1
|
Kim J, So B, Heo Y, So H, Jo JK. Advances in Male Contraception: When Will the Novel Male Contraception be Available? World J Mens Health 2024; 42:487-501. [PMID: 38164023 PMCID: PMC11216971 DOI: 10.5534/wjmh.230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 01/03/2024] Open
Abstract
Many contraceptive methods have been developed over the years due to high demand. However, female contraceptive pills and devices do not work for all females due to health conditions and side effects. Also, the number of males who want to actively participate in family planning is gradually increasing. However, the only contraceptive options currently available to males are condoms and vasectomy. Therefore, many male contraceptive methods, including medication (hormonal and non-hormonal therapy) and mechanical methods, are under development. Reversibility, safety, persistence, degree of invasion, promptness, and the suppression of anti-sperm antibody formation are essential factors in the development of male contraceptive methods. In this paper, male contraceptive methods under development are reviewed according to those essential factors. Furthermore, the timeline for the availability of a new male contraception is discussed.
Collapse
Affiliation(s)
- Jongwon Kim
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
| | - Byeongchan So
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
| | - Yongki Heo
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
| | - Hongyun So
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, Korea
- Department of Mechanical Engineering, Hanyang University, Seoul, Korea.
| | - Jung Ki Jo
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
- Department of Urology, College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|
2
|
Zhao Y, Deng S, Li C, Cao J, Wu A, Chen M, Ma X, Wu S, Lian Z. The Role of Retinoic Acid in Spermatogenesis and Its Application in Male Reproduction. Cells 2024; 13:1092. [PMID: 38994945 PMCID: PMC11240464 DOI: 10.3390/cells13131092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogenesis in mammalian testes is essential for male fertility, ensuring a continuous supply of mature sperm. The testicular microenvironment finely tunes this process, with retinoic acid, an active metabolite of vitamin A, serving a pivotal role. Retinoic acid is critical for various stages, including the differentiation of spermatogonia, meiosis in spermatogenic cells, and the production of mature spermatozoa. Vitamin A deficiency halts spermatogenesis, leading to the degeneration of numerous germ cells, a condition reversible with retinoic acid supplementation. Although retinoic acid can restore fertility in some males with reproductive disorders, it does not work universally. Furthermore, high doses may adversely affect reproduction. The inconsistent outcomes of retinoid treatments in addressing infertility are linked to the incomplete understanding of the molecular mechanisms through which retinoid signaling governs spermatogenesis. In addition to the treatment of male reproductive disorders, the role of retinoic acid in spermatogenesis also provides new ideas for the development of male non-hormone contraceptives. This paper will explore three facets: the synthesis and breakdown of retinoic acid in the testes, its role in spermatogenesis, and its application in male reproduction. Our discussion aims to provide a comprehensive reference for studying the regulatory effects of retinoic acid signaling on spermatogenesis and offer insights into its use in treating male reproductive issues.
Collapse
Affiliation(s)
- Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Chongyang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Jingchao Cao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Aowu Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuehai Ma
- Xinjiang Key Laboratory of Mental Development and Learning Science, College of Psychology, Xinjiang Normal University, Urumqi 830017, China
| | - Sen Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Hong SH, Castro G, Wang D, Nofsinger R, Kane M, Folias A, Atkins AR, Yu RT, Napoli JL, Sassone-Corsi P, de Rooij DG, Liddle C, Downes M, Evans RM. Targeting nuclear receptor corepressors for reversible male contraception. Proc Natl Acad Sci U S A 2024; 121:e2320129121. [PMID: 38377195 PMCID: PMC10907271 DOI: 10.1073/pnas.2320129121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 02/22/2024] Open
Abstract
Despite numerous female contraceptive options, nearly half of all pregnancies are unintended. Family planning choices for men are currently limited to unreliable condoms and invasive vasectomies with questionable reversibility. Here, we report the development of an oral contraceptive approach based on transcriptional disruption of cyclical gene expression patterns during spermatogenesis. Spermatogenesis involves a continuous series of self-renewal and differentiation programs of spermatogonial stem cells (SSCs) that is regulated by retinoic acid (RA)-dependent activation of receptors (RARs), which control target gene expression through association with corepressor proteins. We have found that the interaction between RAR and the corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT) is essential for spermatogenesis. In a genetically engineered mouse model that negates SMRT-RAR binding (SMRTmRID mice), the synchronized, cyclic expression of RAR-dependent genes along the seminiferous tubules is disrupted. Notably, the presence of an RA-resistant SSC population that survives RAR de-repression suggests that the infertility attributed to the loss of SMRT-mediated repression is reversible. Supporting this notion, we show that inhibiting the action of the SMRT complex with chronic, low-dose oral administration of a histone deacetylase inhibitor reversibly blocks spermatogenesis and fertility without affecting libido. This demonstration validates pharmacologic targeting of the SMRT repressor complex for non-hormonal male contraception.
Collapse
Affiliation(s)
- Suk-Hyun Hong
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Glenda Castro
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Dan Wang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Russell Nofsinger
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Maureen Kane
- Department of Nutritional Sciences and Toxicology, The University of California, Berkeley, CA94720
| | - Alexandra Folias
- Department of Nutritional Sciences and Toxicology, The University of California, Berkeley, CA94720
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Joseph L. Napoli
- Department of Nutritional Sciences and Toxicology, The University of California, Berkeley, CA94720
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, CA92697
| | - Dirk G. de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CHUtrecht, The Netherlands
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead, NSW2145, Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| |
Collapse
|
4
|
Al Noman MA, Cuellar RAD, Kyzer JL, Chung SSW, Cheryala N, Holth TAD, Maitra S, Naqvi T, Wong HL, Schönbrunn E, Hawkinson JE, Wolgemuth DJ, Georg GI. Strategies for developing retinoic acid receptor alpha-selective antagonists as novel agents for male contraception. Eur J Med Chem 2023; 261:115821. [PMID: 37776573 PMCID: PMC10841505 DOI: 10.1016/j.ejmech.2023.115821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Reported here are the synthesis and in vitro evaluation of a series of 26 retinoic acid analogs based on dihydronaphthalene and chromene scaffolds using a transactivation assay. Chromene amide analog 21 was the most potent and selective retinoic acid receptor α antagonist identified from this series. In vitro evaluation indicated that 21 has favorable physicochemical properties and a favorable pharmacokinetic PK profile in vivo with significant oral bioavailability, metabolic stability, and testes exposure. Compound 21 was evaluated for its effects on spermatogenesis and disruption of fertility in a mouse model. Oral administration of compound 21 at low doses showed reproducibly characteristic albeit modest effects on spermatogenesis, but no effects on fertility were observed in mating studies. The inhibition of spermatogenesis could not be enhanced by raising the dose and lengthening the duration of dosing. Thus, 21 may not be a good candidate to pursue further for effects on male fertility.
