1
|
Lademann F, Rijntjes E, Köhrle J, Tsourdi E, Hofbauer LC, Rauner M. Hyperthyroidism-driven bone loss depends on BMP receptor Bmpr1a expression in osteoblasts. Commun Biol 2024; 7:548. [PMID: 38719881 PMCID: PMC11078941 DOI: 10.1038/s42003-024-06227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Hyperthyroidism is a well-known trigger of high bone turnover that can lead to the development of secondary osteoporosis. Previously, we have shown that blocking bone morphogenetic protein (BMP) signaling systemically with BMPR1A-Fc can prevent bone loss in hyperthyroid mice. To distinguish between bone cell type-specific effects, conditional knockout mice lacking Bmpr1a in either osteoclast precursors (LysM-Cre) or osteoprogenitors (Osx-Cre) were rendered hyperthyroid and their bone microarchitecture, strength and turnover were analyzed. While hyperthyroidism in osteoclast precursor-specific Bmpr1a knockout mice accelerated bone resorption leading to bone loss just as in wildtype mice, osteoprogenitor-specific Bmpr1a deletion prevented an increase of bone resorption and thus osteoporosis with hyperthyroidism. In vitro, wildtype but not Bmpr1a-deficient osteoblasts responded to thyroid hormone (TH) treatment with increased differentiation and activity. Furthermore, we found an elevated Rankl/Opg ratio with TH excess in osteoblasts and bone tissue from wildtype mice, but not in Bmpr1a knockouts. In line, expression of osteoclast marker genes increased when osteoclasts were treated with supernatants from TH-stimulated wildtype osteoblasts, in contrast to Bmpr1a-deficient cells. In conclusion, we identified the osteoblastic BMP receptor BMPR1A as a main driver of osteoporosis in hyperthyroid mice promoting TH-induced osteoblast activity and potentially its coupling to high osteoclastic resorption.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Eddy Rijntjes
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Josef Köhrle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Elena Tsourdi
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
2
|
Minisola S, Cipriani C, Colangelo L, Pepe J. Bone loss after discontinuation of denosumab: the devil is in the details. J Bone Miner Res 2024; 39:3-7. [PMID: 38630882 DOI: 10.1093/jbmr/zjad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 04/19/2024]
Abstract
A 47-year-old postmenopausal woman with osteoporosis was treated with denosumab, which was discontinued due to side effects. She was therefore transitioned to a yearly intravenous infusion of zoledronic acid. An increase in bone turnover markers together with bone loss at the lumbar spine was observed before the second infusion, suggesting an overshooting of bone resorption due to denosumab discontinuation. On physical examination, the patient was restless and reported having lost about 10 kg since the last visit. A solitary left inferior thyroid nodule was noted on neck palpation. Circulating thyroid hormone levels were elevated, with suppressed thyroid-stimulating hormone. A thyroid scan showed increased uptake in the left inferior nodule with suppression of the remainder of the thyroid gland. A diagnosis of hyperthyroidism due to toxic adenoma was made. The patient was treated with radioactive iodine ablation, with consequent complete normalization of thyroid function. She continued yearly treatment with zoledronic acid. She remained clinically well with no further fractures. Bone turnover markers were appropriately suppressed and bone mineral density increased in the spine and hip. This case illustrates how the overshooting phenomenon following denosumab discontinuation may be compounded by the development of secondary conditions, which can result in suboptimal response to antiresorptive osteoporosis medications.
