1
|
Solhusløkk Höse K, Stenman A, Svahn F, Larsson C, Juhlin CC. TOP2A Expression in Pheochromocytoma and Abdominal Paraganglioma: a Marker of Poor Clinical Outcome? Endocr Pathol 2023; 34:129-141. [PMID: 36656469 PMCID: PMC10011289 DOI: 10.1007/s12022-022-09746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/20/2023]
Abstract
Pheochromocytoma and abdominal paraganglioma (PPGL) are rare neuroendocrine tumors originating from chromaffin cells. Even though only 10-15% of the tumors metastasize, all PPGLs are considered potentially malignant. Topoisomerase 2A (TOP2A) is a protein involved in cell proliferation and has been found to be over-expressed in metastatic PPGL. To provide support whether TOP2A could serve as a prognostic marker, 88 PPGLs (of which 8 metastatic/relapsing) and 10 normal adrenal gland samples were assessed for TOP2A mRNA expression using quantitative real-time PCR (qRT-PCR) and TOP2A immunohistochemistry. Comparisons to clinical parameters connected to metastatic behavior were made, and The Cancer Genome Atlas was used for validation of the results. A significant association between high TOP2A mRNA expression in primary PPGL and subsequent metastatic events (p = 0.008) was found, as well as to specific histological features and clinical parameters connected to metastatic behavior and mutations in SDHB. TOP2A immunoreactivity was calculated as an index of positive nuclei divided by the total amount of nuclei, and this index associated with TOP2A mRNA levels (p = 0.023) as well as the Ki-67 labeling index (p = 0.001). To conclude, TOP2A is a potential prognostic marker as it is frequently elevated in PPGL displaying subsequent metastatic disease, and future studies in larger cohorts are warranted to determine if a TOP2A index as assessed by immunohistochemistry could be a marker of poor outcome. Additionally, elevated levels of TOP2A could indicate a potential actionable event, and future studies with topoisomerase inhibitors would be of interest.
Collapse
Affiliation(s)
| | - Adam Stenman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, J6:20 BioClinicum Karolinska University Hospital, 171 64, Solna, Sweden.
- Department of Breast, Endocrine Tumours and Sarcoma, Karolinska University Hospital, Solna, Sweden.
| | - Fredrika Svahn
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
2
|
Crona J, Taïeb D, Pacak K. New Perspectives on Pheochromocytoma and Paraganglioma: Toward a Molecular Classification. Endocr Rev 2017; 38:489-515. [PMID: 28938417 PMCID: PMC5716829 DOI: 10.1210/er.2017-00062] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
A molecular biology-based taxonomy has been proposed for pheochromocytoma and paraganglioma (PPGL). Data from the Cancer Genome Atlas revealed clinically relevant prognostic and predictive biomarkers and stratified PPGLs into three main clusters. Each subgroup has a distinct molecular-biochemical-imaging signature. Concurrently, new methods for biochemical analysis, functional imaging, and medical therapies have also become available. The research community now strives to match the cluster biomarkers with the best intervention. The concept of precision medicine has been long awaited and holds great promise for improved care. Here, we review the current and future PPGL classifications, with a focus on hereditary syndromes. We discuss the current strengths and shortcomings of precision medicine and suggest a condensed manual for diagnosis and treatment of both adult and pediatric patients with PPGL. Finally, we consider the future direction of this field, with a particular focus on how advanced molecular characterization of PPGL can improve a patient's outcome, including cures and, ultimately, disease prevention.
Collapse
Affiliation(s)
- Joakim Crona
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health.,Department of Medical Sciences, Uppsala University, Sweden
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix Marseille Université, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| |
Collapse
|
3
|
Bullova P, Cougnoux A, Marzouca G, Kopacek J, Pacak K. Bortezomib Alone and in Combination With Salinosporamid A Induces Apoptosis and Promotes Pheochromocytoma Cell Death In Vitro and in Female Nude Mice. Endocrinology 2017; 158:3097-3108. [PMID: 28938421 PMCID: PMC5659682 DOI: 10.1210/en.2017-00592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
Proteasome inhibitors have been frequently used in treating hematologic and solid tumors. They are administered individually or in combination with other regimens, to prevent severe side effects and resistance development. Because they have been shown to be efficient and are pharmaceutically available, we tested the first Food and Drug Administration-approved proteasome inhibitor bortezomib alone and in combination with another proteasome inhibitor, salinosporamid A, in pheochromocytoma cells. Pheochromocytomas/Paragangliomas (PHEOs/PGLs) are neuroendocrine tumors for which no definite cure is yet available. Therefore, drugs with a wide spectrum of mechanisms of action are being tested to identify suitable candidates for PHEO/PGL treatment. In the current study, we show that bortezomib induces PHEO cell death via the apoptotic pathway in vitro and in vivo. The combination of bortezomib with salinosporamid A exhibits additive effect on these cells and inhibits proliferation, cell migration and invasion, and angiogenesis more potently than bortezomib alone. Altogether, we suggest these proteasome inhibitors, especially bortezomib, could be potentially tested in PHEO/PGL patients who might benefit from treatment with either the inhibitors alone or in combination with other treatment options.
