1
|
Salas-Lucia F, Fekete C, Sinkó R, Egri P, Rada K, Ruska Y, Gereben B, Bianco AC. Axonal T3 uptake and transport can trigger thyroid hormone signaling in the brain. eLife 2023; 12:e82683. [PMID: 37204837 PMCID: PMC10241515 DOI: 10.7554/elife.82683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
The development of the brain, as well as mood and cognitive functions, are affected by thyroid hormone (TH) signaling. Neurons are the critical cellular target for TH action, with T3 regulating the expression of important neuronal gene sets. However, the steps involved in T3 signaling remain poorly known given that neurons express high levels of type 3 deiodinase (D3), which inactivates both T4 and T3. To investigate this mechanism, we used a compartmentalized microfluid device and identified a novel neuronal pathway of T3 transport and action that involves axonal T3 uptake into clathrin-dependent, endosomal/non-degradative lysosomes (NDLs). NDLs-containing T3 are retrogradely transported via microtubules, delivering T3 to the cell nucleus, and doubling the expression of a T3-responsive reporter gene. The NDLs also contain the monocarboxylate transporter 8 (Mct8) and D3, which transport and inactivate T3, respectively. Notwithstanding, T3 gets away from degradation because D3's active center is in the cytosol. Moreover, we used a unique mouse system to show that T3 implanted in specific brain areas can trigger selective signaling in distant locations, as far as the contralateral hemisphere. These findings provide a pathway for L-T3 to reach neurons and resolve the paradox of T3 signaling in the brain amid high D3 activity.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Section of Adult and Pediatric Endocrinology and Metabolism, University of ChicagoChicagoUnited States
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental MedicineBudapestHungary
| | - Richárd Sinkó
- Laboratory of Molecular Cell Metabolism, Institute of Experimental MedicineBudapestHungary
- János Szentágothai PhD School of Neurosciences, Semmelweis UniversityBudapestHungary
| | - Péter Egri
- Laboratory of Molecular Cell Metabolism, Institute of Experimental MedicineBudapestHungary
| | - Kristóf Rada
- Laboratory of Molecular Cell Metabolism, Institute of Experimental MedicineBudapestHungary
| | - Yvette Ruska
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental MedicineBudapestHungary
| | - Balázs Gereben
- Laboratory of Molecular Cell Metabolism, Institute of Experimental MedicineBudapestHungary
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology and Metabolism, University of ChicagoChicagoUnited States
| |
Collapse
|
2
|
Tetrabromobisphenol A and Diclazuril Evoke Tissue-Specific Changes of Thyroid Hormone Signaling in Male Thyroid Hormone Action Indicator Mice. Int J Mol Sci 2022; 23:ijms232314782. [PMID: 36499108 PMCID: PMC9738630 DOI: 10.3390/ijms232314782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Thyroid hormone (TH) signaling is a prerequisite of normal tissue function. Environmental pollutants with the potential to disrupt endocrine functions represent an emerging threat to human health and agricultural production. We used our Thyroid Hormone Action Indicator (THAI) mouse model to study the effects of tetrabromobisphenol A (TBBPA; 150 mg/bwkg/day orally for 6 days) and diclazuril (10.0 mg/bwkg/day orally for 5 days), a known and a potential hormone disruptor, respectively, on local TH economy. Tissue-specific changes of TH action were assessed in 90-day-old THAI mice by measuring the expression of a TH-responsive luciferase reporter in tissue samples and by in vivo imaging (14-day-long treatment accompanied with imaging on day 7, 14 and 21 from the first day of treatment) in live THAI mice. This was followed by promoter assays to elucidate the mechanism of the observed effects. TBBPA and diclazuril impacted TH action differently and tissue-specifically. TBBPA disrupted TH signaling in the bone and small intestine and impaired the global TH economy by decreasing the circulating free T4 levels. In the promoter assays, TBBPA showed a direct stimulatory effect on the hdio3 promoter, indicating a potential mechanism for silencing TH action. In contrast, diclazuril acted as a stimulator of TH action in the liver, skeletal muscle and brown adipose tissue without affecting the Hypothalamo-Pituitary-Thyroid axis. Our data demonstrate distinct and tissue-specific effects of TBBPA and diclazuril on local TH action and prove that the THAI mouse is a novel mammalian model to identify TH disruptors and their tissue-specific effects.