Collapse
Affiliation(s)
- Salvatore Minisola
- Department of Clinical, Internal, Anesthesiologic, and Cardiovascular Sciences, "Sapienza," University of Rome, Rome 00161, Italy
| | - Cristiana Cipriani
- Department of Clinical, Internal, Anesthesiologic, and Cardiovascular Sciences, "Sapienza," University of Rome, Rome 00161, Italy
| | - Luciano Colangelo
- Department of Clinical, Internal, Anesthesiologic, and Cardiovascular Sciences, "Sapienza," University of Rome, Rome 00161, Italy
| | - Jessica Pepe
- Department of Clinical, Internal, Anesthesiologic, and Cardiovascular Sciences, "Sapienza," University of Rome, Rome 00161, Italy
| |
Collapse
|
3
|
Lademann F, Tsourdi E, Hofbauer LC, Rauner M. Thyroid hormone receptor Thra and Thrb knockout differentially affects osteoblast biology and thyroid hormone responsiveness in vitro. J Cell Biochem 2023; 124:1948-1960. [PMID: 37992217 DOI: 10.1002/jcb.30500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Thyroid hormones (TH) are important modulators of bone remodeling and thus, thyroid diseases, in particular hyperthyroidism, are able to compromise bone quality and fracture resistance. TH actions on bone are mediated by the thyroid hormone receptors (TR) TRα1 and TRβ1, encoded by Thra and Thrb, respectively. Skeletal phenotypes of mice lacking Thra (Thra0/0 ) and Thrb (Thrb-/- ) are well-described and suggest that TRα1 is the predominant mediator of TH actions in bone. Considering that bone cells might be affected by systemic TH changes seen in these mutant mice, here we investigated the effects of TR knockout on osteoblasts exclusively at the cellular level. Primary osteoblasts obtained from Thra0/0 , Thrb-/- , and respective wildtype (WT) mice were analyzed regarding their differentiation potential, activity and TH responsiveness in vitro. Thra, but not Thrb knockout promoted differentiation and activity of early, mature and late osteoblasts as compared to respective WT cells. Interestingly, while mineralization capacity and expression of osteoblast marker genes and TH target gene Klf9 was increased by TH in WT and Thra-deficient osteoblasts, Thrb knockout mitigated the responsiveness of osteoblasts to short (48 h) and long term (10 d) TH treatment. Further, we found a low ratio of Rankl, a potent osteoclast stimulator, over osteoprotegerin, an osteoclast inhibitor, in Thrb-deficient osteoblasts and in line, supernatants obtained from Thrb-/- osteoblasts reduced numbers of primary osteoclasts in vitro. In accordance to the increased Rankl/Opg ratio in TH-treated WT osteoblasts only, supernatants from these cells, but not from TH-treated Thrb-/- osteoblasts increased the expression of Trap and Ctsk in osteoclasts, suggesting that osteoclasts are indirectly stimulated by TH via TRβ1 in osteoblasts. In conclusion, our study shows that both Thra and Thrb differentially affect activity, differentiation and TH response of osteoblasts in vitro and emphasizes the importance of TRβ1 to mediate TH actions in bone.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| |
Collapse
|
4
|
Blouin S, Khani F, Messmer P, Roschger P, Hartmann MA, van Wijnen AJ, Thaler R, Misof BM. Vitamin C Deficiency Deteriorates Bone Microarchitecture and Mineralization in a Sex-Specific Manner in Adult Mice. J Bone Miner Res 2023; 38:1509-1520. [PMID: 37493605 PMCID: PMC10636228 DOI: 10.1002/jbmr.4889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Vitamin C (VitC) is essential for bone health, and low VitC serum levels increase the risk for skeletal fractures. If and how VitC affects bone mineralization is unclear. Using micro-computed tomography (μCT), histologic staining, as well as quantitative backscattered electron imaging (qBEI), we assessed the effects of VitC on femoral structure and microarchitecture, bone formation, and bone mineralization density distribution (BMDD) in the VitC incompetent Gulo-/- mouse model and wild-type mice. In particular, VitC-supplemented, 20-week-old mice were compared with age-matched counterparts where dietary VitC intake was excluded from week 15. VitC depletion in Gulo-/- mice severely reduced cortical thickness of the diaphyseal shaft and bone volume around the growth plate (eg, bone volume of the primary spongiosa -43%, p < 0.001). Loss of VitC also diminished the amount of newly formed bone tissue as visualized by histology and calcein labeling of the active mineralization front. BMDD analysis revealed a shift to higher calcium concentrations upon VitC supplementation, including higher average (~10% increase in female VitC deficient mice, p < 0.001) and peak calcium concentrations in the epiphyseal and metaphyseal spongiosa. These findings suggest higher bone tissue age. Importantly, loss of VitC had significantly more pronounced effects in female mice, indicating a higher sensitivity of their skeleton to VitC deficiency. Our results reveal that VitC plays a key role in bone formation rate, which directly affects mineralization. We propose that low VitC levels may contribute to the higher prevalence of bone-degenerative diseases in females and suggest leveraging this vitamin against these conditions. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Phaedra Messmer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| |
Collapse
|
5
|
Li Z, Qiu K, Zhao J, Granger K, Yu H, Lewis AG, Myronovych A, Toure MH, Hatsell SJ, Economides AN, Seeley RJ, MacDougald OA. Antibodies to sclerostin or G-CSF receptor partially eliminate bone or marrow adipocyte loss, respectively, following vertical sleeve gastrectomy. Bone 2023; 169:116682. [PMID: 36709915 PMCID: PMC10513354 DOI: 10.1016/j.bone.2023.116682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Vertical sleeve gastrectomy (VSG), the most utilized bariatric procedure in clinical practice, greatly reduces body weight and improves a variety of metabolic disorders. However, one of its long-term complications is bone loss and increased risk of fracture. Elevated circulating sclerostin (SOST) and granulocyte-colony stimulating factor (G-CSF) concentrations have been considered as potential contributors to VSG-associated bone loss. To test these possibilities, we administrated antibodies to SOST or G-CSF receptor and investigated alterations to bone and marrow niche following VSG. Neutralizing either SOST or G-CSF receptor did not alter beneficial effects of VSG on adiposity and hepatic steatosis, and anti-SOST treatment provided a further improvement to glucose tolerance. SOST antibodies partially reduced trabecular and cortical bone loss following VSG by increasing bone formation, whereas G-CSF receptor antibodies had no effects on bone mass. The expansion in myeloid cellularity and reductions in bone marrow adiposity seen with VSG were partially eliminated by treatment with Anti-G-CSF receptor. Taken together, these experiments demonstrate that antibodies to SOST or G-CSF receptor may act through independent mechanisms to partially block effects of VSG on bone loss or marrow niche cells, respectively.