Collapse
Affiliation(s)
- Petra Bullova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Geena Marzouca
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Juraj Kopacek
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
4
|
Yu R. Proteasome Inhibitors: A Potential Medical Therapy for Malignant Pheochromocytoma. Endocrinology 2017; 158:3083-3085. [PMID: 28977615 DOI: 10.1210/en.2017-00742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Run Yu
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California 90095
| |
Collapse
|
5
|
Chen G, Guo M. Screening for Natural Inhibitors of Topoisomerases I from Rhamnus davurica by Affinity Ultrafiltration and High-Performance Liquid Chromatography-Mass Spectrometry. FRONTIERS IN PLANT SCIENCE 2017; 8:1521. [PMID: 28919906 PMCID: PMC5585147 DOI: 10.3389/fpls.2017.01521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/18/2017] [Indexed: 05/17/2023]
Abstract
Topoisomerase I (Topo I) catalyzes topological interconversion of duplex DNA during DNA replication and transcription, and has been deemed as important antineoplastic targets. In this study, the fraction R.d-60 from ethyl acetate extracts of Rhamnus davurica showed higher inhibitory rates against SGC-7901 and HT-29 compared with the R.d-30 fraction in vitro. However, the specific active components of R.d-60 fraction remain elusive. To this end, a method based on bio-affinity ultrafiltration and high performance liquid chromatography/electrospray mass spectrometry (HPLC- ESI-MS/MS) was developed to rapidly screen and identify the Topo I inhibitors in this fraction. The enrichment factors (EFs) were calculated to evaluate the binding affinities between the bioactive constituents and Topo I. As a result, eight ligands were identified and six of which with higher EFs showed more potential antitumor activity. Furthermore, antiproliferative assays in vitro (IC50 values) with two representative candidates (apigenin, quercetin) against SGC-7901, HT-29 and Hep G2 cells were conducted and further validated. Finally, the structure-activity relationships revealed that flavones contain a C2-C3 double bond of C ring exhibited higher bio-affinities to Topo I than those without it. This integrated method combining Topo I ultrafiltration with HPLC-MS/MS proved to be very efficient in rapid screening and identification of potential Topo I inhibitors from the complex extracts of medicinal plants, and could be further explored as a valuable high-throughput screening platform in the early drug discovery stage.
Collapse
Affiliation(s)
- Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Graduate University of Chinese Academy of SciencesBeijing, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of SciencesWuhan, China
- *Correspondence: Mingquan Guo,
| |
Collapse
|
6
|
Chen GL, Tian YQ, Wu JL, Li N, Guo MQ. Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I. Sci Rep 2016; 6:38284. [PMID: 27922057 PMCID: PMC5138836 DOI: 10.1038/srep38284] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Crude Amaryllidaceae alkaloids (AAs) extracted from Lycoris radiata are reported to exhibit significant anti-cancer activity. However, the specific alkaloids responsible for the pharmacodynamic activity and their targets still remain elusive. In this context, we strived to combine affinity ultrafiltration with topoisomerase I (Top I) as a target enzyme aiming to fish out specific bioactive AAs from Lycoris radiata. 11 AAs from Lycoris radiata were thus screened out, among which hippeastrine (peak 5) with the highest Enrichment factor (EF) against Top I exhibited good dose-dependent inhibition with IC50 at 7.25 ± 0.20 μg/mL comparable to camptothecin (positive control) at 6.72 ± 0.23 μg/mL. The molecular docking simulation further indicated the inhibitory mechanism between Top I and hippeastrine. The in vitro antiproliferation assays finally revealed that hippeastrine strongly inhibited the proliferation of HT-29 and Hep G2 cells in an intuitive dose-dependent manner with the IC50 values at 3.98 ± 0.29 μg/mL and 11.85 ± 0.20 μg/mL, respectively, and also induced significant cellular morphological changes, which further validated our screening method and the potent antineoplastic effects. Collectively, these results suggested that hippeastrine could be a very promising anticancer candidate for the therapy of cancer in the near future.
Collapse
Affiliation(s)
- Gui-Lin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Qiang Tian
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Na Li
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
7
|
Bullova P, Cougnoux A, Abunimer L, Kopacek J, Pastorekova S, Pacak K. Hypoxia potentiates the cytotoxic effect of piperlongumine in pheochromocytoma models. Oncotarget 2016; 7:40531-40545. [PMID: 27244895 PMCID: PMC5130026 DOI: 10.18632/oncotarget.9643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/23/2016] [Indexed: 01/05/2023] Open
Abstract
Hypoxia is a common feature of solid tumors that activates a plethora of pathways, resulting in proliferation and resistance of cancer cells to radio- and chemotherapy. Pheochromocytomas/paragangliomas (PHEOs/PGLs) with mutations in the gene coding for the subunit B of succinate dehydrogenase (SDHB) are the most aggressive forms of the disease, which is partially due to their pseudohypoxic character, metabolic abnormalities, and elevated reactive oxygen species (ROS) levels. We investigated the effect of piperlongumine (PL), a natural product with cytotoxic properties restricted to cancer cells by significantly increasing intracellular ROS levels, on PHEO cells. Here we report for the first time that PL mediates PHEO cell death by activating both apoptosis and necroptosis in vitro and in vivo. This effect is magnified in hypoxic conditions, making PL a promising potential candidate for use as a therapeutic option for patients with PHEO/PGL, including those with SDHB mutations.
Collapse
Affiliation(s)
- Petra Bullova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, 20892, USA
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, 20892, USA
| | - Luma Abunimer
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, 20892, USA
| | - Juraj Kopacek
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Affiliation(s)
- Hans K Ghayee
- University of Florida College of Medicine, Gainesville, Florida 32603
| |
Collapse
|