Collapse
|
3
|
Vancamp P, Spirhanzlova P, Sébillot A, Butruille L, Gothié JD, Le Mével S, Leemans M, Wejaphikul K, Meima M, Mughal BB, Roques P, Remaud S, Fini JB, Demeneix BA. The pyriproxyfen metabolite, 4'-OH-PPF, disrupts thyroid hormone signaling in neural stem cells, modifying neurodevelopmental genes affected by ZIKA virus infection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117654. [PMID: 34289950 DOI: 10.1016/j.envpol.2021.117654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
North-Eastern Brazil saw intensive application of the insecticide pyriproxyfen (PPF) during the microcephaly outbreak caused by the Zika virus (ZIKV). ZIKV requires the neural RNA-binding protein Musashi-1 to replicate. Thyroid hormone (TH) represses MSI1. PPF is a suspected TH disruptor. We hypothesized that co-exposure to the main metabolite of PPF, 4'-OH-PPF, could exacerbate ZIKV effects through increased MSI1 expression. Exposing an in vivo reporter model, Xenopus laevis, to 4'-OH-PPF decreased TH signaling and increased msi1 mRNA and protein, confirming TH-antagonistic properties. Next, we investigated the metabolite's effects on mouse subventricular zone-derived neural stem cells (NSCs). Exposure to 4'-OH-PPF dose-dependently reduced neuroprogenitor proliferation and dysregulated genes implicated in neurogliogenesis. The highest dose induced Msi1 mRNA and protein, increasing cell apoptosis and the ratio of neurons to glial cells. Given these effects of the metabolite alone, we considered if combined infection with ZIKV worsened neurogenic events. Only at the fourth and last day of incubation did co-exposure of 4'-OH-PPF and ZIKV decrease viral replication, but viral RNA copies stayed within the same order of magnitude. Intracellular RNA content of NSCs was decreased in the combined presence of 4'-OH-PPF and ZIKV, suggesting a synergistic block of transcriptional machinery. Seven out of 12 tested key genes in TH signaling and neuroglial commitment were dysregulated by co-exposure, of which four were unaltered when exposed to 4'-OH-PPF alone. We conclude that 4'-OH-PPF is an active TH-antagonist, altering NSC processes known to underlie correct cortical development. A combination of the TH-disrupting metabolite and ZIKV could aggravate the microcephaly phenotype.
Collapse
Affiliation(s)
- Pieter Vancamp
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Petra Spirhanzlova
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Anthony Sébillot
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Lucile Butruille
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Jean-David Gothié
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Sébastien Le Mével
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Michelle Leemans
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Karn Wejaphikul
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Marcel Meima
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bilal B Mughal
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Pierre Roques
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, 92265, Fontenay-aux-Roses, France
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Jean-Baptiste Fini
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Barbara A Demeneix
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France.
| |
Collapse
|
4
|
Hayata-Takano A, Shintani Y, Moriguchi K, Encho N, Kitagawa K, Nakazawa T, Hashimoto H. PACAP-PAC1 Signaling Regulates Serotonin 2A Receptor Internalization. Front Endocrinol (Lausanne) 2021; 12:732456. [PMID: 34759890 PMCID: PMC8574227 DOI: 10.3389/fendo.2021.732456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022] Open
Abstract
Mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) display psychomotor abnormalities, most of which are ameliorated by atypical antipsychotics with serotonin (5-HT) 2A receptor (5-HT2A) antagonism. Heterozygous Pacap mutant mice show a significantly higher hallucinogenic response than wild-type mice to a 5-HT2A agonist. Endogenous PACAP may, therefore, affect 5-HT2A signaling; however, the underlying neurobiological mechanism for this remains unclear. Here, we examined whether PACAP modulates 5-HT2A signaling by addressing cellular protein localization. PACAP induced an increase in internalization of 5-HT2A but not 5-HT1A, 5-HT2C, dopamine D2 receptors or metabotropic glutamate receptor 2 in HEK293T cells. This PACAP action was inhibited by protein kinase C inhibitors, β-arrestin2 silencing, the PACAP receptor PAC1 antagonist PACAP6-38, and PAC1 silencing. In addition, the levels of endogenous 5-HT2A were decreased on the cell surface of primary cultured cortical neurons after PACAP stimulation and were increased in frontal cortex cell membranes of Pacap-/- mice. Finally, intracerebroventricular PACAP administration suppressed 5-HT2A agonist-induced head twitch responses in mice. These results suggest that PACAP-PAC1 signaling increases 5-HT2A internalization resulting in attenuation of 5-HT2A-mediated signaling, although further study is necessary to determine the relationship between behavioral abnormalities in Pacap-/- mice and PACAP-induced 5-HT2A internalization.
