.2020.03.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
A growing amount of evidence indicates that the neuronally expressed developmentally downregulated 4 (NEDD4, also known as NEDD4-1) E3 ligase plays a critical role in a variety of cellular processes via the ubiquitination-mediated degradation of multiple substrates. The abnormal regulation of NEDD4 protein has been implicated in cancer development and progression. In this review article, we briefly delineate the downstream substrates and upstream regulators of NEDD4, which are involved in carcinogenesis. Moreover, we succinctly elucidate the functions of NEDD4 protein in tumorigenesis and progression, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial mesenchymal transition (EMT), cancer stem cells, and drug resistance. The findings regarding NEDD4 functions are further supported by knockout mouse models and human tumor tissue studies. This review could provide a promising and optimum anticancer therapeutic strategy via targeting the NEDD4 protein.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
8
|
Baloghova N, Lidak T, Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-β, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes (Basel) 2019; 10:genes10100815. [PMID: 31623112 PMCID: PMC6826584 DOI: 10.3390/genes10100815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
The Wnt, TGF-β, and Notch signaling pathways are essential for the regulation of cellular polarity, differentiation, proliferation, and migration. Differential activation and mutual crosstalk of these pathways during animal development are crucial instructive forces in the initiation of the body axis and the development of organs and tissues. Due to the ability to initiate cell proliferation, these pathways are vulnerable to somatic mutations selectively producing cells, which ultimately slip through cellular and organismal checkpoints and develop into cancer. The architecture of the Wnt, TGF-β, and Notch signaling pathways is simple. The transmembrane receptor, activated by the extracellular stimulus, induces nuclear translocation of the transcription factor, which subsequently changes the expression of target genes. Nevertheless, these pathways are regulated by a myriad of factors involved in various feedback mechanisms or crosstalk. The most prominent group of regulators is the ubiquitin-proteasome system (UPS). To open the door to UPS-based therapeutic manipulations, a thorough understanding of these regulations at a molecular level and rigorous confirmation in vivo are required. In this quest, mouse models are exceptional and, thanks to the progress in genetic engineering, also an accessible tool. Here, we reviewed the current understanding of how the UPS regulates the Wnt, TGF-β, and Notch pathways and we summarized the knowledge gained from related mouse models.
Collapse
Affiliation(s)
- Nikol Baloghova
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Tomas Lidak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Lukas Cermak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| |
Collapse
|
9
|
Liu J, Yao Q, Xiao L, Ma W, Li F, Lai B, Wang N. PPARγ induces NEDD4 gene expression to promote autophagy and insulin action. FEBS J 2019; 287:529-545. [PMID: 31423749 DOI: 10.1111/febs.15042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/24/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
Abstract
The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated protein 4 (NEDD4) plays a crucial role in governing a number of signaling pathways, including insulin and autophagy signaling. However, the molecular mechanism by which NEDD4 gene is transcriptionally regulated has not been fully elucidated. Here, we reported that NEDD4 mRNA and protein levels were increased by peroxisome proliferator-activated receptor-γ (PPARγ) in HepG2 hepatocytes. PPARγ antagonist GW9662 abolished thiazolidinedione (TZD)-induced NEDD4 expression. ChIP and luciferase reporter assays showed that PPARγ directly bound to the potential PPAR-responsive elements (PPREs) within the promoter region of the human NEDD4 gene. In addition, TZDs increased Akt phosphorylation and glucose uptake, which were abrogated through NEDD4 depletion. Furthermore, we showed that NEDD4-mediated autophagy induction and Akt phosphorylation were suppressed by oleic acid and high glucose treatment, activation of PPARγ successfully prevented this suppression. In conclusion, these results suggest that PPARγ plays a novel role in linking glucose metabolism and protein homeostasis through NEDD4-mediated effects on the autophagy machinery.
