1
|
Jo M, Brännström M, Akins JW, Curry TE. New insights into the ovulatory process in the human ovary. Hum Reprod Update 2024:dmae027. [PMID: 39331957 DOI: 10.1093/humupd/dmae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Successful ovulation is essential for natural conception and fertility. Defects in the ovulatory process are associated with various conditions of infertility or subfertility in women. However, our understanding of the intra-ovarian biochemical mechanisms underlying this process in women has lagged compared to our understanding of animal models. This has been largely due to the limited availability of human ovarian samples that can be used to examine changes across the ovulatory period and delineate the underlying cellular/molecular mechanisms in women. Despite this challenge, steady progress has been made to improve our knowledge of the ovulatory process in women by: (i) collecting granulosa cells across the IVF interval, (ii) creating a novel approach to collecting follicular cells and tissues across the periovulatory period from normally cycling women, and (iii) developing unique in vitro models to examine the LH surge or hCG administration-induced ovulatory changes in gene expression, the regulatory mechanisms underlying the ovulatory changes, and the specific functions of the ovulatory factors. OBJECTIVE AND RATIONALE The objective of this review is to summarize findings generated using in vivo and in vitro models of human ovulation, with the goal of providing new insights into the mechanisms underlying the ovulatory process in women. SEARCH METHODS This review is based on the authors' own studies and a search of the relevant literature on human ovulation to date using PubMed search terms such as 'human ovulation EGF-signaling', 'human ovulation steroidogenesis', 'human ovulation transcription factor', 'human ovulation prostaglandin', 'human ovulation proteinase', 'human ovulation angiogenesis' 'human ovulation chemokine', 'human ovulatory disorder', 'human granulosa cell culture'. Our approach includes comparing the data from the authors' studies with the existing microarray or RNA-seq datasets generated using ovarian cells obtained throughout the ovulatory period from humans, monkeys, and mice. OUTCOMES Current findings from studies using in vivo and in vitro models demonstrate that the LH surge or hCG administration increases the expression of ovulatory mediators, including EGF-like factors, steroids, transcription factors, prostaglandins, proteolytic systems, and other autocrine and paracrine factors, similar to those observed in other animal models such as rodents, ruminants, and monkeys. However, the specific ovulatory factors induced, their expression pattern, and their regulatory mechanisms vary among different species. These species-specific differences stress the necessity of utilizing human samples to delineate the mechanisms underlying the ovulatory process in women. WIDER IMPLICATIONS The data from human ovulation in vivo and in vitro models have begun to fill the gaps in our understanding of the ovulatory process in women. Further efforts are needed to discover novel ovulatory factors. One approach to address these gaps is to improve existing in vitro models to more closely mimic in vivo ovulatory conditions in humans. This is critically important as the knowledge obtained from these human studies can be translated directly to aid in the diagnosis of ovulation-associated pathological conditions, for the development of more effective treatment to help women with anovulatory infertility or, conversely, to better manage ovulation for contraceptive purposes. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
2
|
Sage MAG, Duffy DM. Novel Plasma Membrane Androgen Receptor SLC39A9 Mediates Ovulatory Changes in Cells of the Monkey Ovarian Follicle. Endocrinology 2024; 165:bqae071. [PMID: 38889246 PMCID: PMC11212825 DOI: 10.1210/endocr/bqae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Follicular androgens are important for successful ovulation and fertilization. The classical nuclear androgen receptor (AR) is a transcription factor expressed in the cells of the ovarian follicle. Androgen actions can also occur via membrane androgen receptor SLC39A9. Studies in fish ovary demonstrated that androgens bind to SLC39A9 and increase intracellular zinc to regulate ovarian cell function. To determine if SLC39A9 is expressed and functional in the key cell types of the mammalian ovulatory follicle, adult female cynomolgus macaques underwent ovarian stimulation. Ovaries or ovarian follicular aspirates were harvested at 0, 12, 24, and 36 hours after human chorionic gonadotropin (hCG). SLC39A9 and AR mRNA and protein were present in granulosa, theca, and vascular endothelial cells across the entire 40-hour ovulatory window. Testosterone, bovine serum albumin-conjugated testosterone (BSA-T), and androstenedione stimulated zinc influx in granulosa, theca, and vascular endothelial cells. The SLC39A9-selective agonist (-)-epicatechin also stimulated zinc influx in vascular endothelial cells. Taken together, these data support the conclusion that SLC39A9 activation via androgen induces zinc influx in key ovarian cells. Testosterone, BSA-T, and androstenedione each increased proliferation in vascular endothelial cells, indicating the potential involvement of SLC39A9 in ovulatory angiogenesis. Vascular endothelial cell migration also increased after treatment with testosterone, but not after treatment with BSA-T or androstenedione, suggesting that androgens stimulate vascular endothelial cell migration through nuclear AR but not SLC39A9. The presence of SLC39A9 receptors and SLC39A9 activation by follicular androstenedione concentrations suggests that androgen activation of ovarian SLC39A9 may regulate ovulatory changes in the mammalian follicle.
Collapse
Affiliation(s)
- Megan A G Sage
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
3
|
Pearson AC, Shrestha K, Curry TE, Duffy DM. Neurotensin modulates ovarian vascular permeability via adherens junctions. FASEB J 2024; 38:e23602. [PMID: 38581236 PMCID: PMC11034770 DOI: 10.1096/fj.202302652rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Neurotensin (NTS) is a 13-amino acid peptide which is highly expressed in the mammalian ovary in response to the luteinizing hormone surge. Antibody neutralization of NTS in the ovulatory follicle of the cynomolgus macaque impairs ovulation and induces follicular vascular dysregulation, with excessive pooling of red blood cells in the follicle antrum. We hypothesize that NTS is an essential intrafollicular regulator of vascular permeability. In the present study, follicle injection of the NTS receptor antagonist SR142948 also resulted in vascular dysregulation. To measure vascular permeability changes in vitro, primary macaque ovarian microvascular endothelial cells (mOMECs) were enriched from follicle aspirates and studied in vitro. When treated with NTS, permeability of mOMECs decreased. RNA sequencing (RNA-Seq) of mOMECs revealed high mRNA expression of the permeability-regulating adherens junction proteins N-cadherin (CDH2) and K-cadherin (CDH6). Immunofluorescent detection of CDH2 and CDH6 confirmed expression and localized these cadherins to the cell-cell boundaries, consistent with function as components of adherens junctions. mOMECs did not express detectable levels of the typical vascular endothelial cadherin, VE-cadherin (CDH5) as determined by RNA-Seq, qPCR, western blot, and immunofluorescence. Knockdown of CDH2 or CDH6 via siRNA abrogated the NTS effect on mOMEC permeability. Collectively, these data suggest that NTS plays an ovulation-critical role in vascular permeability maintenance, and that CDH2 and CDH6 are involved in the permeability modulating effect of NTS on the ovarian microvasculature. NTS can be added to a growing number of angiogenic regulators which are critical for successful ovulation.