Collapse
Affiliation(s)
- Md Abdullah Al Noman
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Rebecca A D Cuellar
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Jillian L Kyzer
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | | | - Narsihmulu Cheryala
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Trinh A D Holth
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Soma Maitra
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Tahmina Naqvi
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Henry L Wong
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Ernst Schönbrunn
- Department of Drug Discovery, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Jon E Hawkinson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Debra J Wolgemuth
- Department of Genetics and Development, USA; Department of Obstetrics and Gynecology, USA; The Institute of Human Nutrition, USA; The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, MN, 55414, USA.
| |
Collapse
|
5
|
Louwagie EJ, Quinn GFL, Pond KL, Hansen KA. Male contraception: narrative review of ongoing research. Basic Clin Androl 2023; 33:30. [PMID: 37940863 PMCID: PMC10634021 DOI: 10.1186/s12610-023-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/26/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Since the release of the combined oral contraceptive pill in 1960, women have shouldered the burden of contraception and family planning. Over 60 years later, this is still the case as the only practical, effective contraceptive options available to men are condoms and vasectomy. However, there are now a variety of promising hormonal and non-hormonal male contraceptive options being studied. The purpose of this narrative review is to provide clinicians and laypeople with focused, up-to-date descriptions of novel strategies and targets for male contraception. We include a cautiously optimistic discussion of benefits and potential drawbacks, highlighting several methods in preclinical and clinical stages of development. RESULTS As of June 2023, two hormonal male contraceptive methods are undergoing phase II clinical trials for safety and efficacy. A large-scale, international phase IIb trial investigating efficacy of transdermal segesterone acetate (Nestorone) plus testosterone gel has enrolled over 460 couples with completion estimated for late 2024. A second hormonal method, dimethandrolone undecanoate, is in two clinical trials focusing on safety, pharmacodynamics, suppression of spermatogenesis and hormones; the first of these two is estimated for completion in December 2024. There are also several non-hormonal methods with strong potential in preclinical stages of development. CONCLUSIONS There exist several hurdles to novel male contraception. Therapeutic development takes decades of time, meticulous work, and financial investment, but with so many strong candidates it is our hope that there will soon be several safe, effective, and reversible contraceptive options available to male patients.
Collapse
Affiliation(s)
- Eli J Louwagie
- University of South Dakota Sanford School of Medicine, 1400 W 22nd St, Sioux Falls, SD, 57105, USA.
| | - Garrett F L Quinn
- University of South Dakota Sanford School of Medicine, 1400 W 22nd St, Sioux Falls, SD, 57105, USA
| | - Kristi L Pond
- University of South Dakota Sanford School of Medicine, 1400 W 22nd St, Sioux Falls, SD, 57105, USA
| | - Keith A Hansen
- Chair and Professor, Dept. of Obstetrics and Gynecology, University of South Dakota Sanford School of Medicine; Reproductive Endocrinologist, Sanford Fertility and Reproductive Medicine, 1500 W 22nd St Suite 102, Sioux Falls, SD, 57105, USA
| |
Collapse
|
6
|
Faix A, Methorst C, Hupertan V, Huyghe E. [Male contraception]. Prog Urol 2023; 33:718-732. [PMID: 38012914 DOI: 10.1016/j.purol.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 11/29/2023]
Abstract
CONTEXT Contraception is a major global health issue, which is still dominated by female contraception. Developments in male contraception could help redistribute the contraceptive burden. METHODS A literature search was carried out to review the existing options and the criteria for optimal contraception, to establish the principles of a male pre-contraception consultation, and to review the various research avenues with their advantages and disadvantages. RESULTS The new male contraception options are detailed, whether hormonal (androgen therapy, combination of progestins and testosterone) or non-hormonal, particularly thermal, with current results and avenues for improvement. Condom use and vasectomy remain the only 2 validated options. The recent development of minimally invasive vasectomy without the need for a scalpel and of occlusion techniques has simplified the procedure, minimised the risk of complications (pain, haematomas, post-vasectomy pain syndrome) and improved efficacy. The issues of regret and the possibility of repermeabilisation are also raised. CONCLUSION The question of male contraception will become increasingly important in consultations with urologists. The urologist will have to inform the patient, as required by law, before the vasectomy is performed, and provide the best possible advice on the technique, which will often be minimally invasive without the need for a scalpel. New reversible options should also broaden the range of options available on a routine basis, with a view to gradually moving towards contraceptive equity.