Collapse
Affiliation(s)
- Ziru Li
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America; MaineHealth Institute for Research, Scarborough, ME, United States of America
| | - Kevin Qiu
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America
| | - Jingtong Zhao
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America
| | - Katrina Granger
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America
| | - Hui Yu
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America
| | - Alfor G Lewis
- University of Michigan Medical School, Department of Surgery, Ann Arbor, MI, United States of America
| | - Andriy Myronovych
- University of Michigan Medical School, Department of Surgery, Ann Arbor, MI, United States of America
| | - Mouhamadoul H Toure
- University of Michigan Medical School, Department of Surgery, Ann Arbor, MI, United States of America
| | - Sarah J Hatsell
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, United States of America
| | - Aris N Economides
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, United States of America
| | - Randy J Seeley
- University of Michigan Medical School, Department of Surgery, Ann Arbor, MI, United States of America
| | - Ormond A MacDougald
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America; University of Michigan Medical School, Department of Internal Medicine, Ann Arbor, MI, United States of America.
| |
Collapse
|
6
|
Wölfel EM, Lademann F, Hemmatian H, Blouin S, Messmer P, Hofbauer LC, Busse B, Rauner M, Jähn-Rickert K, Tsourdi E. Reduced Bone Mass and Increased Osteocyte Tartrate-Resistant Acid Phosphatase (TRAP) Activity, But Not Low Mineralized Matrix Around Osteocyte Lacunae, Are Restored After Recovery From Exogenous Hyperthyroidism in Male Mice. J Bone Miner Res 2023; 38:131-143. [PMID: 36331133 DOI: 10.1002/jbmr.4736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Hyperthyroidism causes secondary osteoporosis through favoring bone resorption over bone formation, leading to bone loss with elevated bone fragility. Osteocytes that reside within lacunae inside the mineralized bone matrix orchestrate the process of bone remodeling and can themselves actively resorb bone upon certain stimuli. Nevertheless, the interaction between thyroid hormones and osteocytes and the impact of hyperthyroidism on osteocyte cell function are still unknown. In a preliminary study, we analyzed bones from male C57BL/6 mice with drug-induced hyperthyroidism, which led to mild osteocytic osteolysis with 1.14-fold larger osteocyte lacunae and by 108.33% higher tartrate-resistant acid phosphatase (TRAP) activity in osteocytes of hyperthyroid mice compared to euthyroid mice. To test whether hyperthyroidism-induced bone changes are reversible, we rendered male mice hyperthyroid by adding levothyroxine into their drinking water for 4 weeks, followed by a weaning period of 4 weeks with access to normal drinking water. Hyperthyroid mice displayed cortical and trabecular bone loss due to high bone turnover, which recovered with weaning. Although canalicular number and osteocyte lacunar area were similar in euthyroid, hyperthyroid and weaned mice, the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL)-positive osteocytes was 100% lower in the weaning group compared to euthyroid mice and the osteocytic TRAP activity was eightfold higher in hyperthyroid animals. The latter, along with a 3.75% lower average mineralization around the osteocyte lacunae in trabecular bone, suggests osteocytic osteolysis activity that, however, did not result in significantly enlarged osteocyte lacunae. In conclusion, we show a recovery of bone microarchitecture and turnover after reversal of hyperthyroidism to a euthyroid state. In contrast, osteocytic osteolysis was initiated in hyperthyroidism, but its effects were not reversed after 4 weeks of weaning. Due to the vast number of osteocytes in bone, we speculate that even minor individual cell functions might contribute to altered bone quality and mineral homeostasis in the setting of hyperthyroidism-induced bone disease. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva Maria Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Lademann
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Phaedra Messmer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| |
Collapse
|
7
|