Collapse
Affiliation(s)
- Andrew C. Pearson
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA, 23507
| | - Ketan Shrestha
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA, 40536
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA, 40536
| | - Diane M. Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA, 23507
| |
Collapse
|
4
|
Choi Y, Jeon H, Brännström M, Akin JW, Curry TE, Jo M. A single-cell gene expression atlas of human follicular aspirates: Identification of leukocyte subpopulations and their paracrine factors. FASEB J 2023; 37:e22843. [PMID: 36934419 DOI: 10.1096/fj.202201746rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/20/2023]
Abstract
Leukocytes are in situ regulators critical for ovarian function. However, little is known about leukocyte subpopulations and their interaction with follicular cells in ovulatory follicles, especially in humans. Single-cell RNA sequencing (scRNA-seq) was performed using follicular aspirates obtained from four IVF patients and identified 13 cell groups: one granulosa cell group, one thecal cell group, 10 subsets of leukocytes, and one group of RBC/platelet. RNA velocity analyses on five granulosa cell populations predicted developmental dynamics denoting two projections of differentiation states. The cell type-specific transcriptomic profiling analyses revealed the presence of a diverse array of leukocyte-derived factors that can directly impact granulosa cell function by activating their receptors (e.g., cytokines and secretory ligands) and are involved in tissue remodeling (e.g., MMPs, ADAMs, ADAMTSs, and TIMPs) and angiogenesis (e.g., VEGFs, PGF, FGF, IGF, and THBS1) in ovulatory follicles. Consistent with the findings from the scRNA-seq data, the leukocyte-specific expression of CD68, IL1B, and MMP9 was verified in follicle tissues collected before and at defined hours after hCG administration from regularly cycling women. Collectively, this study demonstrates that this data can be used as an invaluable resource for identifying important leukocyte-derived factors that promote follicular cell function, thereby facilitating ovulation and luteinization in women.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Hayce Jeon
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - James W Akin
- Bluegrass Fertility Center, Lexington, Kentucky, USA
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Guzmán A, Hernández-Coronado CG, Gutiérrez CG, Rosales-Torres AM. The vascular endothelial growth factor (VEGF) system as a key regulator of ovarian follicle angiogenesis and growth. Mol Reprod Dev 2023; 90:201-217. [PMID: 36966489 DOI: 10.1002/mrd.23683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The vascular endothelial growth factor-A (VEGFA) system is a complex set of proteins, with multiple isoforms and receptors, including both angiogenic (VEGFxxx, VEGFR2) and antiangiogenic members (VEGFxxxb, VEGFR1 and soluble forms of VEGFR). The members of the VEGF system affect the proliferation, survival, and migration of endothelial and nonendothelial cells and are involved in the regulation of follicular angiogenesis and development. The production of VEGF by secondary follicles stimulates preantral follicular development by directly affecting follicular cells and promoting the acquisition of the follicular vasculature and downstream antrum formation. Additionally, the pattern of expression of the components of the VEGF system may provide a proangiogenic milieu capable of triggering angiogenesis and stimulating follicular cells to promote antral follicle growth, whereas, during atresia, this milieu becomes antiangiogenic and blocks follicular development.
Collapse
Affiliation(s)
- Adrian Guzmán
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Cyndi G Hernández-Coronado
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Carlos G Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana M Rosales-Torres
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| |
Collapse
|
6
|
Lund M, Pearson AC, Sage MAG, Duffy DM. Luteinizing hormone receptor promotes angiogenesis in ovarian endothelial cells of Macaca fascicularis and Homo sapiens†. Biol Reprod 2023; 108:258-268. [PMID: 36214501 PMCID: PMC9930396 DOI: 10.1093/biolre/ioac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 11/14/2022] Open
Abstract
Angiogenesis within the ovarian follicle is an important component of ovulation. New capillary growth is initiated by the ovulatory surge of luteinizing hormone (LH), and angiogenesis is well underway at the time of follicle rupture. LH-stimulated follicular production of vascular growth factors has been shown to promote new capillary formation in the ovulatory follicle. The possibility that LH acts directly on ovarian endothelial cells to promote ovulatory angiogenesis has not been addressed. For these studies, ovaries containing ovulatory follicles were obtained from cynomolgus macaques and used for histological examination of ovarian vascular endothelial cells, and monkey ovarian microvascular endothelial cells (mOMECs) were enriched from ovulatory follicles for in vitro studies. mOMECs expressed LHCGR mRNA and protein, and immunostaining confirmed LHCGR protein in endothelial cells of ovulatory follicles in vivo. Human chorionic gonadotropin (hCG), a ligand for LHCGR, increased mOMEC proliferation, migration and capillary-like sprout formation in vitro. Treatment of mOMECs with hCG increased cAMP, a common intracellular signal generated by LHCGR activation. The cAMP analog dibutyryl cAMP increased mOMEC proliferation in the absence of hCG. Both the protein kinase A (PKA) inhibitor H89 and the phospholipase C (PLC) inhibitor U73122 blocked hCG-stimulated mOMEC proliferation, suggesting that multiple G-proteins may mediate LHCGR action. Human ovarian microvascular endothelial cells (hOMECs) enriched from ovarian aspirates obtained from healthy oocyte donors also expressed LHCGR. hOMECs also migrated and proliferated in response to hCG. Overall, these findings indicate that the LH surge may directly activate ovarian endothelial cells to stimulate angiogenesis of the ovulatory follicle.