Collapse
Affiliation(s)
- Jia Liu
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Qinyu Yao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Lei Xiao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Wen Ma
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Fan Li
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Baochang Lai
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Nanping Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, China
| |
Collapse
|
10
|
In vivo evidence for the contribution of peripheral circulating inflammatory exosomes to neuroinflammation. J Neuroinflammation 2018; 15:8. [PMID: 29310666 PMCID: PMC5759808 DOI: 10.1186/s12974-017-1038-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neuroinflammation is implicated in the development and progression of many neurodegenerative diseases. Conditions that lead to a peripheral immune response are often associated with inflammation in the central nervous system (CNS), suggesting a communication between the peripheral immune system and the neuroimmune system. The underlying mechanism of this relationship remains largely unknown; however, experimental studies have demonstrated that exposure to infectious stimuli, such as lipopolysaccharide (LPS) or high-fat diet (HFD) feeding, result in profound peripheral- and neuro-inflammation. METHODS Using the model of endotoxemia with LPS, we studied the role of serum-derived exosomes in mediating neuroinflammation. We purified circulating exosomes from the sera of LPS-challenged mice, which were then intravenously injected into normal adult mice. RESULTS We found that the recipient mice that received serum-derived exosomes from LPS-challenged mice exhibited elevated microglial activation. Moreover, we observed astrogliosis, increased systemic pro-inflammatory cytokine production, and elevated CNS expression of pro-inflammatory cytokine mRNA and the inflammation-associated microRNA (miR-155) in these recipient mice. Gene expression analysis confirmed that many inflammatory microRNAs were significantly upregulated in the purified exosomes under LPS-challenged conditions. We observed accumulated signaling within the microglia of mice that received tail-vein injections of fluorescently labeled exosomes though the percentage of those microglial cells was found low. Finally, purified LPS-stimulated exosomes from blood when infused directly into the cerebral ventricles provoked significant microgliosis and, to a lesser extent, astrogliosis. CONCLUSIONS The experimental results suggest that circulating exosomes may act as a neuroinflammatory mediator in systemic inflammation.
Collapse
|
11
|
Duarte DAS, Fortes MRS, Duarte MDS, Guimarães SEF, Verardo LL, Veroneze R, Ribeiro AMF, Lopes PS, de Resende MDV, Fonseca e Silva F. Genome-wide association studies, meta-analyses and derived gene network for meat quality and carcass traits in pigs. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A large number of quantitative trait loci (QTL) for meat quality and carcass traits has been reported in pigs over the past 20 years. However, few QTL have been validated and the biological meaning of the genes associated to these QTL has been underexploited. In this context, a meta-analysis was performed to compare the significant markers with meta-QTL previously reported in literature. Genome association studies were performed for 12 traits, from which 144 SNPs were found out to be significant (P < 0.05). They were validated in the meta-analysis and used to build the Association Weight Matrix, a matrix framework employed to investigate co-association of pairwise SNP across phenotypes enabling to derive a gene network. A total of 45 genes were selected from the Association Weight Matrix analysis, from which 25 significant transcription factors were identified and used to construct the networks associated to meat quality and carcass traits. These networks allowed the identification of key transcription factors, such as SOX5 and NKX2–5, gene–gene interactions (e.g. ATP5A1, JPH1, DPT and NEDD4) and pathways related to the regulation of adipose tissue metabolism and skeletal muscle development. Validated SNPs and knowledge of key genes driving these important industry traits might assist future strategies in pig breeding.
Collapse
|
12
|
Pravenec M, Saba LM, Zídek V, Landa V, Mlejnek P, Šilhavý J, Šimáková M, Strnad H, Trnovská J, Škop V, Hüttl M, Marková I, Oliyarnyk O, Malínská H, Kazdová L, Smith H, Tabakoff B. Systems genetic analysis of brown adipose tissue function. Physiol Genomics 2017; 50:52-66. [PMID: 29127223 DOI: 10.1152/physiolgenomics.00091.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brown adipose tissue (BAT) has been suggested to play an important role in lipid and glucose metabolism in rodents and possibly also in humans. In the current study, we used genetic and correlation analyses in the BXH/HXB recombinant inbred (RI) strains, derived from Brown Norway (BN) and spontaneously hypertensive rats (SHR), to identify genetic determinants of BAT function. Linkage analyses revealed a quantitative trait locus (QTL) associated with interscapular BAT mass on chromosome 4 and two closely linked QTLs associated with glucose oxidation and glucose incorporation into BAT lipids on chromosome 2. Using weighted gene coexpression network analysis (WGCNA) we identified 1,147 gene coexpression modules in the BAT from BXH/HXB rats and mapped their module eigengene QTLs. Through an unsupervised analysis, we identified modules related to BAT relative mass and function. The Coral4.1 coexpression module is associated with BAT relative mass (includes Cd36 highly connected gene), and the Darkseagreen coexpression module is associated with glucose incorporation into BAT lipids (includes Hiat1, Fmo5, and Sort1 highly connected transcripts). Because multiple statistical criteria were used to identify candidate modules, significance thresholds for individual tests were not adjusted for multiple comparisons across modules. In summary, a systems genetic analysis using genomic and quantitative transcriptomic and physiological information has produced confirmation of several known genetic factors and significant insight into novel genetic components functioning in BAT and possibly contributing to traits characteristic of the metabolic syndrome.