Collapse
Affiliation(s)
- Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- *Correspondence: Hitoshi Hashimoto, ; Atsuko Hayata-Takano,
| | - Yusuke Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Keita Moriguchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Naoki Encho
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kohei Kitagawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Japan
- *Correspondence: Hitoshi Hashimoto, ; Atsuko Hayata-Takano,
| |
Collapse
|
5
|
Carrasco RA, Singh J, Ratto MH, Adams GP. Neuroanatomical basis of the nerve growth factor ovulation-induction pathway in llamas†. Biol Reprod 2020; 104:578-588. [PMID: 33331645 DOI: 10.1093/biolre/ioaa223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 12/25/2022] Open
Abstract
The objective of the study was to characterize the anatomical framework and sites of action of the nerve growth factor (NGF)-mediated ovulation-inducing system of llamas. The expression patterns of NGF and its receptors in the hypothalamus of llamas (n = 5) were examined using single and double immunohistochemistry/immunofluorescence. We also compare the expression pattern of the P75 receptor in the hypothalamus of llama and a spontaneous ovulator species (sheep, n = 5). Both NGF receptors (TrkA and P75) were highly expressed in the medial septum and diagonal band of Broca, and populations of TrkA cells were observed in the periventricular and dorsal hypothalamus. Unexpectedly, we found NGF immunoreactive cell bodies with widespread distribution in the hypothalamus but not in areas endowed with NGF receptors. The organum vasculosum of the lamina terminalis (OVLT) and the median eminence displayed immunoreactivity for P75. Double immunofluorescence using vimentin, a marker of tanycytes, confirmed that tanycytes were immunoreactive to P75 in the median eminence and in the OVLT. Additionally, tanycytes were in close association with GnRH and kisspeptin in the arcuate nucleus and median eminence of llamas. The choroid plexus of llamas contained TrkA and NGF immunoreactivity but no P75 immunoreactivity. Results of the present study demonstrate sites of action of NGF in the llama hypothalamus, providing support for the hypothesis of a central effect of NGF in the ovulation-inducing mechanism in llamas.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Marcelo H Ratto
- Department of Animal Science, Universidad Austral de Chile, Valdivia, Chile
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Lacámara N, Lecumberri B, Barquiel B, Escribano A, González-Casado I, Álvarez-Escolá C, Aleixandre-Blanquer F, Morales F, Alfayate R, Bernal-Soriano MC, Miralles R, Yildirim Simsir I, Özgen AG, Bernal J, Berbel P, Moreno JC. Identification of Resistance to Exogenous Thyroxine in Humans. Thyroid 2020; 30:1732-1744. [PMID: 32498666 DOI: 10.1089/thy.2019.0825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Thyroxine (T4) to triiodothyronine (T3) deiodination in the hypothalamus/pituitary is mediated by deiodinase type-2 (D2) activity. Dio2(-/-) mice show central resistance to exogenous T4. Patients with resistance to exogenous thyroxine (RETH) have not been described. The aim of this study was to identify hypothyroid patients with thyrotropin (TSH) unresponsiveness to levothyroxine (LT4) and to characterize the clinical, hormonal, and genetic features of human RETH. Methods: We investigated hypothyroid patients with elevated TSH under LT4 treatment at doses leading to clinical and/or biochemical hyperthyroidism. TSH and free T4 (fT4) were determined by chemiluminescence, and total T4, T3, and reverse T3 (rT3) by radioimmunoassay. TSH/fT4 ratio at inclusion and T3/T4, rT3/T4, and T3/rT3 ratios at follow-up were compared with those from patients with resistance to thyroid hormone (RTH) due to thyroid hormone receptor-β (THRB) mutations. DIO2, including the Ala92-D2 polymorphism, selenocysteine binding protein 2 (SECISBP2), and THRB were fully sequenced. Results: Eighteen hypothyroid patients (nine of each sex, 3-59 years) treated with LT4 showed elevated TSH (15.5 ± 4.7 mU/L; reference range [RR]: 0.4-4.5), fT4 (20.8 ± 2.4 pM; RR: 9-20.6), and TSH/fT4 ratio (0.74 ± 0.25; RR: 0.03-0.13). Despite increasing LT4 doses from 1.7 ± 1.0 to 2.4 ± 1.7 μg/kg/day, TSH remained elevated (6.9 ± 2.7 mU/L). Due to hyperthyroid symptoms, LT4 doses were reduced, and TSH increased again to 7.9 ± 3.2 mU/L. In the euthyroid/hyperthyrotropinemic state, T3/T4 and T3/rT3 ratios were decreased (9.2 ± 2.4, RR: 11.3-15.3 and 2.5 ± 1.4, RR: 7.5-8.5, respectively) whereas rT3/T4 was increased (0.6 ± 0.2; RR: 0.43-0.49), suggesting reduced T4 to T3 and increased T4 to rT3 conversion. These ratios were serum T4-independent and were not observed in RTH patients. Genetic testing was normal. The Ala92-D2 polymorphism was present in 7 of 18 patients, but the allele dose did not correlate with RETH. Conclusions: Human RETH is characterized by iatrogenic thyrotoxicosis and elevated TSH/fT4 ratio. In the euthyroid/hyperthyrotropinemic state, it is confirmed by decreased T3/T4 and T3/rT3 ratios, and elevated rT3/T4 ratio. This phenotype may guide clinicians to consider combined T4+T3 therapy in a targeted fashion. The absence of germline DIO2 mutations suggests that aberrant post-translational D2 modifications in pituitary/hypothalamus or defects in other genes regulating the T4 to T3 conversion pathway could be involved in RETH.