Low Bone Turnover Due to Hypothyroidism or Anti-Resorptive Treatment Does Not Affect Whole-Body Glucose Homeostasis in Male Mice. J Pers Med 2022; 12:jpm12091462. [PMID: 36143246 PMCID: PMC9502862 DOI: 10.3390/jpm12091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Bone is a large and dynamic tissue and its maintenance requires high amounts of energy as old or damaged bone structures need to be replaced during the process of bone remodeling. Glucose homeostasis is an essential prerequisite for a healthy bone and vice versa, the skeleton can act as an endocrine organ on energy metabolism. We recently showed that hypothyroidism in mice leads to an almost complete arrest of bone remodeling. Here, we aimed to investigate whether the profound suppression of bone remodeling affects whole-body glucose homeostasis. To that end, male C57BL/6JRj mice were rendered hypothyroid over 4 weeks using methimazole and sodium perchlorate in the drinking water. We confirmed trabecular bone gain due to decreased bone turnover in hypothyroid mice with decreased cortical but increased vertebral bone strength. Further, we found impaired glucose handling but not insulin resistance with hypothyroidism. In hypothyroid bone, glucose uptake and expression of glucose transporter Glut4 were reduced by 44.3% and 13.9%, respectively, suggesting lower energy demands. Nevertheless, hypothyroidism led to distinct changes in glucose uptake in muscle, liver, and epididymal white adipose tissue (eWAT). Reduced glucose uptake (−30.6%) and Glut1/Glut4 transcript levels (−31.9%/−67.5%) were detected in muscle tissue. In contrast, in liver and eWAT we observed increased glucose uptake by 25.6% and 68.6%, respectively, and upregulated expression of glucose transporters with hypothyroidism. To more specifically target bone metabolism and discriminate between the skeletal and systemic effects of hypothyroidism on energy metabolism, male mice were treated with zoledronate (ZOL), a bisphosphonate, that led to decreased bone turnover, trabecular bone gain, and reduced local glucose uptake into bone (−40.4%). However, ZOL-treated mice did not display alterations of systemic glucose handling nor insulin tolerance. Despite the close mutual crosstalk of bone and glucose metabolism, in this study, we show that suppressing bone remodeling does not influence whole-body glucose homeostasis in male mice.
Collapse
|
8
|
Lademann F, Tsourdi E, Hofbauer LC, Rauner M. Bone cell-specific deletion of thyroid hormone transporter Mct8 distinctly regulates bone volume in young versus adult male mice. Bone 2022; 159:116375. [PMID: 35240348 DOI: 10.1016/j.bone.2022.116375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/23/2022]
Abstract
Thyroid hormones are critical regulators of bone metabolism. Their cellular import is guided through transporter proteins, including the monocarboxylate transporter 8 (MCT8). Conditional Mct8 knockout in osteoblast and osteoclast precursors leads to trabecular bone gain in 12-week-old male mice. Given that thyroid hormones regulate both skeletal development and bone maintenance, we investigated the effect of bone cell-specific Mct8 deletion in 6-week-old (young) and 24-week-old (adult) male mice. Mct8 ablation in osteoclast precursors led to trabecular bone gain at the spine in 6-week-old animals compared to age-matched controls, whereas adult animals displayed a shift towards trabecular bone loss in both femur and vertebra. Mct8 deficiency in osteoprogenitors increased osteoblast numbers and trabecular bone mass at the spine of young mice, without skeletal differences between adult knockout mice and littermate controls. In contrast, young mice lacking Mct8 in late osteoblasts/osteocytes exhibited lower trabecular bone volume at the spine and femur compared to respective controls, but no differences were detected at 24 weeks of age. In vitro studies of osteoblasts with Dmp1-Cre promotor driven Mct8 deletion showed no significant alterations of osteogenic marker gene expression and mineralization capacity suggesting that MCT8 is not crucial for osteoblast maturation. Overall, we observed mild effects with conditional Mct8 knockout on bone microarchitecture and bone turnover especially during growth implying a secondary role for MCT8 as a thyroid hormone transporter in bone.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Germany.