Collapse
Affiliation(s)
- Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Václav Zídek
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Vladimír Landa
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Petr Mlejnek
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Jan Šilhavý
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Miroslava Šimáková
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics of the Czech Academy of Sciences , Prague , Czech Republic
| | - Jaroslava Trnovská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vojtěch Škop
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Olena Oliyarnyk
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ludmila Kazdová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Harry Smith
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
13
|
Vervliet T, Bultynck G. DebULKing fat in the heart: a fascinating role for autophagy. Cardiovasc Res 2017; 113:1089-1092. [PMID: 28666348 DOI: 10.1093/cvr/cvx127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tim Vervliet
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular and Molecular Medicine
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular and Molecular Medicine.,Department of Cellular and Molecular Medicine, Leuven Kanker Instituut (LKI), Campus Gasthuisberg O/N-I Bus 802, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
14
|
Tian X, Yan C, Liu M, Zhang Q, Liu D, Liu Y, Li S, Han Y. CREG1 heterozygous mice are susceptible to high fat diet-induced obesity and insulin resistance. PLoS One 2017; 12:e0176873. [PMID: 28459882 PMCID: PMC5411056 DOI: 10.1371/journal.pone.0176873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
Abstract
Cellular repressor of E1A-stimulated genes 1 (CREG1) is a small glycoprotein whose physiological function is unknown. In cell culture studies, CREG1 promotes cellular differentiation and maturation. To elucidate its physiological functions, we deleted the Creg1 gene in mice and found that loss of CREG1 leads to early embryonic death, suggesting that it is essential for early development. In the analysis of Creg1 heterozygous mice, we unexpectedly observed that they developed obesity as they get older. In this study, we further studied this phenotype by feeding wild type (WT) and Creg1 heterozygote (Creg1+/-) mice a high fat diet (HFD) for 16 weeks. Our data showed that Creg1+/- mice exhibited a more prominent obesity phenotype with no change in food intake compared with WT controls when challenged with HFD. Creg1 haploinsufficiency also exacerbated HFD-induced liver steatosis, dyslipidemia and insulin resistance. In addition, HFD markedly increased pro-inflammatory cytokines in plasma and epididymal adipose tissue in Creg1+/- mice as compared with WT controls. The activation level of NF-κB, a major regulator of inflammatory response, in epididymal adipose tissue was also elevated in parallel with the cytokines in Creg1+/- mice. These pro-inflammatory responses elicited by CREG1 reduction were confirmed in 3T3-L1-derived adipocytes with CREG1 depletion by siRNA transfection. Given that adipose tissue inflammation has been shown to play a key role in obesity-induced insulin resistance and metabolic syndrome, our results suggest that Creg1 haploinsufficiency confers increased susceptibility of adipose tissue to inflammation, leading to aggravated obesity and insulin resistance when challenged with HFD. This study uncovered a novel function of CREG1 in metabolic disorders.