Collapse
Affiliation(s)
- Nerea Lacámara
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Autonomous University of Madrid, Madrid, Spain
- The Rare Diseases Networking Biomedical Research Centre (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Beatriz Barquiel
- Department of Endocrinology, La Paz University Hospital, Madrid, Spain
| | - Arancha Escribano
- Department of Pediatric Endocrinology, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | | | | | | | - Francisco Morales
- Department of Endocrinology, Virgen Del Rocío University Hospital, Sevilla, Spain
| | - Rocío Alfayate
- Clinical Chemistry Department, Alicante University Hospital, Alicante, Spain
| | | | - Raquel Miralles
- Department of Endocrinology, Alicante University Hospital, Alicante, Spain
| | - Ilgin Yildirim Simsir
- Department of Endocrinology and Metabolism Disorders, Ege University Medical Faculty, Izmir, Turkey
| | - Ahmet Gökhan Özgen
- Department of Endocrinology and Metabolism Disorders, Ege University Medical Faculty, Izmir, Turkey
| | - Juan Bernal
- Department of Endocrine and Nervous System, Instituto de Investigaciones Biomédicas, CSIC, and CIBERER Instituto de Salud Carlos III, Madrid, Spain
| | - Pere Berbel
- Department of Histology and Anatomy, Faculty of Medicine, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Jose Carlos Moreno
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Autonomous University of Madrid, Madrid, Spain
- The Rare Diseases Networking Biomedical Research Centre (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Possible effects of pituitary adenylate cyclase activating polypeptide (PACAP) on early embryo implantation marker HB-EGF in mouse. Reprod Biol 2020; 20:9-13. [PMID: 31964586 DOI: 10.1016/j.repbio.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 01/31/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) was originally isolated as a hypothalamic neuropeptide stimulating adenylate cyclase activity. Besides its neuroprotective effects, numerous data proved its role in reproductive processes. However, there are limited data on its role in preimplantation embryo development and implantation. Our aim was to analyse the mRNA expression of Adcyap1 (coding region of PACAP) and Hbegf [coding region of HB-EGF (Heparin-binding EGF-like growth factor)] in embryos and pregnant uterus to investigate the possible correlation between them. Eight-week-old BDF1 mice were superovulated and subsequently mated overnight or left in their cage after hCG treatment. Day4 embryos were flushed from mated females. After morphological analysis, Adcyap1 and Hbegf gene expression of embryos and uterine tissues was assessed with qPCR. Our results showed significantly higher Adcyap1 and Hbegf mRNA levels in females producing embryos compared to non-mated ones. Robust elevation of Adcyap1 and slight elevation of Hbegf were detected in females with blastocyst embryos compared with non-blastocysts. We found low rate of Hbegf mRNA expression in uncompacted embryos, whereas morulae and blastocysts expressed high amounts of Hbegf. However, we did not find detectable Adcyap1 mRNA in embryos. Strong correlation was found between uterine tissue and embryonic Hbegf levels, slight correlation between uterine Adcyap1 and Hbegf levels. Uterine tissue Adcyap1 and embryonic Hbegf showed no correlation. In summary, our present data show, for the first time, the correlation between PACAP and HB-EGF mRNA expression suggesting that PACAP might play a role during the peri-implantation period of early mouse embryo development.