Collapse
Affiliation(s)
- A Faix
- Clinique Saint-Roch, 560, avenue du colonel Pavelet dit Villars, 34000 Montpellier, France
| | - C Methorst
- Service de médecine de la reproduction, hôpital des 4 villes, Saint-Cloud, France
| | - V Hupertan
- « Urologie Paris Opéra », cabinet médical, 82, boulevard de Courcelles, 75017 Paris, France
| | - E Huyghe
- Département d'urologie, CHU de Toulouse, hôpital de Rangueil, Toulouse, France; Service de médecine de la reproduction, CHU de Toulouse, hôpital Paule-de-Viguier, Toulouse, France; Inserm 1203, UMR DEFE, université de Toulouse, université de Montpellier, Montpellier, France.
| |
Collapse
|
7
|
Kyzer JL, Noman MAA, Cuellar RAD, Chung SSW, Maitra S, Naqvi T, Hawkinson JE, Wolgemuth DJ, Georg GI. Investigation of selective retinoic acid receptor alpha antagonist ER-50891 and related analogs for male contraception. Arch Pharm (Weinheim) 2023; 356:e2300031. [PMID: 37154197 DOI: 10.1002/ardp.202300031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Retinoic acid receptor alpha (RARα) antagonist ER-50891 and 15 analogs were prepared and tested in vitro for potency and selectivity at RARα, RARβ, and RARγ using transactivation assays. Minor modifications to the parent molecule such as the introduction of a C4 tolyl group in place of the C4 phenyl group on the quinoline moiety slightly increased the RARα selectivity but larger substituents significantly decreased the potency. Replacement of the pyrrole moiety of ER-50891 with triazole, amides, or a double bond produced inactive compounds. ER-50891 was found to be stable in male mouse liver microsomes and was tested in male mice to assess its effects on spermatogenesis. Characteristic, albeit modest and transient, effects on spermatogenesis were observed.
Collapse
Affiliation(s)
- Jillian L Kyzer
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Md Abdullah Al Noman
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rebecca A D Cuellar
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sanny S W Chung
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | - Soma Maitra
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tahmina Naqvi
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jon E Hawkinson
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Debra J Wolgemuth
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, New York, USA
- The Institute of Human Nutrition, Columbia University Medical Center, New York, New York, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Balbach M, Rossetti T, Ferreira J, Ghanem L, Ritagliati C, Myers RW, Huggins DJ, Steegborn C, Miranda IC, Meinke PT, Buck J, Levin LR. On-demand male contraception via acute inhibition of soluble adenylyl cyclase. Nat Commun 2023; 14:637. [PMID: 36788210 PMCID: PMC9929232 DOI: 10.1038/s41467-023-36119-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Nearly half of all pregnancies are unintended; thus, existing family planning options are inadequate. For men, the only choices are condoms and vasectomy, and most current efforts to develop new contraceptives for men impact sperm development, meaning that contraception requires months of continuous pretreatment. Here, we provide proof-of-concept for an innovative strategy for on-demand contraception, where a man would take a birth control pill shortly before sex, only as needed. Soluble adenylyl cyclase (sAC) is essential for sperm motility and maturation. We show a single dose of a safe, acutely-acting sAC inhibitor with long residence time renders male mice temporarily infertile. Mice exhibit normal mating behavior, and full fertility returns the next day. These studies define sAC inhibitors as leads for on-demand contraceptives for men, and they provide in vivo proof-of-concept for previously untested paradigms in contraception; on-demand contraception after just a single dose and pharmacological contraception for men.
Collapse
Affiliation(s)
- Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Thomas Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Ferreira
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Lubna Ghanem
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Carla Ritagliati
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Robert W Myers
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - David J Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Ileana C Miranda
- Laboratory of Comparative Pathology, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center, and The Rockefeller University, New York, NY, USA
| | - Peter T Meinke
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.,Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Service CA, Puri D, Hsieh TC, Patel DP. Emerging concepts in male contraception: a narrative review of novel, hormonal and non-hormonal options. Ther Adv Reprod Health 2023; 17:26334941221138323. [PMID: 36909934 PMCID: PMC9996746 DOI: 10.1177/26334941221138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2023] Open
Abstract
Access to reliable contraception is a pillar of modern society. The burden of unintended pregnancy has fallen disproportionately on the mother throughout human history; however, recent legal developments surrounding abortion have sparked a renewed interest in male factor contraceptives beyond surgical sterilization and condoms. Modern efforts to develop reversible male birth control date back nearly a century and initially focused on altering the hypothalamic-pituitary-testes axis. These hormonal contraceptives faced multiple barriers, including systemic side effects, challenging dosing regimens, unfavorable routes of delivery, and the public stigma surrounding steroid use. Novel hormonal agents are seeking to overcome these barriers by limiting the side effects and simplifying use. Non-hormonal contraceptives are agents that target various stages of spermatogenesis; such as inhibitors of retinoic acid, Sertoli cell-germ cell interactions, sperm ion channels, and other small molecular targets. The identification of reproductive tract-specific genes associated with male infertility has led to more targeted drug development, made possible by advances in CRISPR and proteolysis targeting chimeras (PROTACs). Despite multiple human trials, no male birth control agents have garnered regulatory approval in the United States or abroad. This narrative review examines current and emerging male contraceptives, including hormonal and non-hormonal agents.
Collapse
Affiliation(s)
- C. Austin Service
- Department of Urology, University of California
San Diego, San Diego, CA, USA
| | - Dhruv Puri
- Department of Urology, University of California
San Diego, San Diego, CA, USA
| | - Tung-Chin Hsieh
- Department of Urology, University of California
San Diego, San Diego, CA, USA
| | - Darshan P. Patel
- Department of Urology, University of California
San Diego, 9333 Genesee Avenue, Suite 320, La Jolla, CA 92121, USA
| |
Collapse
|
10
|
Yunaini L, Ari Pujianto D. Various gene modification techniques to discover molecular targets for nonhormonal male contraceptives: A review. Int J Reprod Biomed 2023; 21:17-32. [PMID: 36875503 PMCID: PMC9982321 DOI: 10.18502/ijrm.v21i1.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/07/2022] [Accepted: 11/20/2022] [Indexed: 02/11/2023] Open
Abstract
The identification and characterization of relevant targets are necessary for developing nonhormonal male contraceptives. The molecules must demonstrate that they are necessary for reproduction. As a result, a sophisticated technique is required to identify the molecular targets for nonhormonal male contraceptives. Genetic modification (GM) techniques are one method that can be applied. This technique has been widely used to study gene function that effected male fertility and has resulted in the discovery of numerous nonhormonal male contraceptive target molecules. We examined GM techniques and approaches used to investigate genes involved in male fertility as potential targets for nonhormonal contraceptives. The discovery of nonhormonal contraceptive candidate molecules was increased by using GM techniques, especially the Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 method. The discovery of candidate nonhormonal contraceptive molecules can be a wide-open research for the development of nonhormonal male contraceptives. Therefore, we are believing that one day nonhormonal male contraceptives will be released.