Collapse
Affiliation(s)
- Xiaoxiang Tian
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
- Cardiovascular Center for Translational Medicine of Liaoning Province, Shenyang, China
- Cardiovascular Core Lab for Translational Medicine of Liaoning Province, Shenyang, China
| | - Chenghui Yan
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
- Cardiovascular Center for Translational Medicine of Liaoning Province, Shenyang, China
- Cardiovascular Core Lab for Translational Medicine of Liaoning Province, Shenyang, China
| | - Meili Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
- Cardiovascular Center for Translational Medicine of Liaoning Province, Shenyang, China
- Cardiovascular Core Lab for Translational Medicine of Liaoning Province, Shenyang, China
| | - Quanyu Zhang
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
- Cardiovascular Center for Translational Medicine of Liaoning Province, Shenyang, China
- Cardiovascular Core Lab for Translational Medicine of Liaoning Province, Shenyang, China
| | - Dan Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
- Cardiovascular Center for Translational Medicine of Liaoning Province, Shenyang, China
- Cardiovascular Core Lab for Translational Medicine of Liaoning Province, Shenyang, China
| | - Yanxia Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
- Cardiovascular Center for Translational Medicine of Liaoning Province, Shenyang, China
- Cardiovascular Core Lab for Translational Medicine of Liaoning Province, Shenyang, China
| | - Shaohua Li
- Department of Surgery, Robert Wood Johnson Medical School, Rutgers-the State University of New Jersey, New Brunswick, United States of America
| | - Yaling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
- Cardiovascular Center for Translational Medicine of Liaoning Province, Shenyang, China
- Cardiovascular Core Lab for Translational Medicine of Liaoning Province, Shenyang, China
- * E-mail:
| |
Collapse
|
15
|
Krist DT, Foote PK, Statsyuk AV. UbFluor: A Fluorescent Thioester to Monitor HECT E3 Ligase Catalysis. ACTA ACUST UNITED AC 2017; 9:11-37. [PMID: 28253433 DOI: 10.1002/cpch.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
HECT E3 ubiquitin ligases (∼28 are known) are associated with many phenotypes in eukaryotes and are important drug targets. However, assays used to screen for small molecule inhibitors of HECT E3s are complex and require ATP, Ub, E1, E2, and HECT E3 enzymes, producing three covalent thioester enzyme intermediates E1∼Ub, E2∼Ub, and HECT E3∼Ub (where ∼ indicates a thioester bond), and mixtures of polyubiquitin chains. To reduce the complexity of the assay, we developed a novel class of fluorescent probes, UbFluor, that act as mechanistically relevant pseudosubstrates of HECT E3s. These probes undergo a direct transthiolation reaction with the catalytic cysteine of HECT E3s, producing the catalytically active HECT E3∼Ub thioester accompanied by fluorophore release. Thus, a fluorescence polarization assay can continuously monitor UbFluor consumption by HECT E3s, and changes in UbFluor consumption rendered by biochemical point mutations or small molecule modulation of HECT E3 activity. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David T Krist
- Northwestern University, Department of Chemistry, Chemistry of Life Processes Institute, Evanston, Illinois
| | - Peter K Foote
- Northwestern University, Department of Chemistry, Chemistry of Life Processes Institute, Evanston, Illinois
| | - Alexander V Statsyuk
- Northwestern University, Department of Chemistry, Chemistry of Life Processes Institute, Evanston, Illinois
| |
Collapse
|
16
|
Ubiquitin Ligase NEDD4 Regulates PPARγ Stability and Adipocyte Differentiation in 3T3-L1 Cells. Sci Rep 2016; 6:38550. [PMID: 27917940 PMCID: PMC5137149 DOI: 10.1038/srep38550] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022] Open
Abstract
Peroxisome proliferator–activated receptor-γ (PPARγ) is a ligand-activated nuclear receptor which controls lipid and glucose metabolism. It is also the master regulator of adipogenesis. In adipocytes, ligand-dependent PPARγ activation is associated with proteasomal degradation; therefore, regulation of PPARγ degradation may modulate its transcriptional activity. Here, we show that neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4), an E3 ubiquitin ligase, interacts with the hinge and ligand binding domains of PPARγ and is a bona fide E3 ligase for PPARγ. NEDD4 increases PPARγ stability through the inhibition of its proteasomal degradation. Knockdown of NEDD4 in 3T3-L1 adipocytes reduces PPARγ protein levels and suppresses adipocyte conversion. PPARγ correlates positively with NEDD4 in obese adipose tissue. Together, these findings support NEDD4 as a novel regulator of adipogenesis by modulating the stability of PPARγ.
Collapse
|
17
|
Yang XD, Xiang DX, Yang YY. Role of E3 ubiquitin ligases in insulin resistance. Diabetes Obes Metab 2016; 18:747-54. [PMID: 27097743 DOI: 10.1111/dom.12677] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/09/2016] [Accepted: 04/17/2016] [Indexed: 12/19/2022]
Abstract
E3 ubiquitin ligases are a large family of proteins that catalyse the ubiquitination of many proteins for degradation by the 26S proteasome. E3 ubiquitin ligases play pivotal roles in the process of insulin resistance and diabetes. In this review, we summarize the currently available studies to analyse the potential role of E3 ubiquitin ligases in the development of insulin resistance. We propose two mechanisms by which E3 ubiquitin ligases can affect the process of insulin resistance. First, E3 ubiquitin ligases directly degrade the insulin receptor, insulin receptor substrate and other key insulin signalling molecules via the UPS. Second, E3 ubiquitin ligases indirectly regulate insulin signalling by regulating pro-inflammatory mediators that are involved in the regulation of insulin signalling molecules, such as tumour necrosis factor-α, interleukin (IL)-6, IL-4, IL-13, IL-1β, monocyte chemoattractant protein-1 and hypoxia-inducible factor 1α. Determining the mechanism by which E3 ubiquitin ligases affect the development of insulin resistance can identify a novel strategy to protect against insulin resistance and diabetes.