Collapse
|
8
|
Atlasz T, Werling D, Song S, Szabo E, Vaczy A, Kovari P, Tamas A, Reglodi D, Yu R. Retinoprotective Effects of TAT-Bound Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase Activating Polypeptide. J Mol Neurosci 2019. [PMID: 30542799 DOI: 10.1007/s12031-018-1229-5/figures/7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) belong to the same peptide family and exert a variety of biological functions. Both PACAP and VIP have protective effects in several tissues. While PACAP is known to be a stronger retinoprotective peptide, VIP has very potent anti-inflammatory effects. The need for a non-invasive therapeutic approach has emerged and PACAP has been shown to be retinoprotective when administered in the form of eye drops as well. The cell penetrating peptide TAT is composed of 11 amino acids and tagging of TAT at the C-terminus of neuropeptides PACAP/VIP can enhance the traversing ability of the peptides through the biological barriers. We hypothesized that TAT-bound PACAP and VIP could be more effective in exerting retinoprotective effects when given in eye drops, by increasing the traversing efficacy and enhancing the activation of the PAC1 receptor. Rats were subjected to bilateral carotid artery occlusion (BCCAO), and retinas were processed for histological analysis 14 days later. The efficiency of the TAT-bound peptides to reach the retina was assessed as well as their cAMP increasing ability. Our present study provides evidence, for the first time, that topically administered PACAP and VIP derivatives (PACAP-TAT and VIP-TAT) attenuate ischemic retinal degeneration via the PAC1 receptor presumably due to a multifactorial protective mechanism.
Collapse
Affiliation(s)
- Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary.
- Department of Sportbiology, University of Pecs, Pecs, Hungary.
- Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - D Werling
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - S Song
- Institute of Biomedicine, Jinan University, Guangzhou, China
| | - E Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - P Kovari
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - Rongjie Yu
- Institute of Biomedicine, Jinan University, Guangzhou, China.
| |
Collapse
|
9
|
Effects of Pituitary Adenylate Cyclase Activating Polypeptide in Human Proximal Tubule Cells Against Gentamicin Toxicity. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-017-9666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Atlasz T, Werling D, Song S, Szabo E, Vaczy A, Kovari P, Tamas A, Reglodi D, Yu R. Retinoprotective Effects of TAT-Bound Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase Activating Polypeptide. J Mol Neurosci 2018; 68:397-407. [PMID: 30542799 PMCID: PMC6581923 DOI: 10.1007/s12031-018-1229-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) belong to the same peptide family and exert a variety of biological functions. Both PACAP and VIP have protective effects in several tissues. While PACAP is known to be a stronger retinoprotective peptide, VIP has very potent anti-inflammatory effects. The need for a non-invasive therapeutic approach has emerged and PACAP has been shown to be retinoprotective when administered in the form of eye drops as well. The cell penetrating peptide TAT is composed of 11 amino acids and tagging of TAT at the C-terminus of neuropeptides PACAP/VIP can enhance the traversing ability of the peptides through the biological barriers. We hypothesized that TAT-bound PACAP and VIP could be more effective in exerting retinoprotective effects when given in eye drops, by increasing the traversing efficacy and enhancing the activation of the PAC1 receptor. Rats were subjected to bilateral carotid artery occlusion (BCCAO), and retinas were processed for histological analysis 14 days later. The efficiency of the TAT-bound peptides to reach the retina was assessed as well as their cAMP increasing ability. Our present study provides evidence, for the first time, that topically administered PACAP and VIP derivatives (PACAP-TAT and VIP-TAT) attenuate ischemic retinal degeneration via the PAC1 receptor presumably due to a multifactorial protective mechanism.
Collapse
Affiliation(s)
- Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary. .,Department of Sportbiology, University of Pecs, Pecs, Hungary. .,Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - D Werling
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - S Song
- Institute of Biomedicine, Jinan University, Guangzhou, China
| | - E Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - P Kovari
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - Rongjie Yu
- Institute of Biomedicine, Jinan University, Guangzhou, China.
| |
Collapse
|
11
|
Abstract
Dysregulation of neuropeptides may play an important role in aging-induced impairments. In the long list of neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) represents a highly effective cytoprotective peptide that provides an endogenous control against a variety of tissue-damaging stimuli. PACAP has neuro- and general cytoprotective effects due to anti-apoptotic, anti-inflammatory, and antioxidant actions. As PACAP is also a part of the endogenous protective machinery, it can be hypothesized that the decreased protective effects in lack of endogenous PACAP would accelerate age-related degeneration and PACAP knockout mice would display age-related degenerative signs earlier. Recent results support this hypothesis showing that PACAP deficiency mimics aspects of age-related pathophysiological changes including increased neuronal vulnerability and systemic degeneration accompanied by increased apoptosis, oxidative stress, and inflammation. Decrease in PACAP expression has been shown in different species from invertebrates to humans. PACAP-deficient mice display numerous pathological alterations mimicking early aging, such as retinal changes, corneal keratinization and blurring, and systemic amyloidosis. In the present review, we summarize these findings and propose that PACAP deficiency could be a good model of premature aging.