Collapse
Affiliation(s)
- Merete Lund
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Andrew C Pearson
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Megan A G Sage
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
7
|
Pal D, Blair H, Parker J, Hockney S, Beckett M, Singh M, Tirtakusuma R, Nelson R, McNeill H, Angel SH, Wilson A, Nizami S, Nakjang S, Zhou P, Schwab C, Sinclair P, Russell LJ, Coxhead J, Halsey C, Allan JM, Harrison CJ, Moorman AV, Heidenreich O, Vormoor J. hiPSC-derived bone marrow milieu identifies a clinically actionable driver of niche-mediated treatment resistance in leukemia. Cell Rep Med 2022; 3:100717. [PMID: 35977468 PMCID: PMC9418860 DOI: 10.1016/j.xcrm.2022.100717] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
Leukemia cells re-program their microenvironment to augment blast proliferation and enhance treatment resistance. Means of clinically targeting such niche-driven treatment resistance remain ambiguous. We develop human induced pluripotent stem cell (hiPSC)-engineered niches to reveal druggable cancer-niche dependencies. We reveal that mesenchymal (iMSC) and vascular niche-like (iANG) hiPSC-derived cells support ex vivo proliferation of patient-derived leukemia cells, affect dormancy, and mediate treatment resistance. iMSCs protect dormant and cycling blasts against dexamethasone, while iANGs protect only dormant blasts. Leukemia proliferation and protection from dexamethasone-induced apoptosis is dependent on cancer-niche interactions mediated by CDH2. Consequently, we test CDH2 antagonist ADH-1 (previously in Phase I/II trials for solid tumors) in a very aggressive patient-derived xenograft leukemia mouse model. ADH-1 shows high in vivo efficacy; ADH-1/dexamethasone combination is superior to dexamethasone alone, with no ADH-1-conferred additional toxicity. These findings provide a proof-of-concept starting point to develop improved, potentially safer therapeutics targeting niche-mediated cancer dependencies in blood cancers.
Collapse
Affiliation(s)
- Deepali Pal
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK.
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Jessica Parker
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
| | - Sean Hockney
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
| | - Melanie Beckett
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Mankaran Singh
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Ricky Tirtakusuma
- Princess Maxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Ryan Nelson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Hesta McNeill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Sharon H Angel
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Aaron Wilson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Salem Nizami
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, William Leech Building, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Peixun Zhou
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Claire Schwab
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Paul Sinclair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Lisa J Russell
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Jonathan Coxhead
- Genomics Core Facility, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH UK
| | - James M Allan
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK; Princess Maxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Josef Vormoor
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK; Princess Maxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
8
|
Kadoura S, Alhalabi M, Nattouf AH. Follicular fluid PlGF and IVF/ICSI outcomes among PCOS and normo-ovulatory women using different controlled hyperstimulation protocols: A prospective case-control study. Ann Med Surg (Lond) 2022; 79:104096. [PMID: 35860057 PMCID: PMC9289487 DOI: 10.1016/j.amsu.2022.104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Background Gonadotropin-releasing hormone (GnRH) analogues are used to prevent premature luteinizing hormone (LH) surge during In-Vitro Fertilization. However, the follicular fluid levels of the Placental growth factor (FF PlGF), the novel angiogenic factor, differ significantly between GnRH-agonist and GnRH-antagonist protocols. Thus, we compared the IVF/ICSI outcomes and their correlations with FF PlGF levels in polycystic ovary syndrome (PCOS) and normo-ovulatory women during different hyperstimulation protocols. Methods This case-control study is a re-analysis of two prospective trials that were conducted on women who were referred to Orient Hospital, Damascus, Syria, from December 2019 to August 2021. A total of 75 PCOS-women (PCOS-Agonist, n = 53; PCOS-Antagonist, n = 22) and 83 normo-ovulatory women (Control-Agonist, n = 50; Control-Antagonist, n = 33) were included. Follicular fluid samples were collected on retrieval day. Results Although PCOS-women were stimulated using lower gonadotropin doses, the Ovarian-sensitivity-indexes were higher in PCOS-groups (PCOS-Agonist vs Control-Agonist; P-value <0.001), (PCOS-Antagonist vs Control-Antagonist; P-value = 0.042). However, FF PlGF levels, maturation rate, fertilization rate, and oocytes morphology were comparable between PCOS and controls independently of the protocol used. Interestingly, FF PlGF levels were positively correlated with Ovarian-sensitivity-indexes in the PCOS-Antagonist, Control-Agonist, and Control-Anta groups, but not in the PCOS-Agonist group. Nevertheless, FF PlGF levels were comparable between pregnant and non-pregnant women in all studied groups. Conclusions Although PCOS exaggerates ovarian response to stimulation irrespective of the protocol used, it does not have a detrimental impact on oocytes morphology or competence. Moreover, FF PlGF levels could be a marker of the ovarian response other than a predictor of pregnancy achievement.
Collapse
Affiliation(s)
- Sally Kadoura
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Marwan Alhalabi
- Department of Embryology and Reproductive Medicine, Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
- Assisted Reproduction Unit, Orient Hospital, Damascus, Syrian Arab Republic
| | - Abdul Hakim Nattouf
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| |
Collapse
|
9
|
Tamura I, Tamura H, Kawamoto-Jozaki M, Shirafuta Y, Fujimura T, Doi-Tanaka Y, Mihara Y, Taketani T, Sugino N. Effects of Melatonin on the Transcriptome of Human Granulosa Cells, Fertilization and Blastocyst Formation. Int J Mol Sci 2022; 23:ijms23126731. [PMID: 35743171 PMCID: PMC9223589 DOI: 10.3390/ijms23126731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 01/25/2023] Open
Abstract
Melatonin is a promising reagent that can improve assisted reproductive technology (ART) outcomes in infertility patients. However, melatonin is not effective for all infertile patients, and it remains unclear for which patients melatonin would be effective. This study examined the effects of melatonin on ART outcomes and examined its mechanisms. Melatonin increased the fertilization rate in patients whose fertilization rates in the previous cycle were less than 50%, but not in patients whose fertilization rates were more than 50% in the previous cycle. Melatonin increased the blastocyst formation rate in patients whose embryo development rates in the previous cycle were less than 50%, but not in patients whose embryo development rates were more than 50% in the previous cycle. To clarify its mechanisms, transcriptome changes by melatonin treatment in granulosa cells (GCs) of the patients were examined by RNA-sequence. Melatonin treatment altered the transcriptomes of GCs of patients with poor ART outcomes so that they were similar to the transcriptomes of patients with good ART outcomes. The altered genes were associated with the inhibition of cell death and T-cell activity, and the activation of steroidogenesis and angiogenesis. Melatonin treatment was effective for patients with poor fertilization rates and poor embryo development rates in the previous ART cycle. Melatonin alters the GCs transcriptome and, thus, their functions, and this could improve the oocyte quality, leading to good ART outcomes.