Collapse
Affiliation(s)
- X-D Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - D-X Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Y-Y Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Kathman SG, Statsyuk AV. Covalent Tethering of Fragments For Covalent Probe Discovery. MEDCHEMCOMM 2016; 7:576-585. [PMID: 27398190 PMCID: PMC4933313 DOI: 10.1039/c5md00518c] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covalent probes and drugs have found widespread use as research tools and clinical agents. Covalent probes are useful because of their increased intracellular potency and because covalent labeling of cellular proteins can be tracked using click chemistry. Covalent drugs, on the other hand, can overcome drug resistance toward their reversible counterparts. The discovery of covalent probes and drugs usually follows two trajectories: covalent natural products and their analogues are used directly as covalent probes or drugs; or alternatively, a non-covalent probe is equipped with a reactive group and converted into a covalent probe. In both cases, there is a need to either have a natural product or a potent non-covalent scaffold. The alternative approach to discover covalent probes is to start with a drug-like fragment that already has an electrophile, and then grow the fragment into a potent lead compound. In this approach, the electrophilic fragment will react covalently with the target protein, and therefore the initial weak binding of the fragment can be amplified over time and detected using mass spectrometry. With this approach the surface of the protein can be interrogated with a library of covalent fragments to identify covalent drug binding sites. One challenge with this approach is the danger of non-specific covalent labeling of proteins with covalent fragments. The second challenge is the risk of selecting the most reactive fragment rather than the best binder if the covalent fragments are screened in mixtures. This review will highlight how covalent tethering was developed, its current state, and its future.
Collapse
Affiliation(s)
- Stefan G. Kathman
- Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alexander V. Statsyuk
- Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Sex-specific alterations in glucose homeostasis and metabolic parameters during ageing of caspase-2-deficient mice. Cell Death Discov 2016; 2:16009. [PMID: 27551503 PMCID: PMC4979492 DOI: 10.1038/cddiscovery.2016.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 01/20/2023] Open
Abstract
Gender-specific differences are commonly found in metabolic pathways and in response to nutritional manipulation. Previously, we identified a role for caspase-2 in age-related glucose homeostasis and lipid metabolism using male caspase-2-deficient (Casp2−/−) mice. Here we show that the resistance to age-induced glucose tolerance does not occur in female Casp2−/− mice and it appears to be independent of insulin sensitivity in males. Using fasting (18 h) as a means to further investigate the role of caspase-2 in energy and lipid metabolism, we identified sex-specific differences in the fasting response and lipid mobilization. In aged (18–22 months) male Casp2−/− mice, a significant decrease in fasting liver mass, but not total body weight, was observed while in females, total body weight, but not liver mass, was reduced when compared with wild-type (WT) animals. Fasting-induced lipolysis of adipose tissue was enhanced in male Casp2−/− mice as indicated by a significant reduction in white adipocyte cell size, and increased serum-free fatty acids. In females, white adipocyte cell size was significantly smaller in both fed and fasted Casp2−/− mice. No difference in fasting-induced hepatosteatosis was observed in the absence of caspase-2. Further analysis of white adipose tissue (WAT) indicated that female Casp2−/− mice may have enhanced fatty acid recycling and metabolism with expression of genes involved in glyceroneogenesis and fatty acid oxidation increased. Loss of Casp2 also increased fasting-induced autophagy in both male and female liver and in female skeletal muscle. Our observations suggest that caspase-2 can regulate glucose homeostasis and lipid metabolism in a tissue and sex-specific manner.