Collapse
Affiliation(s)
- Luluk Yunaini
- Doctoral Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta Pusat, Indonesia.,Department of Medicine Biology, Faculty of Medicine, Universitas Indonesia, Jakarta Pusat, Indonesia
| | - Dwi Ari Pujianto
- Department of Medicine Biology, Faculty of Medicine, Universitas Indonesia, Jakarta Pusat, Indonesia
| |
Collapse
|
11
|
Griswold MD. Cellular and molecular basis for the action of retinoic acid in spermatogenesis. J Mol Endocrinol 2022; 69:T51-T57. [PMID: 35670629 DOI: 10.1530/jme-22-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
Spermatogenesis is a highly organized and regulated process that requires the constant production of millions of gametes over the reproductive lifetime of the mammalian male. This is possible because of an active stem cell pool and an ordered entry into the germ cell developmental sequence. The ordered entry is a result of the synthesis and action of retinoic acid allowing for the onset of spermatogonial differentiation and an irreversible commitment to spermatogenesis. The periodic appearance and actions of retinoic acid along the seminiferous tubules is a result of the interactions between germ cells and Sertoli cells that result in the generation and maintenance of the cycle of the seminiferous epithelium and is the subject of this review.
Collapse
Affiliation(s)
- Michael D Griswold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
12
|
Wu S, Li X, Shang L, Wu L, Li T, Li P, Ji Z, Hou J, Yin M, Xu W. The novel BRDT inhibitor NHWD870 shows potential as a male contraceptive in mice. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1789-1800. [PMID: 36239350 PMCID: PMC10157631 DOI: 10.3724/abbs.2022135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Small molecule inhibitors of the bromodomain and extraterminal domain (BET) family proteins have emerged as promising options not only for the treatment of multiple cancers but also for disturbing the process of sperm maturation with potential for use as viable contraceptive targets. In this study, we find that the BET family inhibitor NHWD870 and BRDT can bind well in vitro through bioinformatics software prediction and protein binding inhibition experiments. NHWD870 can produce a good contraceptive effect through animal experiments in vivo, and the fertility can be restored to normal after drug withdrawal. Transcriptomics and proteomics results suggest that NHWD870 affects pathways related to spermatogenesis and maturation, further contributing to the male infertility phenotype. Our results show that NHWD870 can induce a complete and reversible contraceptive effect in mice, which is stronger than that of JQ1 and its synthesized derivatives. This study is expected to eventually lead to clinical trials.
Collapse
Affiliation(s)
- Sixian Wu
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoliang Li
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Reproductive Medical Centre, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London N7 8BD, UK
| | - Lvying Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tongtong Li
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Peiyv Li
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiliang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jianwen Hou
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Mingzhu Yin
- Department of Dermatology, Hunan Engineering Research Center of Skin Heath and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Long JE, Lee MS, Blithe DL. Update on Novel Hormonal and Nonhormonal Male Contraceptive Development. J Clin Endocrinol Metab 2021; 106:e2381-e2392. [PMID: 33481994 PMCID: PMC8344836 DOI: 10.1210/clinem/dgab034] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The advent of new methods of male contraception would increase contraceptive options for men and women and advance male contraceptive agency. Pharmaceutical R&D for male contraception has been dormant since the 1990s. The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) has supported a contraceptive development program since 1969 and supports most ongoing hormonal male contraceptive development. Nonhormonal methods are in earlier stages of development. CONTENT Several hormonal male contraceptive agents have entered clinical trials. Novel single agent products being evaluated include dimethandrolone undecanoate, 11β-methyl-nortestosterone dodecylcarbonate, and 7α-methyl-19-nortestosterone. A contraceptive efficacy trial of Nestorone®/testosterone gel is underway. Potential nonhormonal methods are at preclinical stages of development. Many nonhormonal male contraceptive targets that affect sperm production, sperm function, or sperm transport have been identified. SUMMARY NICHD supports development of reversible male contraceptive agents. Other organizations such as the World Health Organization, the Population Council, and the Male Contraception Initiative are pursuing male contraceptive development, but industry involvement remains limited.
Collapse
Affiliation(s)
- Jill E Long
- Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Dr. Jill Long, 6710B Rockledge Drive, Room 3243, Bethesda, MD 20892, USA.
| | - Min S Lee
- Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Diana L Blithe
- Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Thirumalai A, Amory JK. Emerging approaches to male contraception. Fertil Steril 2021; 115:1369-1376. [PMID: 33931201 DOI: 10.1016/j.fertnstert.2021.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 01/12/2023]
Abstract
Despite significant interests in contraception by men, effective methods of male contraception are limited to vasectomy and condoms. Recently, there have been several promising advances in male contraceptive research. This review will update readers on recent research in both hormonal and nonhormonal approaches to male contraception. Hormonal approaches to male contraception have been stymied by adverse effects, formulations requiring injections or implants, a 5% to10% nonresponse rate, as well as poor understanding of user acceptability. In the last several years, research has focused on novel, orally bioavailable androgens such as dimethandrolone undecanoate and 11β-methyl-19-nor-testosterone. Additionally, combinations of a topical testosterone gel combined with a gel containing segesterone acetate, a potent progestin, have shown promise in clinical trials recently. Simultaneously, significant preclinical progress has been made in several approaches to nonhormonal male contraceptives, including compounds that inhibit sperm motility such as eppin, compounds that inhibit retinoic acid binding or biosynthesis, and reversible approaches to obstruction of the vas deferens. It is imperative for these areas of research to continue making strides so that there is a gamut of contraceptive options for couples to choose from. Some of these approaches will hopefully reach clinical utility soon, greatly improving contraceptive choice for couples.