Collapse
Affiliation(s)
| | - Hiroshi Tamura
- Correspondence: ; Tel.: +81-836-22-2288; Fax: +81-836-22-2287
| | | | | | | | | | | | | | | |
Collapse
|
10
|
A review on inflammation and angiogenesis as key mechanisms involved in the pathogenesis of bovine cystic ovarian disease. Theriogenology 2022; 186:70-85. [DOI: 10.1016/j.theriogenology.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
11
|
Shirafuta Y, Tamura I, Ohkawa Y, Maekawa R, Doi-Tanaka Y, Takagi H, Mihara Y, Shinagawa M, Taketani T, Sato S, Tamura H, Sugino N. Integrated Analysis of Transcriptome and Histone Modifications in Granulosa Cells During Ovulation in Female Mice. Endocrinology 2021; 162:6309636. [PMID: 34171084 DOI: 10.1210/endocr/bqab128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/14/2022]
Abstract
The ovulatory luteinizing hormone (LH) surge induces rapid changes of gene expression and cellular functions in granulosa cells (GCs) undergoing luteinization. However, it remains unclear how the changes in genome-wide gene expression are regulated. H3K4me3 histone modifications are involved in the rapid alteration of gene expression. In this study, we investigated genome-wide changes of transcriptome and H3K4me3 status in mouse GCs undergoing luteinization. GCs were obtained from mice treated with equine chorionic gonadotropin (hCG) before, 4 hours, and 12 hours after human chorionic gonadotropin injection. RNA-sequencing identified a number of upregulated and downregulated genes, which could be classified into 8 patterns according to the time-course changes of gene expression. Many genes were transiently upregulated or downregulated at 4 hours after hCG stimulation. Gene Ontology terms associated with these genes included steroidogenesis, ovulation, cumulus-oocyte complex (COC) expansion, angiogenesis, immune system, reactive oxygen species (ROS) metabolism, inflammatory response, metabolism, and autophagy. The cellular functions of DNA repair and cell growth were newly identified as being activated during ovulation. Chromatin immunoprecipitation-sequencing revealed a genome-wide and rapid change in H3K4me3 during ovulation. Integration of transcriptome and H3K4me3 data identified many H3K4me3-associated genes that are involved in steroidogenesis, ovulation, COC expansion, angiogenesis, inflammatory response, immune system, ROS metabolism, lipid and glucose metabolism, autophagy, and regulation of cell size. The present results suggest that genome-wide changes in H3K4me3 after the LH surge are associated with rapid changes in gene expression in GCs, which enables GCs to acquire a lot of cellular functions within a short time that are required for ovulation and luteinization.
Collapse
Affiliation(s)
- Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yumiko Doi-Tanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| |
Collapse
|
12
|
Campbell GE, Bender HR, Parker GA, Curry TE, Duffy DM. Neurotensin: A novel mediator of ovulation? FASEB J 2021; 35:e21481. [PMID: 33710668 PMCID: PMC8314182 DOI: 10.1096/fj.202002547rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
The midcycle luteinizing hormone (LH) surge initiates a cascade of events within the ovarian follicle which culminates in ovulation. Only mural granulosa cells and theca cells express large numbers of LH receptors, and LH-stimulated paracrine mediators communicate the ovulatory signal within the follicle. Recent reports identified the neuropeptide neurotensin (NTS) as a product of granulosa cells. Here, we demonstrate that granulosa cells were the primary site of NTS expression in macaque ovulatory follicles. Granulosa cell NTS mRNA and protein increased after human chorionic gonadotropin (hCG) administration, which substitutes for the LH surge. To identify ovulatory actions of NTS, a NTS-neutralizing antibody was injected into preovulatory macaque follicles. hCG administration immediately followed, and ovaries were removed 48 hours later to evaluate ovulatory events. Follicles injected with control IgG ovulated normally. In contrast, 75% of NTS antibody-injected follicles failed to ovulate, containing oocytes trapped within unruptured, hemorrhagic follicles. Serum progesterone was unchanged. Of the three NTS receptors, SORT1 was highly expressed in follicular granulosa, theca, and endothelial cells; NTSR1 and NTSR2 were expressed at lower levels. Excessive blood cells in NTS antibody-injected follicles indicated vascular anomalies, so the response of monkey ovarian endothelial cells to NTS was evaluated in vitro. NTS stimulated endothelial cell migration and capillary sprout formation, consistent with a role for NTS in vascular remodeling associated with ovulation. In summary, we identified NTS as a possible paracrine mediator of ovulation. Further investigation of the NTS synthesis/response pathway may lead to improved treatments for infertility and novel targets for contraception.
Collapse
Affiliation(s)
- Genevieve E. Campbell
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Hannah R. Bender
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Grace A. Parker
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA
| | - Diane M. Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
13
|
Lai TH, Chen HT, Wu WB. TGFβ1 induces in-vitro and ex-vivo angiogenesis through VEGF production in human ovarian follicular fluid-derived granulosa cells during in-vitro fertilization cycle. J Reprod Immunol 2021; 145:103311. [PMID: 33812317 DOI: 10.1016/j.jri.2021.103311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/28/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
A growing body of evidence indicates that angiogenesis in folliculogenesis contributes to oocyte developmental competence in natural and in-vitro fertilization (IVF) cycle of animals. Among the known angiogenic factors, vascular endothelial growth factor (VEGF) has an important role involved in angiogenesis. However, its expression level and regulatory mechanism in ovarian follicular fluid (FF) in patients undergoing IVF with controlled ovarian stimulation (COS) remains to be explored. In this study, the primary cultured human ovarian follicular granulosa cells (GCs) were prepared from FF and their identity was characterized by the presence of the GC specific markers. The transforming growth factor β1 (TGFβ1) was found to induce a significant increase in VEGF mRNA level and protein expression/secretion in GCs. In line with these observations, TGFβ1 could be detected in the ovarian FF, ranging from about 400 to 2000 pg/mL among three IVF patient groups with different patient's serum Anti-Müllerian hormone level. The cellular signaling analysis revealed that TGFβ1 induced VEGF production through TGFβ receptor (TGFβR), Smad2/3, PI3 K/AKT, and JNK1/2-related signaling pathways. Finally, in a functional study, the TGFβ1-primed GC VEGF secretion promoted in-vitro angiogenesis in vascular endothelial cells and ex-vivo vessel sprouting in aortic ring. Taken together, we demonstrated here that TGFβ1 expressed in ovarian FF is an inducer for promoting VEGF production in follicular GCs through TGFβR-mediated signaling pathways and the released VEGF subsequently leads to angiogenesis. This possibly contributes to oocyte developmental competence in folliculogenesis of IVF patients with a COS protocol.