Collapse
|
20
|
Kathman SG, Span I, Smith AT, Xu Z, Zhan J, Rosenzweig AC, Statsyuk AV. A Small Molecule That Switches a Ubiquitin Ligase From a Processive to a Distributive Enzymatic Mechanism. J Am Chem Soc 2015; 137:12442-5. [PMID: 26371805 DOI: 10.1021/jacs.5b06839] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
E3 ligases are genetically implicated in many human diseases, yet E3 enzyme mechanisms are not fully understood, and there is a strong need for pharmacological probes of E3s. We report the discovery that the HECT E3 Nedd4-1 is a processive enzyme and that disruption of its processivity by biochemical mutations or small molecules switches Nedd4-1 from a processive to a distributive mechanism of polyubiquitin chain synthesis. Furthermore, we discovered and structurally characterized the first covalent inhibitor of Nedd4-1, which switches Nedd4-1 from a processive to a distributive mechanism. To visualize the binding mode of the Nedd4-1 inhibitor, we used X-ray crystallography and solved the first structure of a Nedd4-1 family ligase bound to an inhibitor. Importantly, our study shows that processive Nedd4-1, but not the distributive Nedd4-1:inhibitor complex, is able to synthesize polyubiquitin chains on the substrate in the presence of the deubiquitinating enzyme USP8. Therefore, inhibition of E3 ligase processivity is a viable strategy to design E3 inhibitors. Our study provides fundamental insights into the HECT E3 mechanism and uncovers a novel class of HECT E3 inhibitors.
Collapse
Affiliation(s)
- Stefan G Kathman
- Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Department of Chemistry, Department of Molecular Biosciences, Northwestern University , Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ingrid Span
- Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Department of Chemistry, Department of Molecular Biosciences, Northwestern University , Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Aaron T Smith
- Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Department of Chemistry, Department of Molecular Biosciences, Northwestern University , Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ziyang Xu
- Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Department of Chemistry, Department of Molecular Biosciences, Northwestern University , Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer Zhan
- Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Department of Chemistry, Department of Molecular Biosciences, Northwestern University , Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Department of Chemistry, Department of Molecular Biosciences, Northwestern University , Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alexander V Statsyuk
- Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Department of Chemistry, Department of Molecular Biosciences, Northwestern University , Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Aleidi SM, Howe V, Sharpe LJ, Yang A, Rao G, Brown AJ, Gelissen IC. The E3 ubiquitin ligases, HUWE1 and NEDD4-1, are involved in the post-translational regulation of the ABCG1 and ABCG4 lipid transporters. J Biol Chem 2015; 290:24604-13. [PMID: 26296893 DOI: 10.1074/jbc.m115.675579] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette transporter ABCG1 has an essential role in cellular cholesterol homeostasis, and dysregulation has been associated with a number of high burden diseases. Previous studies reported that ABCG1 is ubiquitinated and degraded via the ubiquitin proteasome system. However, so far the molecular mechanism, including the identity of any of the rate-limiting ubiquitination enzymes, or E3 ligases, is unknown. Using liquid chromatography mass spectrometry, we identified two HECT domain E3 ligases associated with ABCG1, named HUWE1 (HECT, UBA, and WWE domain containing 1, E3 ubiquitin protein ligase) and NEDD4-1 (Neural precursor cell-expressed developmentally down regulated gene 4), of which the latter is the founding member of the NEDD4 family of ubiquitin ligases. Silencing both HUWE1 and NEDD4-1 in cells overexpressing human ABCG1 significantly increased levels of the ABCG1 monomeric and dimeric protein forms, however ABCA1 protein expression was unaffected. In addition, ligase silencing increased ABCG1-mediated cholesterol export to HDL in cells overexpressing the transporter as well as in THP-1 macrophages. Reciprocally, overexpression of both ligases resulted in a significant reduction in protein levels of both the ABCG1 monomeric and dimeric forms. Like ABCG1, ABCG4 protein levels and cholesterol export activity were significantly increased after silencing both HUWE1 and NEDD4-1 in cells overexpressing this closely related ABC half-transporter. In summary, we have identified for the first time two E3 ligases that are fundamental enzymes in the post-translational regulation of ABCG1 and ABCG4 protein levels and cellular cholesterol export activity.
Collapse
Affiliation(s)
- Shereen M Aleidi
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and
| | - Vicky Howe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney NSW 2052 Australia
| | - Laura J Sharpe
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney NSW 2052 Australia
| | - Alryel Yang
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and
| | - Geetha Rao
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney NSW 2052 Australia
| | - Ingrid C Gelissen
- From the Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006 and
| |
Collapse
|