Collapse
Affiliation(s)
- Arthi Thirumalai
- Center for Research in Reproduction and Contraception, Department of Medicine, University of Washington, Seattle, Washington
| | - John K Amory
- Center for Research in Reproduction and Contraception, Department of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
15
|
Dominiak Z, Huras H, Kręcisz P, Krzeszowski W, Szymański P, Czarnecka K. Promising results in development of male contraception. Bioorg Med Chem Lett 2021; 41:128005. [PMID: 33798701 DOI: 10.1016/j.bmcl.2021.128005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
Nowadays, conscious planning of the family is very important for many people. The possibility of using protective measures against unplanned pregnancy is a great comfort. Most forms of contraceptives are intended for women, although their use can be ruled out in various health conditions. Scientists have been trying to develop a different type of method for men for many years. More and more research is being done and there have been promising results. It is hoped that soon both genders will have a similar range of contraceptive options to enable responsible family planning.
Collapse
Affiliation(s)
- Zuzanna Dominiak
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., 90-151 Lodz, Poland
| | - Hubert Huras
- Department of Obstetrics and Perinatology, Faculty of Medicine, Jagiellonian University Medical College, 31-007 Krakow, Poland
| | - Paweł Kręcisz
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., 90-151 Lodz, Poland
| | | | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., 90-151 Lodz, Poland; Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland.
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., 90-151 Lodz, Poland; Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland.
| |
Collapse
|
16
|
Male Contraception. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:603-613. [PMID: 33005125 PMCID: PMC7513428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Unintended pregnancy is a global public health problem. Despite a variety of female contraceptive options, male contraceptive options are limited to the condom and vasectomy. Condoms have high failure rates and surgical vasectomy is not reliably reversible. There is a global need and desire for novel male contraceptive methods. Hormonal methods have progressed the furthest in clinical development and androgen plus progestin formulations hold promise as a marketable, reversible male contraceptive over the next decade. Investigators have tested androgen plus progestin approaches using oral, transdermal, subdermal, and injectable drug formulations and demonstrated the short-term safety and reversibility of hormonal male contraception. The most commonly reported side effects associated with hormonal male contraception include weight gain, acne, slight suppression of serum high-density cholesterol, mood changes, and changes in libido. Efficacy trials of hormonal male contraceptives have demonstrated contraceptive efficacy rates greater than that of condoms. Although there has been less progression in the development of nonhormonal male contraceptives, potentially reversible vaso-occlusive methods are currently in clinical trials in some countries. Various studies have confirmed both men and women's desire for novel male contraceptives. Barriers to development include an absence of investment from pharmaceutical companies, concerns regarding side effects and spermatogenic rebound with hormonal methods, and lack of clear reversibility and proven effectiveness of nonhormonal methods. The ultimate availability of male contraceptives could have an important impact on decreasing global unintended pregnancy rates (currently 40% of all pregnancies) and will be a step towards reproductive justice and greater equity in family planning.
Collapse
|
17
|
Nguyen CH, Grandits AM, Purton LE, Sill H, Wieser R. All-trans retinoic acid in non-promyelocytic acute myeloid leukemia: driver lesion dependent effects on leukemic stem cells. Cell Cycle 2020; 19:2573-2588. [PMID: 32900260 PMCID: PMC7644151 DOI: 10.1080/15384101.2020.1810402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive, often fatal hematopoietic malignancy. All-trans retinoic acid (atRA), one of the first molecularly targeted drugs in oncology, has greatly improved the outcome of a subtype of AML, acute promyelocytic leukemia (APL). In contrast, atRA has so far provided little therapeutic benefit in the much larger group of patients with non-APL AML. Attempts to identify genetically or molecularly defined subgroups of patients that may respond to atRA have not yielded consistent results. Since AML is a stem cell-driven disease, understanding the effectiveness of atRA may require an appreciation of its impact on AML stem cells. Recent studies reported that atRA decreased stemness of AML with an FLT3-ITD mutation, yet increased it in AML1-ETO driven or EVI1-overexpressing AML. This review summarizes the role of atRA in normal hematopoiesis and in AML, focusing on its impact on AML stem cells.
Collapse
Affiliation(s)
- Chi H Nguyen
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| | - Alexander M Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research and Department of Medicine at St. Vincent's Hospital, The University of Melbourne , Melbourne, Australia
| | - Heinz Sill
- Division of Hematology, Medical University of Graz , Graz, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| |
Collapse
|
18
|
Noman MAA, Kyzer JL, Chung SSW, Wolgemuth DJ, Georg GI. Retinoic acid receptor antagonists for male contraception: current status†. Biol Reprod 2020; 103:390-399. [PMID: 32671394 PMCID: PMC7401398 DOI: 10.1093/biolre/ioaa122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/04/2019] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
Retinoic acid receptor alpha (RARA), a nuclear receptor protein, has been validated as a target for male contraception by gene knockout studies and also pharmacologically using a pan-retinoic acid receptor antagonist. Retinoic acid receptor alpha activity is indispensable for the spermatogenic process, and therefore its antagonists have potential as male contraceptive agents. This review discusses the effects of systematic dosing regimen modifications of the orally bioavailable and reversible pan-antagonist BMS-189453 as well as studies with the alpha-selective antagonists BMS-189532 and BMS-189614 in a murine model. We also provide an overview of structure-activity studies of retinoic acid receptor alpha antagonists that provide insight for the design of novel alpha-selective ligands.