Collapse
Affiliation(s)
- Tsung-Hsuan Lai
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hsuan-Ting Chen
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Ph.D. Program in Biopharmaceutical Biotechnology, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
14
|
Al-Alem L, Puttabyatappa M, Shrestha K, Choi Y, Rosewell K, Brännström M, Akin J, Jo M, Duffy DM, Curry TE. Neurotensin: a neuropeptide induced by hCG in the human and rat ovary during the periovulatory period†. Biol Reprod 2021; 104:1337-1346. [PMID: 33682882 PMCID: PMC8485077 DOI: 10.1093/biolre/ioab036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/04/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023] Open
Abstract
Neurotensin (NTS) is a tridecapeptide that was first characterized as a neurotransmitter in neuronal cells. The present study examined ovarian NTS expression across the periovulatory period in the human and the rat. Women were recruited into this study and monitored by transvaginal ultrasound. The dominant follicle was surgically excised prior to the luteinizing hormone (LH) surge (preovulatory phase) or women were given 250 μg human chorionic gonadotropin (hCG) and dominant follicles collected 12-18 h after hCG (early ovulatory), 18-34 h (late ovulatory), and 44-70 h (postovulatory). NTS mRNA was massively induced during the early and late ovulatory stage in granulosa cells (GCs) (15 000 fold) and theca cells (700 fold). In the rat, hCG also induced Nts mRNA expression in intact ovaries and isolated GCs. In cultured granulosa-luteal cells (GLCs) from IVF patients, NTS expression was induced 6 h after hCG treatment, whereas in cultured rat GCs, NTS increased 4 h after hCG treatment. Cells treated with hCG signaling pathway inhibitors revealed that NTS expression is partially regulated in the human and rat GC by the epidermal-like growth factor pathway. Human GLC, and rat GCs also showed that Nts was regulated by the protein kinase A (PKA) pathway along with input from the phosphotidylinositol 3- kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. The predominat NTS receptor present in human and rat GCs was SORT1, whereas NTSR1 and NTSR2 expression was very low. Based on NTS actions in other systems, we speculate that NTS may regulate crucial aspects of ovulation such as vascular permeability, inflammation, and cell migration.
Collapse
Affiliation(s)
- Linah Al-Alem
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Muraly Puttabyatappa
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ketan Shrestha
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Yohan Choi
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kathy Rosewell
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden,Stockholm IVF, Stockholm, Sweden
| | - James Akin
- Bluegrass Fertility Center, Lexington, KY, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA,Correspondence: Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, 800 Rose Street,Room MS 331, Lexington, KY 40536-0298, USA. E-mail:
| |
Collapse
|
15
|
Satué K, Fazio E, Cravana C, Quartuccio M, Marcilla M, Medica P. Functional response of systemic and intrafollicular placental growth factor in cycling mares. Acta Vet Hung 2020; 68:200-206. [PMID: 32877357 DOI: 10.1556/004.2020.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/04/2020] [Indexed: 11/19/2022]
Abstract
The aim of the study was to assess the physiological reference values for systemic and intrafollicular placental growth factor (PlGF) concentrations in different categories of follicular sizes in cycling mares, according to progesterone (P4) and oestradiol (E2) patterns. Sixty ovaries were taken after slaughter from 30 clinically healthy mares. Regarding their size, the follicles were classified into three different categories, i.e. small (20-30 mm), medium-sized (31-40 mm) and large (≥41 mm), and follicular fluid (FF) was sampled from each single follicle. Intrafollicular PlGF concentrations were significantly increased in larger and medium-sized follicles compared to small follicles, and their values were 1.48 and 1.36 times higher than the systemic values, respectively. On the other hand, systemic PlGF concentrations were 1.3 times higher than those in the FF of follicles of small size. Intrafollicular P4 concentrations were significantly higher in larger follicles than in small ones, and their concentrations were 6.74 and 3.42 times higher than the systemic values, respectively. Intrafollicular E2 concentrations were significantly higher in large and medium-sized follicles than in follicles of small size, and their concentrations were 21.1, 15.4 and 8.35 times higher than the systemic values, respectively. Intrafollicular and systemic PlGF concentrations were strongly and positively correlated; nevertheless, no correlations between intrafollicular and systemic steroid hormones, PlGF and follicle diameters, PlGF and E2, or PlGF and P4 were observed. This represents the first study to characterise systemic and intrafollicular PlGF concentrations in cycling normal mares, providing evidence that the bioavailability of this factor in follicles of medium and large sizes was higher than in small follicles, independently of steroid hormone concentrations. Further studies are needed to assess the presumable implications of PlGF in follicular angiogenesis in mares, similar to those already observed in women and primates.