| |
Collapse
|
9
|
Lademann F, Mayerl S, Tsourdi E, Verrey F, Leitch VD, Williams GR, Bassett JHD, Hofbauer LC, Heuer H, Rauner M. The Thyroid Hormone Transporter MCT10 Is a Novel Regulator of Trabecular Bone Mass and Bone Turnover in Male Mice. Endocrinology 2022; 163:bqab218. [PMID: 34669927 PMCID: PMC8598386 DOI: 10.1210/endocr/bqab218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/19/2022]
Abstract
Thyroid hormones (TH) are essential for skeletal development and adult bone homeostasis. Their bioavailability is determined by specific transporter proteins at the cell surface. The TH-specific transporter monocarboxylate transporter 8 (MCT8) was recently reported as a regulator of bone mass in mice. Given that high systemic triiodothyronine (T3) levels in Mct8 knockout (KO) mice are still able to cause trabecular bone loss, alternative TH transporters must substitute for MCT8 function in bone. In this study, we analyzed the skeletal phenotypes of male Oatp1c1 KO and Mct10 KO mice, which are euthyroid, and male Mct8/Oatp1c1 and Mct8/Mct10 double KO mice, which have elevated circulating T3 levels, to unravel the role of TH transport in bone. MicroCT analysis showed no significant trabecular bone changes in Oatp1c1 KO mice at 4 weeks and 16 weeks of age compared with wild-type littermate controls, whereas 16-week-old Mct8/Oatp1c1 double KO animals displayed trabecular bone loss. At 12 weeks, Mct10 KO mice, but not Mct8/Mct10 double KO mice, had decreased trabecular femoral bone volume with reduced osteoblast numbers. By contrast, lack of Mct10 in 24-week-old mice led to trabecular bone gain at the femur with increased osteoblast numbers and decreased osteoclast numbers whereas Mct8/Mct10 double KO did not alter bone mass. Neither Mct10 nor Mct8/Mct10 deletion affected vertebral bone structures at both ages. In vitro, osteoblast differentiation and activity were impaired by Mct10 and Mct8/Mct10-deficiency. These data demonstrate that MCT10, but not OATP1C1, is a site- and age-dependent regulator of bone mass and turnover in male mice.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Steffen Mayerl
- Department of Endocrinology, University of Duisburg-Essen, University Hospital Essen, D-45147 Essen, Germany
| | - Elena Tsourdi
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Francois Verrey
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Heike Heuer
- Department of Endocrinology, University of Duisburg-Essen, University Hospital Essen, D-45147 Essen, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
10
|
Xu D, Gao HJ, Lu CY, Tian HM, Yu XJ. Vitamin D inhibits bone loss in mice with thyrotoxicosis by activating the OPG/RANKL and Wnt/β-catenin signaling pathways. Front Endocrinol (Lausanne) 2022; 13:1066089. [PMID: 36531471 PMCID: PMC9748851 DOI: 10.3389/fendo.2022.1066089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Vitamin D and thyroid hormones have crucial roles in bone metabolism. This study aims to explore the effects of vitamin D on bone metabolism in mice with thyrotoxicosis and its mechanisms. METHODS 12-week-old mice were randomly divided into 6 groups (6 mice/group), the control (CON) group, vitamin D (VD) group, low-dose LT4 (Low LT4) group, low-dose LT4+VD (Low LT4+VD) group, high-dose LT4 (High LT4) group, high-dose LT4+VD (High LT4+VD) group, LT4 was provided every day and vitamin D3 every other day for 12 weeks. Thyroid function, 25-hydroxy vitamin D, type I collagen carboxy-terminal peptide (CTX), and type I procollagen amino-terminal peptide were determined. In addition, microcomputed tomography, bone histology and histomorphometry, a three-point bending test, and the mRNA expression of osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL) and β-catenin in bone were conducted. RESULTS The BMD of lumbar vertebrae and femur decreased and the bone microstructure was destroyed significantly in thyrotoxicosis mice. Addition of vitamin D improved the BMD and bone microstructure only in the low LT4+VD group. Mice with thyrotoxicosis had a significantly higher level of CTX (P<0.05), which was decreased by treatment with vitamin D (P<0.05). The eroded surface per bone surface (Er. S/BS) of the cancellous bone and elongated surface/endocortical perimeter (Er. S/E Pm) of the cortical bone significantly increased in the Low LT4 and High LT4 groups (P<0.05). Treatment with vitamin D significantly decreased the Er. S/BS and Er. S/E Pm. But, treatment with vitamin D did not significantly improve the toughness and rigidity of bones. The ratio of OPG to RANKL and mRNA expression of β-catenin in the Low LT4+VD group were higher than that in the Low LT4 group (P<0.05). CONCLUSION In mice with thyrotoxicosis, treatment with vitamin D can inhibit bone resorption and improve the BMD and trabecular bone architecture by increasing the ratio of OPG to RANKL and upregulating the expression of Wnt/β-catenin.