Collapse
Affiliation(s)
- Md Abdullah Al Noman
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Jillian L Kyzer
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Sanny S W Chung
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Debra J Wolgemuth
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
- The Institute of Human Nutrition, The Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Chung SSW, Vizcarra N, Wolgemuth DJ. Filamentous actin disorganization and absence of apical ectoplasmic specialization disassembly during spermiation upon interference with retinoid signaling†. Biol Reprod 2020; 103:378-389. [PMID: 32678439 PMCID: PMC7401411 DOI: 10.1093/biolre/ioaa123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/29/2022] Open
Abstract
Spermiation is a multiple-step process involving profound cellular changes in both spermatids and Sertoli cells. We have observed spermiation defects, including abnormalities in spermatid orientation, translocation and release, in mice deficient in the retinoic acid receptor alpha (RARA) and upon treatment with a pan-RAR antagonist. To elucidate the role of retinoid signaling in regulating spermiation, we first characterized the time course of appearance of spermiogenic defects in response to treatment with the pan-RAR antagonist. The results revealed that defects in spermiation are indeed among the earliest abnormalities in spermatogenesis observed upon inhibition of retinoid signaling. Using fluorescent dye-conjugated phalloidin to label the ectoplasmic specialization (ES), we showed for the first time that these defects involved improper formation of filamentous actin (F-actin) bundles in step 8–9 spermatids and a failure of the actin-surrounded spermatids to move apically to the lumen and to disassemble the ES. The aberrant F-actin organization is associated with diminished nectin-3 expression in both RARA-deficient and pan-RAR antagonist-treated testes. An abnormal localization of both tyrosinated and detyrosinated tubulins was also observed during spermatid translocation in the seminiferous epithelium in drug-treated testes. These results highlight a crucial role of RAR receptor-mediated retinoid signaling in regulating microtubules and actin dynamics in the cytoskeleton rearrangements, required for proper spermiation. This is critical to understand in light of ongoing efforts to inhibit retinoid signaling as a novel approach for male contraception and may reveal spermiation components that could also be considered as new targets for male contraception.
Collapse
Affiliation(s)
- Sanny S W Chung
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Nika Vizcarra
- The Institute of Human Nutrition Columbia University Irving Medical Center, New York, NY, USA
| | - Debra J Wolgemuth
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
- The Institute of Human Nutrition Columbia University Irving Medical Center, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Correspondence: Department of Genetics & Development, Columbia University Irving Medical Center , Russ Berrie Pavilion, Room 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA. Tel: (212) 851-4754; E-mail:
| |
Collapse
|
20
|
Ma F, Wang X, Chung SSW, Sicinski P, Shang E, Wolgemuth DJ. Cyclin A2 is essential for mouse gonocyte maturation. Cell Cycle 2020; 19:1654-1664. [PMID: 32420805 DOI: 10.1080/15384101.2020.1762314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In mammals, male gonocytes are derived from primordial germ cells during embryogenesis, enter a period of mitotic proliferation, and then become quiescent until birth. After birth, the gonocytes proliferate and migrate from the center of testicular cord toward the basement membrane to form the pool of spermatogonial stem cells (SSCs) and establish the SSC niche architecture. However, the molecular mechanisms underlying gonocyte proliferation, migration and differentiation are largely unknown. Cyclin A2 is a key component of the cell cycle and required for cell proliferation. Here, we show that cyclin A2 is required in mouse male gonocyte development and the establishment of spermatogenesis in the neonatal testis. Loss of cyclin A2 function in embryonic gonocytes by targeted gene disruption affected the regulation of the male gonocytes to SSC transition, resulting in the disruption of SSC pool formation, imbalance between SSC self-renewal and differentiation, and severely abnormal spermatogenesis in the adult testis.
Collapse
Affiliation(s)
- Fanhua Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University , Wuhan, Hubei, China.,Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA
| | - Xiangyuan Wang
- Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA
| | - Sanny S W Chung
- Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York , New York, NY, USA
| | - Debra J Wolgemuth
- Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA.,Institute of Human Nutrition, Columbia University Medical Center , New York, NY, USA
| |
Collapse
|
21
|
Amory JK. Development of Novel Male Contraceptives. Clin Transl Sci 2020; 13:228-237. [PMID: 31618525 PMCID: PMC7070810 DOI: 10.1111/cts.12708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
Unintended pregnancy is surprisingly common, accounting for 40-50% of pregnancies worldwide. Contraception is the most effective means of preventing unintended pregnancy. Seventy percent of all contraceptives are used by women; however, some women are unable to use contraceptives due to health conditions or side effects. Many men wish to take a more active role family planning, but currently have only two effective male contraceptive options, condoms and vasectomy. Therefore, work to develop novel male contraceptives analogous to popular female methods, such as daily pills or long-acting shots and implants, is underway. This paper will briefly discuss the pros and cons of condoms and vasectomies, and then review the research into novel methods of male contraception.