Collapse
Affiliation(s)
- Katiuska Satué
- 1Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Valencia, Spain
| | - Esterina Fazio
- 2Department of Veterinary Sciences, Veterinary Physiology Unit, Messina University, Messina, Italy
| | - Cristina Cravana
- 2Department of Veterinary Sciences, Veterinary Physiology Unit, Messina University, Messina, Italy
| | - Marco Quartuccio
- 3Department of Veterinary Sciences, Physiopathology and Clinic of Reproduction Unit, Messina University, Messina, Italy
| | - Maria Marcilla
- 1Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Valencia, Spain
| | - Pietro Medica
- 2Department of Veterinary Sciences, Veterinary Physiology Unit, Messina University, Messina, Italy
| |
Collapse
|
16
|
Campbell GE, Jones EL, Comizzoli P, Duffy DM. Neurotensin stimulates the sperm acrosome reaction and reduces percentages of fertilization in vitro. F&S SCIENCE 2020; 1:27-35. [PMID: 35559737 PMCID: PMC10034862 DOI: 10.1016/j.xfss.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine the impact of neurotensin (NTS), a naturally occurring peptide, on the function of human and nonhuman primate sperm. DESIGN Experimental study. SETTING University-based research laboratory. PATIENT(S)/ANIMAL(S) Consenting normozoospermic human donors and cynomolgus macaques. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Sperm acrosome status was assessed. Computer-assisted semen analysis assessed sperm motility, progression, and velocity. Immunocytochemistry and receptor selective agonists were used to identify specific NTS receptors on sperm. Monkey oocytes were obtained after ovarian stimulation, and NTS-treated monkey sperm were used for in vitro fertilization. RESULTS Neurotensin treatment of human sperm stimulated the acrosome reaction in both a dose-dependent (0.1-10 μmol/L) and time-dependent (5-30 minutes) manner. Neurotensin treatment did not alter sperm motility or progression. Both a general NTS receptor antagonist (SR142948) and a NTSR1 selective antagonist (SR48692) reduced the ability of NTS to stimulate the acrosome reaction. The neurotensin receptor NTSR1, but not NTSR2 or SORT1, was detected in monkey sperm using immunostaining. Neurotensin treatment also compromised the ability of sperm to fertilize an oocyte. Percentage of fertilization with untreated monkey sperm and monkey oocytes was 72%. Sperm pre-treated with NTS yielded a significantly lower fertilization rate of 18%. CONCLUSION(S) Neurotensin effectively stimulates the acrosome reaction in human and monkey sperm. Neurotensin produced by the oviduct or cumulus cells may promote natural fertilization. Pretreatment of sperm with NTS significantly reduces fertilization. Exposure of sperm to NTS prior to reaching the oviduct has the potential for contraceptive development. Identification of NTSR1 as the mediator of NTS action provides a specific target for future studies.
Collapse
Affiliation(s)
- Genevieve E Campbell
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Estella L Jones
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia; Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, Front Royal, Virginia, and Washington, District of Columbia
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia.
| |
Collapse
|
17
|
Newly Identified Regulators of Ovarian Folliculogenesis and Ovulation. Int J Mol Sci 2020; 21:ijms21124565. [PMID: 32604954 PMCID: PMC7349727 DOI: 10.3390/ijms21124565] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Each follicle represents the basic functional unit of the ovary. From its very initial stage of development, the follicle consists of an oocyte surrounded by somatic cells. The oocyte grows and matures to become fertilizable and the somatic cells proliferate and differentiate into the major suppliers of steroid sex hormones as well as generators of other local regulators. The process by which a follicle forms, proceeds through several growing stages, develops to eventually release the mature oocyte, and turns into a corpus luteum (CL) is known as “folliculogenesis”. The task of this review is to define the different stages of folliculogenesis culminating at ovulation and CL formation, and to summarize the most recent information regarding the newly identified factors that regulate the specific stages of this highly intricated process. This information comprises of either novel regulators involved in ovarian biology, such as Ube2i, Phoenixin/GPR73, C1QTNF, and α-SNAP, or recently identified members of signaling pathways previously reported in this context, namely PKB/Akt, HIPPO, and Notch.
Collapse
|
18
|
Olsen KW, Castillo-Fernandez J, Zedeler A, Freiesleben NC, Bungum M, Chan AC, Cardona A, Perry JRB, Skouby SO, Borup R, Hoffmann ER, Kelsey G, Grøndahl ML. A distinctive epigenetic ageing profile in human granulosa cells. Hum Reprod 2020; 35:1332-1345. [DOI: 10.1093/humrep/deaa071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
Abstract
STUDY QUESTION
Does women’s age affect the DNA methylation (DNAm) profile differently in mural granulosa cells (MGCs) from other somatic cells?
SUMMARY ANSWER
Accumulation of epimutations by age and a higher number of age-related differentially methylated regions (DMR) in MGCs were found compared to leukocytes from the same woman, suggesting that the MGCs have a distinctive epigenetic profile.
WHAT IS KNOWN ALREADY
The mechanisms underlying the decline in women’s fertility from the mid-30s remain to be fully elucidated. The DNAm age of many healthy tissues changes predictably with and follows chronological age, but DNAm age in some reproductive tissues has been shown to depart from chronological age (older: endometrium; younger: cumulus cells, spermatozoa).
STUDY DESIGN, SIZE, DURATION
This study is a multicenter cohort study based on retrospective analysis of prospectively collected data and material derived from healthy women undergoing IVF or ICSI treatment following ovarian stimulation with antagonist protocol. One hundred and nineteen women were included from September 2016 to June 2018 from four clinics in Denmark and Sweden.
PARTICIPANTS/MATERIALS, SETTING, METHODS
Blood samples were obtained from 118 healthy women with varying ovarian reserve status. MGCs were collected from 63 of the 119 women by isolation from pooled follicles immediately after oocyte retrieval. DNA from leukocytes and MGCs was extracted and analysed with a genome-wide methylation array. Data from the methylation array were processed using the ENmix package. Subsequently, DNAm age was calculated using established and tailored age predictors and DMRs were analysed with the DMRcate package.
MAIN RESULTS AND ROLE OF CHANCE
Using established age predictors, DNAm age in MGCs was found to be considerable younger and constant (average: 2.7 years) compared to chronological age (average: 33.9 years). A Granulosa Cell clock able to predict the age of both MGCs (average: 32.4 years) and leukocytes (average: 38.8 years) was successfully developed. MGCs differed from leukocytes in having a higher number of epimutations (P = 0.003) but predicted telomere lengths unaffected by age (Pearson’s correlation coefficient = −0.1, P = 0.47). DMRs associated with age (age-DMRs) were identified in MGCs (n = 335) and in leukocytes (n = 1) with a significant enrichment in MGCs for genes involved in RNA processing (45 genes, P = 3.96 × 10−08) and gene expression (152 genes, P = 2.3 × 10−06). The top age-DMRs included the metastable epiallele VTRNA2-1, the DNAm regulator ZFP57 and the anti-Müllerian hormone (AMH) gene. The apparent discordance between different epigenetic measures of age in MGCs suggests that they reflect difference stages in the MGC life cycle.
LARGE SCALE DATA
N/A.
LIMITATIONS, REASONS FOR CAUTION
No gene expression data were available to associate with the epigenetic findings. The MGCs are collected during ovarian stimulation, which may influence DNAm; however, no correlation between FSH dose and number of epimutations was found.