Collapse
Affiliation(s)
- Dan Xu
- Division of Endocrinology and Metabolism Internal Medicine, West China Hospital, Sichuan University, Chengdu, China
- Division of Endocrinology & Metabolism, People’s Hospital of Le Shan, Le Shan, China
| | - Hong-Jiao Gao
- Division of Endocrinology and Metabolism Internal Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology, the Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Chun-Yan Lu
- Division of Endocrinology and Metabolism Internal Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chun-Yan Lu, ; Hao-Ming Tian,
| | - Hao-Ming Tian
- Division of Endocrinology and Metabolism Internal Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chun-Yan Lu, ; Hao-Ming Tian,
| | - Xi-Jie Yu
- Division of Endocrinology and Metabolism Internal Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Lademann F, Weidner H, Tsourdi E, Kumar R, Rijntjes E, Köhrle J, Hofbauer LC, Rauner M. Disruption of BMP Signaling Prevents Hyperthyroidism-Induced Bone Loss in Male Mice. J Bone Miner Res 2020; 35:2058-2069. [PMID: 32453466 DOI: 10.1002/jbmr.4092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Thyroid hormones (TH) are key regulators of bone health, and TH excess in mice causes high bone turnover-mediated bone loss. However, the underlying molecular mechanisms of TH actions on bone remain poorly defined. Here, we tested the hypothesis whether TH mediate their effects via the pro-osteogenic bone morphogenetic protein (BMP) signaling pathway in vitro and in vivo. Primary murine osteoblasts treated with 3,3',5-triiodo-L-thyronine (T3 ) showed an enhanced differentiation potential, which was associated with activated canonical BMP/SMAD signaling reflected by SMAD1/5/8 phosphorylation. Blocking BMP signaling at the receptor (LDN193189) and ligand level (noggin, anti-BMP2/BMP4 neutralizing antibodies) inhibited T3 -induced osteogenic differentiation. In vivo, TH excess over 4 weeks in male C57BL/6JRj mice led to severe trabecular bone loss with a high bone turnover that was completely prevented by treatment with the BMP ligand scavenger ALK3-Fc. Thus, TH activate the canonical BMP pathway in osteoblasts to promote their differentiation and function. Importantly, this study indicates that blocking the BMP pathway may be an effective strategy to treat hyperthyroidism-induced bone loss. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ravi Kumar
- Acceleron Pharma, Inc, Cambridge, MA, USA
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Lademann F, Tsourdi E, Rijntjes E, Köhrle J, Hofbauer LC, Heuer H, Rauner M. Lack of the Thyroid Hormone Transporter Mct8 in Osteoblast and Osteoclast Progenitors Increases Trabecular Bone in Male Mice. Thyroid 2020; 30:329-342. [PMID: 31910109 DOI: 10.1089/thy.2019.0271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Bone is an important target of thyroid hormones (THs), which require transport into target cells to exert their actions. Recently, the TH-specific monocarboxylate transporter 8 (Mct8) was reported as a regulator of bone mass in male mice. However, its global deletion leads to high 3,3',5-L-triiodothyronine (T3) serum concentrations that may mask direct effects of Mct8-deficiency on bone. In this study, we assessed the bone cell intrinsic function of Mct8 ex vivo and in vivo using conditional Mct8-knockout lines specifically targeting osteoclast and osteoblast progenitors, as well as mature osteoblasts and osteocytes. Materials and Methods: Twelve-week-old male mice with a global Mct8-deficiency or a conditional Mct8-knockout in osteoclast precursors, osteoprogenitors, or mature osteoblasts/osteocytes were analyzed regarding their bone microarchitecture, turnover, and strength. Furthermore, ex vivo studies were conducted to investigate the role of Mct8 in bone cell differentiation and functionality, as well as TH uptake. Results: Global Mct8-knockout mice demonstrated 1.7-fold higher T3 serum concentrations and trabecular bone loss (-28%) likely due to an increased bone turnover as shown by increased osteoblast (+45%) and osteoclast numbers (+41%). However, cortical bone mineral density was increased. Ex vivo cultures of bone marrow-derived osteoblasts and osteoclasts revealed highest expression of Mct8 in mature bone cells. In addition, Mct8-deficiency resulted in a lower mRNA expression of osteoblast and osteoclast differentiation markers, as well as a reduced mineralization capacity and osteoclast numbers, respectively, indicating a bone cell intrinsic role of Mct8. In fact, conditional Mct8-knockout and inhibition of Mct8 in osteoblasts led to an attenuated T3 uptake ex vivo. In vivo, osteoprogenitor-specific Mct8-knockout enhanced trabecular bone volume (+16%) with osteoblast numbers being increased 3.7 fold. Interestingly, Mct8-deficiency in osteoprogenitors and late osteoblasts/osteocytes both resulted in cortical bone loss. Finally, Mct8-deletion in osteoclast progenitors increased trabecular bone volume (+20%) due to reduced osteoclast numbers (-32%), whereas osteoblast numbers were enhanced (+25%). Conclusions: This study confirms that high systemic T3 in global Mct8-knockout mice masks the direct effect of Mct8. Moreover, it identifies Mct8 as a critical regulator of trabecular vs. cortical bone by regulating T3 uptake and highlights its cell intrinsic role in osteoclast and osteoblast progenitors.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III, Universitätsklinikum Dresden, Dresden, Germany
- Center for Healthy Aging, Universitätsklinikum Dresden, Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III, Universitätsklinikum Dresden, Dresden, Germany
- Center for Healthy Aging, Universitätsklinikum Dresden, Dresden, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Universitätsklinikum Dresden, Dresden, Germany
- Center for Healthy Aging, Universitätsklinikum Dresden, Dresden, Germany
| | - Heike Heuer
- Klinik für Endokrinologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Martina Rauner
- Department of Medicine III, Universitätsklinikum Dresden, Dresden, Germany
- Center for Healthy Aging, Universitätsklinikum Dresden, Dresden, Germany
| |
Collapse
|
13
|
Lademann F, Tsourdi E, Hofbauer LC, Rauner M. Thyroid Hormone Actions and Bone Remodeling – The Role of the
Wnt Signaling Pathway. Exp Clin Endocrinol Diabetes 2020; 128:450-454. [DOI: 10.1055/a-1088-1215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AbstractThyroid hormones are indispensable for bone development and growth. Also in
adults, bone mass maintenance is under the control of thyroid hormones.