Collapse
Affiliation(s)
- John K. Amory
- Department of MedicineCenter for Research in Reproduction and ContraceptionUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
22
|
Nguyen CH, Bauer K, Hackl H, Schlerka A, Koller E, Hladik A, Stoiber D, Zuber J, Staber PB, Hoelbl-Kovacic A, Purton LE, Grebien F, Wieser R. All-trans retinoic acid enhances, and a pan-RAR antagonist counteracts, the stem cell promoting activity of EVI1 in acute myeloid leukemia. Cell Death Dis 2019; 10:944. [PMID: 31822659 PMCID: PMC6904467 DOI: 10.1038/s41419-019-2172-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
Ecotropic virus integration site 1 (EVI1), whose overexpression characterizes a particularly aggressive subtype of acute myeloid leukemia (AML), enhanced anti-leukemic activities of all-trans retinoic acid (atRA) in cell lines and patient samples. However, the drivers of leukemia formation, therapy resistance, and relapse are leukemic stem cells (LSCs), whose properties were hardly reflected in these experimental setups. The present study was designed to address the effects of, and interactions between, EVI1 and retinoids in AML LSCs. We report that Evi1 reduced the maturation of leukemic cells and promoted the abundance, quiescence, and activity of LSCs in an MLL-AF9-driven mouse model of AML. atRA further augmented these effects in an Evi1 dependent manner. EVI1 also strongly enhanced atRA regulated gene transcription in LSC enriched cells. One of their jointly regulated targets, Notch4, was an important mediator of their effects on leukemic stemness. In vitro exposure of leukemic cells to a pan-RAR antagonist caused effects opposite to those of atRA. In vivo antagonist treatment delayed leukemogenesis and reduced LSC abundance, quiescence, and activity in Evi1high AML. Key results were confirmed in human myeloid cell lines retaining some stem cell characteristics as well as in primary human AML samples. In summary, our study is the first to report the importance of EVI1 for key properties of AML LSCs. Furthermore, it shows that atRA enhances, and a pan-RAR antagonist counteracts, the effects of EVI1 on AML stemness, thus raising the possibility of using RAR antagonists in the therapy of EVI1high AML.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Katharina Bauer
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Angela Schlerka
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Elisabeth Koller
- Medical Department for Leukemia Research and Hematology, Hanusch Hospital, Vienna, Austria
| | - Anastasiya Hladik
- Research Laboratory of Infection Biology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Philipp B Staber
- Division of Hematology and Hemostaseology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Rotraud Wieser
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria. .,Comprehensive Cancer Center, Vienna, Austria.
| |
Collapse
|
23
|
Retinoic Acid and Germ Cell Development in the Ovary and Testis. Biomolecules 2019; 9:biom9120775. [PMID: 31771306 PMCID: PMC6995559 DOI: 10.3390/biom9120775] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA), a derivative of vitamin A, is critical for the production of oocytes and sperm in mammals. These gametes derive from primordial germ cells, which colonize the nascent gonad, and later undertake sexual differentiation to produce oocytes or sperm. During fetal development, germ cells in the ovary initiate meiosis in response to RA, whereas those in the testis do not yet initiate meiosis, as they are insulated from RA, and undergo cell cycle arrest. After birth, male germ cells resume proliferation and undergo a transition to spermatogonia, which are destined to develop into haploid spermatozoa via spermatogenesis. Recent findings indicate that RA levels change periodically in adult testes to direct not only meiotic initiation, but also other key developmental transitions to ensure that spermatogenesis is precisely organized for the prodigious output of sperm. This review focuses on how female and male germ cells develop in the ovary and testis, respectively, and the role of RA in this process.
Collapse
|
24
|
Long JE, Lee MS, Blithe DL. Male Contraceptive Development: Update on Novel Hormonal and Nonhormonal Methods. Clin Chem 2019; 65:153-160. [PMID: 30602479 DOI: 10.1373/clinchem.2018.295089] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/20/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND Development of new methods of male contraception would address an unmet need for men to control their fertility and could increase contraceptive options for women. Pharmaceutical research and development for male contraception was active in the 1990s but has been virtually abandoned. The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) has supported a contraceptive development program since 1969 and supports the majority of hormonal male contraceptive development. Nonhormonal methods are also in development but are at earlier stages. CONTENT Several hormonal male contraceptive agents have entered clinical trials. Single-agent products being evaluated include dimethandrolone undecanoate, 11β-methyl-nortestosterone dodecyl carbonate, and 7α-methyl-19-nortestosterone. A contraceptive efficacy trial of Nestorone® gel and testosterone gel in a single application will begin in 2018. Potential nonhormonal methods are at preclinical stages of development. Many nonhormonal male contraceptive targets that affect either sperm production or sperm function have been identified. Targeted pathways include the retinoic acid pathway, bromodomain and extraterminal proteins, and pathways for Sertoli cell-germ cell adhesion or sperm motility. Druggable targets include CatSper, the sperm Na+/K+-exchanger, TSSK, HIPK4, EPPIN, and ADAMs family proteins. Development of a procedure to reversibly block the vas deferens (initially developed in India in the 1980s) is undergoing early stage research in the US under the trade name Vasalgel™. SUMMARY NICHD has supported the development of reversible male contraceptive agents. Other organizations such as the World Health Organization and the Population Council are pursuing male contraceptive development, but industry involvement remains dormant.
Collapse
Affiliation(s)
- Jill E Long
- Contraceptive Development Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.
| | - Min S Lee
- Contraceptive Development Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Diana L Blithe
- Contraceptive Development Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
25
|
Abstract
Unplanned pregnancies are an ongoing global burden, posing health and economic risks for women, children, and families. Advances in male contraception have been historically stymied by concerning failure rates, problematic side effects, and perceived market limitations. However, increased interest in reliable and reversible options for male contraception have resulted in resurgent efforts to introduce novel contraceptives for men. Hormonal male contraception relies on exogenous androgens and progestogens that suppress gonadotropin production, thereby suppressing testicular testosterone and sperm production. In many men, effective suppression of spermatogenesis can be achieved by androgen-progestin combination therapy. Small-scale contraceptive efficacy studies in couples have demonstrated effectiveness and reversibility with male hormonal methods, but side effects related to mood, sexual desire and cholesterol remain concerning. A number of novel androgens have reached clinical testing as potential contraceptive agents; many of these have both androgenic and progestogenic action in a single, modified steroid, thereby holding promise as single-agent contraceptives. Currently, these novel steroids hold promise as both a "male pill" and long-acting injections. Among non-hormonal methods, studies of reversible vaso-occlusive methods (polymers that block transport of sperm through the vas deferens) are ongoing, but reliable reversibility and long-term safety in men have not been established. Proteins involved in sperm maturation and motility are attractive targets, but to date both specificity and biologic redundancy have been challenges for drug development. In this review, we aim to summarize landmark studies on male contraception, highlight the most recent advances and future development in this important field of public health and medicine.