WIDER IMPLICATIONS OF THE FINDINGS
Our findings underline that the somatic compartment of the follicle follows a different methylation trajectory with age than other somatic cells. The higher number of epimutations and age-DMRs in MGCs suggest that their function is affected by age.
STUDY FUNDING/COMPETING INTEREST(S)
This project is part of ReproUnion collaborative study, co-financed by the European Union, Interreg V ÖKS, the Danish National Research Foundation and the European Research Council. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- K W Olsen
- Department of Obstetrics and Gynaecology, Department of Reproductive Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - A Zedeler
- Department of Obstetrics and Gynaecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - N C Freiesleben
- Department of Obstetrics and Gynaecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Stork IVF Clinic A/S Copenhagen, VivaNeo Fertility Clinics, Copenhagen, Denmark
| | - M Bungum
- Reproductive Medicine Centre, Skåne University Hospital, Malmoe, UK
| | - A C Chan
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Cardona
- Medical Research Council Epidemiology Unit, University of Cambridge Addenbrooke’s Hospital, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - J R B Perry
- Medical Research Council Epidemiology Unit, University of Cambridge Addenbrooke’s Hospital, Cambridge, UK
| | - S O Skouby
- Department of Obstetrics and Gynaecology, Department of Reproductive Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R Borup
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - E R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - G Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - M L Grøndahl
- Department of Obstetrics and Gynaecology, Department of Reproductive Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
| |
Collapse
|
19
|
Mara JN, Zhou LT, Larmore M, Johnson B, Ayiku R, Amargant F, Pritchard MT, Duncan FE. Ovulation and ovarian wound healing are impaired with advanced reproductive age. Aging (Albany NY) 2020; 12:9686-9713. [PMID: 32407290 PMCID: PMC7288922 DOI: 10.18632/aging.103237] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Aging is associated with reduced tissue remodeling efficiency and increased fibrosis, characterized by excess collagen accumulation and altered matrix degradation. Ovulation, the process by which an egg is released from the ovary, is one of the most dynamic cycles of tissue wounding and repair. Because the ovary is one of the first organs to age, ovulation and ovarian wound healing is impaired with advanced reproductive age. To test this hypothesis, we induced superovulation in reproductively young and old mice and determined the numbers of eggs ovulated and corpora lutea (CLs), the progesterone producing glands formed post-ovulation. Reproductively old mice ovulated fewer eggs and had fewer CLs relative to young controls. Moreover, reproductively old mice exhibited a greater number of oocytes trapped within CLs and expanded cumulus oocyte complexes within unruptured antral follicles, indicative of failed ovulation. In addition, post-ovulatory tissue remodeling was compromised with age as evidenced by reduced CL vasculature, increased collagen, decreased hyaluronan, decreased cell proliferation and apoptosis, impaired wound healing capacity, and aberrant morphology of the ovarian surface epithelium (OSE). These findings demonstrate that ovulatory dysfunction is an additional mechanism underlying the age-related loss of fertility beyond the reduction of egg quantity and quality.
Collapse
Affiliation(s)
- Jamie N. Mara
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Luhan T. Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Megan Larmore
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brian Johnson
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rebecca Ayiku
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michele T. Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
20
|
Shao D, He S, Ye Z, Zhu X, Sun W, Fu W, Ma T, Li Z. Identification of potential molecular targets associated with proliferative diabetic retinopathy. BMC Ophthalmol 2020; 20:143. [PMID: 32290826 PMCID: PMC7155274 DOI: 10.1186/s12886-020-01381-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND This study aimed to identify and evaluate potential molecular targets associated with the development of proliferative diabetic retinopathy (DR). METHODS The microarray dataset "GSE60436" generated from fibrovascular membranes (FVMs) associated with proliferative DR was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) from the active FVMs and control or inactive FVMs and control were evaluated and co-DEGs were identified using VEEN analysis. Functional enrichment analysis, and protein-protein interactions (PPI) network and module analyses were performed on the upregulated and downregulated coDEGs. Finally, several predictions regarding microRNAs (miRNAs) and transcription factors (TFs) were made to construct a putative TF-miRNA-target network. RESULTS A total of 1475 co-DEGs were screened in active/inactive FVM samples, including 461 upregulated and 1014 downregulated genes, which were enriched for angiogenesis [Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A) and Placental Growth Factor (PGF)] and visual perception, respectively. In the case of the upregulated co-DEGs, Kinesin Family Member 11 (KIF11), and BUB1 Mitotic Checkpoint Serine/Threonine Kinase (BUB1) exhibited the highest values in both the PPI network and module analyses, as well as the genes related to mitosis. In the case of downregulated co-DEGs, several G protein subunits, including G Protein Subunit Beta 3 (GNB3), exhibited the highest values in both the PPI network and module analyses. The genes identified in the module analysis were found to be from the signal transduction-related pathways. In addition, we were able to identify four miRNAs and five TFs, including miR-136 and miR-374. CONCLUSIONS In brief, HIF1A, PGF, KIF11, G protein subunits, and miR-136, miR-374 may all be involved in angiogenesis, retinal endothelial cell proliferation, and visual signal transduction in proliferative DR. This study provides a number of novel insights that may aid the development of future studies dedicated to discovering novel therapeutic targets in proliferative DR.
Collapse
Affiliation(s)
- Dewang Shao
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China. .,Department of Ophthalmology, Air Force Medical Center, PLA, No.15 Chang Yun Gong, Haidian District, Beijing, 100089, China.