Preclinical and clinical studies established untreated hyperthyroidism as a
cause for secondary osteoporosis with increased fracture risk. Thus, normal
thyroid function is essential for bone health. Mechanistically, thyroid hormone
excess accelerates bone turnover with predominant bone resorption. How thyroid
hormones affect osteoblast and osteoclast functions, however, still remains
ill-defined. The Wnt signaling pathway is a major determinant of bone mass and
strength as it promotes osteoblastogenesis and bone formation, while inhibiting
bone resorption. So far, only few studies investigated a possible link between
thyroid hormones, bone metabolism and the Wnt pathway. In this review, we
summarize the literature linking thyroid hormones to bone homeostasis through
Wnt signaling and discuss its potential as a therapeutic approach to treat
hyperthyroidism-induced bone loss.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and Center for Healthy Aging, Technische
Universität Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III and Center for Healthy Aging, Technische
Universität Dresden, Germany
| | - Lorenz C. Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische
Universität Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische
Universität Dresden, Germany
| |
Collapse
|
14
|
Thiele S, Hannemann A, Winzer M, Baschant U, Weidner H, Nauck M, Thakker RV, Bornhäuser M, Hofbauer LC, Rauner M. Regulation of sclerostin in glucocorticoid-induced osteoporosis (GIO) in mice and humans. Endocr Connect 2019; 8:923-934. [PMID: 31234141 PMCID: PMC6612066 DOI: 10.1530/ec-19-0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GC) are used for the treatment of inflammatory diseases, including various forms of arthritis. However, their use is limited, amongst others, by adverse effects on bone. The Wnt and bone formation inhibitor sclerostin was recently implicated in the pathogenesis of GC-induced osteoporosis. However, data are ambiguous. The aim of this study was to assess the regulation of sclerostin by GC using several mouse models with high GC levels and two independent cohorts of patients treated with GC. Male 24-week-old C57BL/6 and 18-week-old DBA/1 mice exposed to GC and 12-week-old mice with endogenous hypercortisolism displayed reduced bone formation as indicated by reduced levels of P1NP and increased serum sclerostin levels. The expression of sclerostin in femoral bone tissue and GC-treated bone marrow stromal cells, however, was not consistently altered. In contrast, GC dose- and time-dependently suppressed sclerostin at mRNA and protein levels in human mesenchymal stromal cells, and this effect was GC receptor dependent. In line with the human cell culture data, patients with rheumatoid arthritis (RA, n = 101) and polymyalgia rheumatica (PMR, n = 21) who were exposed to GC had lower serum levels of sclerostin than healthy age- and sex-matched controls (-40%, P < 0.01 and -26.5%, P < 0.001, respectively). In summary, sclerostin appears to be differentially regulated by GC in mice and humans as it is suppressed by GCs in humans but is not consistently altered in mice. Further studies are required to delineate the differences between GC regulation of sclerostin in mice and humans and assess whether sclerostin mediates GC-induced osteoporosis in humans.
Collapse
Affiliation(s)
- Sylvia Thiele
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Maria Winzer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Churchill Hospital, Oxford, UK
| | - Martin Bornhäuser
- Department of Medicine I, Technische Universität Dresden, Dresden, Germany
- DFG Research Center and Cluster of Excellence for Regenerative Therapies, Technical University, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- DFG Research Center and Cluster of Excellence for Regenerative Therapies, Technical University, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Tsourdi E, Colditz J, Lademann F, Rijntjes E, Köhrle J, Niehrs C, Hofbauer LC, Rauner M. The Role of Dickkopf-1 in Thyroid Hormone-Induced Changes of Bone Remodeling in Male Mice. Endocrinology 2019; 160:664-674. [PMID: 30689850 DOI: 10.1210/en.2018-00998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormones regulate bone homeostasis, and exogenously induced hyperthyroidism and hypothyroidism in mice was recently found to be associated with an altered expression of the Wnt inhibitor Dickkopf-1 (Dkk1), a determinant of bone mass. Here, we assessed the role of Dkk1 in thyroid hormone-induced changes in bone using conditional Dkk1 knockout mice. Male mice with a global (Dkk1fl/fl;Rosa26-CreERT2) or osteocyte-specific (Dkk1fl/fl;Dmp1:Cre) deletion of Dkk1 were pharmacologically rendered hypothyroid or hyperthyroid. The bone phenotype was analyzed using micro-CT analysis, dynamic histomorphometry, and serum concentrations of bone turnover markers. Hypothyroid and hyperthyroid Cre-negative mice of either Cre line revealed the expected changes in bone volume with hypothyroid mice displaying a 40% to 60% increase in vertebral trabecular bone volume, while hyperthyroid mice lost 45% to 60% of bone volume. Similar changes were observed at the spine. Interestingly, Cre-positive mice of both lines did not gain or lose as much bone at the femur when rendered hypothyroid or hyperthyroid. While Cre-negative hypothyroid mice gained 80% to 100% bone volume, Cre-positive hypothyroid mice only increased their bone volume by 55% to 90%. Similarly, Cre-negative hyperthyroid mice lost 74% to 79% bone, while Cre-positive hyperthyroid mice merely lost 40% to 54%. Despite these site-specific differences, both global and osteocyte-specific Dkk1 knockout mice displayed similar changes in bone turnover as their Cre-negative controls in the hypothyroid and hyperthyroid states. While osteoblast and osteoclast parameters were increased in hyperthyroidism, hypothyroidism potently suppressed bone cell activities. Loss of Dkk1 is not sufficient to fully reverse thyroid hormone-induced changes in bone mass and bone turnover.