Collapse
|
12
|
Rivnyak A, Kiss P, Tamas A, Balogh D, Reglodi D. Review on PACAP-Induced Transcriptomic and Proteomic Changes in Neuronal Development and Repair. Int J Mol Sci 2018; 19:ijms19041020. [PMID: 29596316 PMCID: PMC5979407 DOI: 10.3390/ijms19041020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread occurrence and diverse biological effects. Among its several different effects, of special importance is the action of PACAP on neuronal proliferation, differentiation and migration, and neuroprotection. The neuroprotective mechanism of PACAP is both direct and indirect, via neuronal and non-neuronal cells. Several research groups have performed transcriptomic and proteomic analysis on PACAP-mediated genes and proteins. Hundreds of proteins have been described as being involved in the PACAP-mediated neuroprotection. In the present review we summarize the few currently available transcriptomic data potentially leading to the proteomic changes in neuronal development and protection. Proteomic studies focusing on the neuroprotective role of PACAP are also reviewed and discussed in light of the most intriguing and promising effect of this neuropeptide, which may possibly have future therapeutic potential.
Collapse
Affiliation(s)
- Adam Rivnyak
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Peter Kiss
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Dorottya Balogh
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| |
Collapse
|
13
|
Reglodi D, Cseh S, Somoskoi B, Fulop BD, Szentleleky E, Szegeczki V, Kovacs A, Varga A, Kiss P, Hashimoto H, Tamas A, Bardosi A, Manavalan S, Bako E, Zakany R, Juhasz T. Disturbed spermatogenic signaling in pituitary adenylate cyclase activating polypeptide-deficient mice. Reproduction 2017; 155:129-139. [PMID: 29101268 DOI: 10.1530/rep-17-0470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/18/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
Abstract
PACAP is a neuropeptide with diverse functions in various organs, including reproductive system. It is present in the testis in high concentrations, and in addition to the stage-specific expression within the seminiferous tubules, PACAP affects spermatogenesis and the functions of Leydig and Sertoli cells. Mice lacking endogenous PACAP show reduced fertility, but the possibility of abnormalities in spermatogenic signaling has not yet been investigated. Therefore, we performed a detailed morphological analysis of spermatozoa, sperm motility and investigated signaling pathways that play a role during spermatogenesis in knockout mice. No significant alterations were found in testicular morphology or motility of sperm in homozygous and heterozygous PACAP-deficient mice in spite of the moderately increased number of severely damaged sperms. However, we found robust changes in mRNA and/or protein expression of several factors that play an important role in spermatogenesis. Protein kinase A expression was markedly reduced, while downstream phospho-ERK and p38 were elevated in knockout animals. Expression of major transcription factors, such as Sox9 and phospho-Sox9, was decreased, while that of Sox10, as a redundant factor, was increased in PACAP-deficient mice. The reduced phospho-Sox9 expression was partly due to increased expression and activity of phosphatase PP2A in knockout mice. Targets of Sox transcription factors, such as collagen type IV, were reduced in knockout mice. In summary, our results show that lack of PACAP leads to disturbed signaling in spermatogenesis, which could be a factor responsible for reduced fertility in PACAP knockout mice, and further support the role of PACAP in reproduction.