Collapse
|
26
|
Li X, Long XY, Xie YJ, Zeng X, Chen X, Mo ZC. The roles of retinoic acid in the differentiation of spermatogonia and spermatogenic disorders. Clin Chim Acta 2019; 497:54-60. [PMID: 31302099 DOI: 10.1016/j.cca.2019.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Abstract
Male fertility depends on the regulatory balance between germ cell self-renewal and differentiation, and the spatial and temporal patterns of this balance must be maintained throughout the life cycle. Retinoic acid and its receptors are important factors in spermatogenesis. Spermatogonia cells can self-proliferate and differentiate and have unique meiotic capabilities; they halve their genetic material and produce monomorphic sperm to pass genetic material to the next generation. A number of studies have found that the spermatogenesis process is halted in animals with vitamin A deficiency and that most germ cells are degraded, but they tend to recover after treatment with RA or vitamin A. This literature review discusses our understanding of how RA regulates sperm cell differentiation and meiosis and also reviews the functional information and details of RA.
Collapse
Affiliation(s)
- Xuan Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiang-Yang Long
- Department of Urology, The Second Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Yuan-Jie Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xin Zeng
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Zhong-Cheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
27
|
Research update and opportunity of non-hormonal male contraception: Histone demethylase KDM5B-based targeting. Pharmacol Res 2019; 141:1-20. [DOI: 10.1016/j.phrs.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 12/28/2022]
|
28
|
Chen X, Shen LH, Gui LX, Yang F, Li J, Cao SZ, Zuo ZC, Ma XP, Deng JL, Ren ZH, Chen ZX, Yu SM. Genome-wide DNA methylation profile of prepubertal porcine testis. Reprod Fertil Dev 2018; 30:349-358. [PMID: 28727982 DOI: 10.1071/rd17067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/17/2017] [Indexed: 12/11/2022] Open
Abstract
The biological structure and function of the mammalian testis undergo important developmental changes during prepuberty and DNA methylation is dynamically regulated during testis development. In this study, we generated the first genome-wide DNA methylation profile of prepubertal porcine testis using methyl-DNA immunoprecipitation (MeDIP) combined with high-throughput sequencing (MeDIP-seq). Over 190 million high-quality reads were generated, containing 43642 CpG islands. There was an overall downtrend of methylation during development, which was clear in promoter regions but less so in gene-body regions. We also identified thousands of differentially methylated regions (DMRs) among the three prepubertal time points (1 month, T1; 2 months, T2; 3 months, T3), the majority of which showed decreasing methylation levels over time. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that many genes in the DMRs were linked with cell proliferation and some important pathways in porcine testis development. Our data suggest that DNA methylation plays an important role in prepubertal development of porcine testis, with an obvious downtrend of methylation levels from T1 to T3. Overall, our study provides a foundation for future studies and gives new insights into mammalian testis development.
Collapse
Affiliation(s)
- Xi Chen
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Liu-Hong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Li-Xuan Gui
- OnMath Science and Technology Limited Company, No. 500 Tianfu Road, Chengdu, Sichuan, 611130, China
| | - Fang Yang
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jie Li
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Sui-Zhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhi-Cai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiao-Ping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jun-Liang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhi-Hua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhong-Xu Chen
- OnMath Science and Technology Limited Company, No. 500 Tianfu Road, Chengdu, Sichuan, 611130, China
| | - Shu-Min Yu
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| |
Collapse
|
29
|
Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis. Proc Natl Acad Sci U S A 2017; 114:E10132-E10141. [PMID: 29109271 PMCID: PMC5703301 DOI: 10.1073/pnas.1710837114] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mammalian spermatogenesis is an elaborately organized differentiation process, starting with diploid spermatogonia, which include germ-line stem cells, and ending with haploid spermatozoa. The process involves four pivotal transitions occurring in physical proximity: spermatogonial differentiation, meiotic initiation, initiation of spermatid elongation, and release of spermatozoa. We report how the four transitions are coordinated in mice. Two premeiotic transitions, spermatogonial differentiation and meiotic initiation, were known to be coregulated by an extrinsic signal, retinoic acid (RA). Our chemical manipulations of RA levels in mouse testes now reveal that RA also regulates the two postmeiotic transitions: initiation of spermatid elongation and spermatozoa release. We measured RA concentrations and found that they changed periodically, as also reflected in the expression patterns of an RA-responsive gene, STRA8; RA levels were low before the four transitions, increased when the transitions occurred, and remained elevated thereafter. We found that pachytene spermatocytes, which express an RA-synthesizing enzyme, Aldh1a2, contribute directly and significantly to RA production in testes. Indeed, chemical and genetic depletion of pachytene spermatocytes revealed that RA from pachytene spermatocytes was required for the two postmeiotic transitions, but not for the two premeiotic transitions. We conclude that the premeiotic transitions are coordinated by RA from Sertoli (somatic) cells. Once germ cells enter meiosis, pachytene spermatocytes produce RA to coordinate the two postmeiotic transitions. In combination, these elements underpin the spatiotemporal coordination of spermatogenesis and ensure its prodigious output in adult males.
Collapse
|
30
|
Blithe DL. Pipeline for contraceptive development. Fertil Steril 2016; 106:1295-1302. [PMID: 27523300 PMCID: PMC5159203 DOI: 10.1016/j.fertnstert.2016.07.1115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 11/16/2022]
Abstract
The high rates of unplanned pregnancy reflect an unmet need for effective contraceptive methods for women, especially for individuals with health risks such as obesity, diabetes, hypertension, and other conditions that may contraindicate use of an estrogen-containing product. Improvements in safety, user convenience, acceptability, and availability of products remain important goals of the contraceptive development program. Another important goal is to minimize the impact of the products on the environment. Development of new methods for male contraception has the potential to address many of these issues of safety for women who have contraindications to effective contraceptive methods but want to protect against pregnancy. It would also address a huge unmet need for men who want to control their fertility. Products under development for men would not introduce ecotoxic hormones into the water system.
Collapse
Affiliation(s)
- Diana L Blithe
- Contraception Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|