Collapse
Affiliation(s)
- Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Juliane Colditz
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Franziska Lademann
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Eddy Rijntjes
- Charité-Universitätsmedizin Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Josef Köhrle
- Charité-Universitätsmedizin Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| |
Collapse
|
16
|
Appelman-Dijkstra NM, Papapoulos SE. Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway. Nat Rev Endocrinol 2018; 14:605-623. [PMID: 30181608 DOI: 10.1038/s41574-018-0087-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WNT signalling pathway is a key regulator of bone metabolism, particularly bone formation, which has helped to define the role of osteocytes - the most abundant bone cells - as orchestrators of bone remodelling. Several molecules involved in the control of the WNT signalling pathway have been identified as potential targets for the development of bone-building therapeutics for patients with osteoporosis. Several of these molecules have been investigated in animal models, but only inhibitors of sclerostin (which is produced by osteocytes) have been investigated in phase III clinical studies. Here, we review the rationale for these developments and the specificity and potential off-target actions of WNT-based therapeutics. We also describe the available preclinical and clinical studies and discuss the benefits and risks of using sclerostin inhibitors for the management of patients with osteoporosis.
Collapse
|
17
|
Zhu JH, Liao YP, Li FS, Hu Y, Li Q, Ma Y, Wang H, Zhou Y, He BC, Su YX. Wnt11 promotes BMP9-induced osteogenic differentiation through BMPs/Smads and p38 MAPK in mesenchymal stem cells. J Cell Biochem 2018; 119:9462-9473. [PMID: 30010216 DOI: 10.1002/jcb.27262] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
Bone morphogenetic protein 9 (BMP9), as one of the most potent osteogenic factors, is a promising cytokine for bone tissue engineering. Wnt11 can regulate the development of the skeletal system and is related to high bone mass syndrome. However, the effect of Wnt11 on BMP9-induced osteogenic differentiation remains unknown. In this study, we investigated the relationship between Wnt11- and BMP9-induced osteogenic differentiation in mesenchymal stem cells (MSCs). We recapitulated the osteogenic potential of BMP9 in C3H10T1/2 cells. The messenger RNA expression of Wnt11 is detectable in the available progenitor cells, and BMP9 can obviously increase the protein level of Wnt11 in these cells. Exogenous Wnt11 potentiates the effect of BMP9 on increasing alkaline phosphatase (ALP) activities, the expression of osteopontin (OPN), and Runt-related transcription factor 2 (Runx2), so does matrix mineralization in C3H10T1/2 cells. Although Wnt11 cannot increase the BMP9-induced ectopic bone formation, it can increase the bone density induced by BMP9 apparently. Wnt11 increases the level of p-Smad1/5/8, as well as p-p38. Meanwhile, Wnt11 promotes the effect of BMP9 on increasing the levels of p-Smad1/5/8 and p-p38. Inhibition of p38 decreases the BMP9-induced ALP activities, the expression of OPN, and the mineralization in C3H10T1/2 cells. However, all of these effects of the p38 inhibitor on BMP9-induced osteogenic markers can be almost reversed by the overexpression of Wnt11. Our findings suggested that Wnt11 can enhance the osteogenic potential of BMP9 in MSCs, and this effect may be partly mediated through enhancing BMPs/Smads and the p38 MAPK signal, which was induced by BMP9.
Collapse
Affiliation(s)
- Jia-Hui Zhu
- Department of Orthopedic, Children Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Medical University, Chongqing, China.,Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Yun-Peng Liao
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Fu-Shu Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Ying Hu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Qin Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Yan Ma
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Han Wang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Ya Zhou
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Yu-Xi Su
- Department of Orthopedic, Children Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
|