Collapse
Affiliation(s)
- D Reglodi
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - S Cseh
- Department and Clinic of ReproductionUniversity of Veterinary Medicine, Budapest, Hungary
| | - B Somoskoi
- Department and Clinic of ReproductionUniversity of Veterinary Medicine, Budapest, Hungary
| | - B D Fulop
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - E Szentleleky
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - V Szegeczki
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - A Kovacs
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - A Varga
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - P Kiss
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - H Hashimoto
- Laboratory of Molecular NeuropharmacologyGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental DevelopmentUnited Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan.,Division of BioscienceInstitute for Datability Science, Osaka University, Suita, Osaka, Japan
| | - A Tamas
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - A Bardosi
- MVZ für HistologieZytologie und Molekulare Diagnostik, Trier, Germany
| | - S Manavalan
- Department of Basic SciencesNational University of Health Sciences, Pinellas Park, Florida, USA
| | - E Bako
- Cell Biology and Signalling Research Group of the Hungarian Academy of SciencesDepartment of Medical Chemistry, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - R Zakany
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - T Juhasz
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Tanycytes control the hormonal output of the hypothalamic-pituitary-thyroid axis. Nat Commun 2017; 8:484. [PMID: 28883467 PMCID: PMC5589884 DOI: 10.1038/s41467-017-00604-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
The hypothalamic–pituitary–thyroid (HPT) axis maintains circulating thyroid hormone levels in a narrow physiological range. As axons containing thyrotropin-releasing hormone (TRH) terminate on hypothalamic tanycytes, these specialized glial cells have been suggested to influence the activity of the HPT axis, but their exact role remained enigmatic. Here, we demonstrate that stimulation of the TRH receptor 1 increases intracellular calcium in tanycytes of the median eminence via Gαq/11 proteins. Activation of Gαq/11 pathways increases the size of tanycyte endfeet that shield pituitary vessels and induces the activity of the TRH-degrading ectoenzyme. Both mechanisms may limit the TRH release to the pituitary. Indeed, blocking TRH signaling in tanycytes by deleting Gαq/11 proteins in vivo enhances the response of the HPT axis to the chemogenetic activation of TRH neurons. In conclusion, we identify new TRH- and Gαq/11-dependent mechanisms in the median eminence by which tanycytes control the activity of the HPT axis. The hypothalamic-pituitary-thyroid (HPT) axis regulates a wide range of physiological processes. Here the authors show that hypothalamic tanycytes play a role in the homeostatic regulation of the HPT axis; activation of TRH signaling in tanycytes elevates their intracellular Ca2+ via Gαq/11 pathway, ultimately resulting in reduced TRH release into the pituitary vessels.
Collapse
|
15
|
Lewis JE, Ebling FJP. Tanycytes As Regulators of Seasonal Cycles in Neuroendocrine Function. Front Neurol 2017; 8:79. [PMID: 28344570 PMCID: PMC5344904 DOI: 10.3389/fneur.2017.00079] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Annual cycles of physiology and behavior are highly prevalent in organisms inhabiting temperate and polar regions. Examples in mammals include changes in appetite and body fat composition, hibernation and torpor, growth of antlers, pelage and horns, and seasonal reproduction. The timing of these seasonal cycles reflects an interaction of changing environmental signals, such as daylength, and intrinsic rhythmic processes: circannual clocks. As neuroendocrine signals underlie these rhythmic processes, the focus of most mechanistic studies has been on neuronal systems in the hypothalamus. Recent studies also implicate the pituitary stalk (pars tuberalis) and hypothalamic tanycytes as key pathways in seasonal timing. The pars tuberalis expresses a high density of melatonin receptors, so is highly responsive to changes in the nocturnal secretion of melatonin from the pineal gland as photoperiod changes across the year. The pars tuberalis in turn regulates tanycyte function in the adjacent hypothalamus via paracrine signals. Tanycytes are radial glial cells that persist into adulthood and function as a stem cell niche. Their cell soma are embedded in the ependymal lining of the third ventricle, and they also send elaborate projections through the arcuate nucleus, many of which terminate on capillaries in the median eminence. This anatomy underlies their function as sensors of nutrients in the circulation, and as regulators of transport of hormones and metabolites into the hypothalamus. In situ hybridization studies reveal robust seasonal changes in gene expression in tanycytes, for example, those controlling transport and metabolism of thyroid hormone and retinoic acid. These hormonal signals play a key role in the initial development of the brain, and experimental manipulation of thyroid hormone availability in the adult hypothalamus can accelerate or block seasonal cyclicity in sheep and Siberian hamsters. We hypothesize that seasonal rhythms depends upon reuse of developmental mechanisms in the adult hypothalamus and that tanycytes are key orchestrators of these processes.
Collapse
Affiliation(s)
- Jo E Lewis
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| |
Collapse
|
16
|
Farkas J, Sandor B, Tamas A, Kiss P, Hashimoto H, Nagy AD, Fulop BD, Juhasz T, Manavalan S, Reglodi D. Early Neurobehavioral Development of Mice Lacking Endogenous PACAP. J Mol Neurosci 2017; 61:468-478. [PMID: 28168413 DOI: 10.1007/s12031-017-0887-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide. In addition to its diverse physiological roles, PACAP has important functions in the embryonic development of various tissues, and it is also considered as a trophic factor during development and in the case of neuronal injuries. Data suggest that the development of the nervous system is severely affected by the lack of endogenous PACAP. Short-term neurofunctional outcome correlates with long-term functional deficits; however, the early neurobehavioral development of PACAP-deficient mice has not yet been evaluated. Therefore, the aim of the present study was to describe the postnatal development of physical signs and neurological reflexes in mice partially or completely lacking PACAP. We examined developmental hallmarks during the first 3 weeks of the postnatal period, during which period most neurological reflexes and motor coordination show most intensive development, and we describe the neurobehavioral development using a complex battery of tests. In the present study, we found that PACAP-deficient mice had slower weight gain throughout the observation period. Interestingly, mice partially lacking PACAP weighed significantly less than homozygous mice. There was no difference between male and female mice during the first 3 weeks. Some other signs were also more severely affected in the heterozygous mice than in the homozygous mice, such as air righting, grasp, and gait initiation reflexes. Interestingly, incisor teeth erupted earlier in mice lacking PACAP. Motor coordination, shown by the number of foot-faults on an elevated grid, was also less developed in PACAP-deficient mice. In summary, our results show that mice lacking endogenous PACAP have slower weight gain during the first weeks of development and slower neurobehavioral development regarding a few developmental hallmarks.