| | - Shouzhi He
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zi Ye
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiaoquan Zhu
- Department of Ophthalmology, Air Force Medical Center, PLA, No.15 Chang Yun Gong, Haidian District, Beijing, 100089, China
| | - Wei Sun
- Department of Ophthalmology, Air Force Medical Center, PLA, No.15 Chang Yun Gong, Haidian District, Beijing, 100089, China
| | - Wei Fu
- Department of Ophthalmology, Air Force Medical Center, PLA, No.15 Chang Yun Gong, Haidian District, Beijing, 100089, China
| | - Tianju Ma
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhaohui Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
21
|
Xiao Y, Wang T, Song X, Yang D, Chu Q, Kang YJ. Copper promotion of myocardial regeneration. Exp Biol Med (Maywood) 2020; 245:911-921. [PMID: 32148090 DOI: 10.1177/1535370220911604] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IMPACT STATEMENT Copper promotes angiogenesis, but the mechanistic insights have not been fully elucidated until recently. In addition, the significance of copper promotion of angiogenesis in myocardial regeneration was increasingly revealed. Copper critically participates in the regulation of hypoxia-inducible factor 1 (HIF-1) of angiogenic gene expression. Interestingly, myocardial ischemia causes copper efflux from the heart, leading to suppression of angiogenesis, although HIF-1α, the critical subunit of HIF-1, remains accumulated in the ischemic myocardium. Strategies targeting copper specific delivery to the ischemic myocardium lead to selective activation of HIF-1-regulated angiogenic gene expression. Vascularization of the ischemic myocardium re-establishes the tissue injury microenvironment, and rebuilds the conduit for communication between the tissue injury signals and the remote regenerative responses including stem cells. This process promotes myocardial regeneration. Thus, a simple and effective copper supplementation to the ischemic myocardium would become a novel therapeutic approach to the treatment of patients with ischemic heart diseases.
Collapse
Affiliation(s)
- Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Xin Song
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Dan Yang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Qing Chu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
- Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
22
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
23
|
Berisha B, Rodler D, Schams D, Sinowatz F, Pfaffl MW. Prostaglandins in Superovulation Induced Bovine Follicles During the Preovulatory Period and Early Corpus Luteum. Front Endocrinol (Lausanne) 2019; 10:467. [PMID: 31354631 PMCID: PMC6635559 DOI: 10.3389/fendo.2019.00467] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to characterize the regulation pattern of prostaglandin family members namely prostaglandin F2alpha (PTGF), prostaglandin E2 (PTGE), their receptors (PTGFR, PTGER2, PTGER4), cyclooxygenase 2 (COX-2), PTGF synthase (PTGFS), and PTGE synthase (PTGES) in the bovine follicles during preovulatory period and early corpus luteum (CL). Ovaries containing preovulatory follicles or CL were collected by transvaginal ovariectomy (n = 5 cows/group), and the follicles were classified: (I) before GnRH treatment; (II) 4 h after GnRH; (III) 10 h after GnRH; (IV) 20 h after GnRH; (V) 25 h after GnRH, and (VI) 60 h after GnRH (early CL). In these samples, the concentrations of progesterone (P4), estradiol (E2), PTGF and PTGE were investigated in the follicular fluid (FF) by validated EIA. Relative mRNA abundance of genes encoding for prostaglandin receptors (PTGFR, PTGER2, PTGER4), COX-2, PTGFS and PTGES were quantified by RT-qPCR. The localization of COX-2 and PTGES were investigated by established immunohistochemistry in fixed follicular and CL tissue samples. The high E2 concentration in the FF of the follicle group before GnRH treatment (495.8 ng/ml) and during luteinizing hormone (LH) surge (4 h after GnRH, 574.36 ng/ml), is followed by a significant (P<0.05) downregulation afterwards with the lowest level during ovulation (25 h after GnRH, 53.11 ng/ml). In contrast the concentration of P4 was very low before LH surge (50.64 mg/ml) followed by a significant upregulation (P < 0.05) during ovulation (537.18 ng/ml). The mRNA expression of COX-2 increased significantely (P < 0.05) 4 h after GnRH and again 20 h after GnRH, followed by a significant decrease (P < 0.05) after ovulation (early CL). The mRNA of PTGFS in follicles before GnRH was high followed by a continuous and significant downregulation (P < 0.05) afterwards. In contrast, PTGES mRNA abundance increased significantely (P < 0.05) in follicles 20 h after GnRH treatment and remained high afterwards. The mRNA abundance of PTGFR, PTGER2, and PTGER4 in follicles before GnRH was high, followed by a continuous and significant down regulation afterwards and significant increase (P < 0.05) only after ovulation (early CL). The low concentration of PTGF (0.04 ng/ml) and PTGE (0.15 ng/ml) in FF before GnRH, increased continuously in follicle groups before ovulation and displayed a further significant and dramatic increase (P < 0.05) around ovulation (101.01 ng/ml, respectively, 484.21 ng/ml). Immunohistochemically, the granulosa cells showed an intensive signal for COX-2 and PTGES in follicles during preovulation and in granulosa-luteal cells of the early CL. In conclusion, our results indicate that the examined bovine prostaglandin family members are involved in the local mechanisms regulating final follicle maturation and ovulation during the folliculo-luteal transition and CL formation.
Collapse
Affiliation(s)
- Bajram Berisha
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Pristina, Kosovo
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
- *Correspondence: Bajram Berisha
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dieter Schams
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Fred Sinowatz
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Michael W. Pfaffl
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| |
Collapse
|
24
|
Bender HR, Campbell GE, Aytoda P, Mathiesen AH, Duffy DM. Thrombospondin 1 (THBS1) Promotes Follicular Angiogenesis, Luteinization, and Ovulation in Primates. Front Endocrinol (Lausanne) 2019; 10:727. [PMID: 31787928 PMCID: PMC6855263 DOI: 10.3389/fendo.2019.00727] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is essential to both ovulation and the formation of the corpus luteum. The thrombospondin (THBS) family of glycoproteins plays diverse roles in regulation of angiogenesis, but the role of these vascular regulators in ovulation and luteinization remain to be elucidated. Using the cynomolgus macaque as a model for human ovulation, we demonstrated that levels of THBS1 mRNA and protein in preovulatory follicle granulosa cells increased after the ovulatory gonadotropin surge, with peak levels just before the expected time of ovulation. THBS1 treatment of monkey ovarian microvascular endothelial cells in vitro stimulated migration, proliferation, and capillary sprout formation, consistent with a pro-angiogenic action of THBS1. Injection of an anti-THBS1 antibody into monkey preovulatory follicles reduced rates of follicle rupture and oocyte release in response to an ovulatory gonadotropin stimulus when compared with control IgG-injected follicles. Interestingly, two of three oocytes from anti-THBS1 antibody injected follicles were germinal vesicle intact, indicating that meiosis failed to resume as anticipated. Follicles injected with anti-THBS1 antibody also showed reduced granulosa cell layer expansion, endothelial cell invasion, and capillary formation when compared to control IgG-injected follicles. Overall, these findings support a critical role for THBS1 in follicular angiogenesis, with implications for both successful ovulation and corpus luteum formation.
Collapse
|