Collapse
Affiliation(s)
- Jozsef Farkas
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary
| | - Balazs Sandor
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary.,Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Andrea Tamas
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary
| | - Peter Kiss
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences and Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Andras D Nagy
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary
| | - Balazs D Fulop
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Sridharan Manavalan
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary.,Department of Basic Sciences, National University of Health Sciences, Florida, USA
| | - Dora Reglodi
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary.
| |
Collapse
|
17
|
Pritchett EM, Lamont SJ, Schmidt CJ. Transcriptomic changes throughout post-hatch development in Gallus gallus pituitary. J Mol Endocrinol 2017; 58:43-55. [PMID: 27856505 PMCID: PMC5148799 DOI: 10.1530/jme-16-0186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 12/04/2022]
Abstract
The pituitary gland is a neuroendocrine organ that works closely with the hypothalamus to affect multiple processes within the body including the stress response, metabolism, growth and immune function. Relative tissue expression (rEx) is a transcriptome analysis method that compares the genes expressed in a particular tissue to the genes expressed in all other tissues with available data. Using rEx, the aim of this study was to identify genes that are uniquely or more abundantly expressed in the pituitary when compared to all other collected chicken tissues. We applied rEx to define genes enriched in the chicken pituitaries at days 21, 22 and 42 post-hatch. rEx analysis identified 25 genes shared between all time points, 295 genes shared between days 21 and 22 and 407 genes unique to day 42. The 25 genes shared by all time points are involved in morphogenesis and general nervous tissue development. The 295 shared genes between days 21 and 22 are involved in neurogenesis and nervous system development and differentiation. The 407 unique day 42 genes are involved in pituitary development, endocrine system development and other hormonally related gene ontology terms. Overall, rEx analysis indicates a focus on nervous system/tissue development at days 21 and 22. By day 42, in addition to nervous tissue development, there is expression of genes involved in the endocrine system, possibly for maturation and preparation for reproduction. This study defines the transcriptome of the chicken pituitary gland and aids in understanding the expressed genes critical to its function and maturation.
Collapse
Affiliation(s)
| | | | - Carl J Schmidt
- Animal and Food ScienceUniversity of Delaware, Newark, Delaware, USA
| |
Collapse
|
18
|
Rudecki AP, Gray SL. PACAP in the Defense of Energy Homeostasis. Trends Endocrinol Metab 2016; 27:620-632. [PMID: 27166671 DOI: 10.1016/j.tem.2016.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 11/23/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) mediates diverse physiology from neuroprotection to thermoregulation. PACAP is well established as a master regulator of the stress response, regulating psychological and physiological equilibrium via the autonomic nervous system. Neuroanatomical and functional evidence support a role for PACAP in energy metabolism, including thermogenesis, activity, mobilization of energy stores, and appetite. Through integration of this evidence we suggest PACAP be included in the growing list of neuropeptides that mediate energy homeostasis. Future work to uncover the intricacies of PACAP expression and the molecular pathways responsible for PACAP signaling may show potential for this neuropeptide as a therapeutic target as well as further elucidate the complex neuroanatomical networks involved in defending energy balance.
Collapse
Affiliation(s)
- Alexander P Rudecki
- Northern Medical Program, University of Northern British Columbia, 3333 University Way, Prince George BC, V2N 4Z9, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, 3333 University Way, Prince George BC, V2N 4Z9, Canada.
| |
Collapse
|
19
|
Bardosi S, Bardosi A, Nagy Z, Reglodi D. Expression of PACAP and PAC1 Receptor in Normal Human Thyroid Gland and in Thyroid Papillary Carcinoma. J Mol Neurosci 2016; 60:171-8. [DOI: 10.1007/s12031-016-0823-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
|