1
|
Kreitmaier P, Suderman M, Southam L, Coutinho de Almeida R, Hatzikotoulas K, Meulenbelt I, Steinberg J, Relton CL, Wilkinson JM, Zeggini E. An epigenome-wide view of osteoarthritis in primary tissues. Am J Hum Genet 2022; 109:1255-1271. [PMID: 35679866 PMCID: PMC9300761 DOI: 10.1016/j.ajhg.2022.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis is a complex degenerative joint disease. Here, we investigate matched genotype and methylation profiles of primary chondrocytes from macroscopically intact (low-grade) and degraded (high-grade) osteoarthritis cartilage and from synoviocytes collected from 98 osteoarthritis-affected individuals undergoing knee replacement surgery. We perform an epigenome-wide association study of knee cartilage degeneration and report robustly replicating methylation markers, which reveal an etiologic mechanism linked to the migration of epithelial cells. Using machine learning, we derive methylation models of cartilage degeneration, which we validate with 82% accuracy in independent data. We report a genome-wide methylation quantitative trait locus (mQTL) map of articular cartilage and synovium and identify 18 disease-grade-specific mQTLs in osteoarthritis cartilage. We resolve osteoarthritis GWAS loci through causal inference and colocalization analyses and decipher the epigenetic mechanisms that mediate the effect of genotype on disease risk. Together, our findings provide enhanced insights into epigenetic mechanisms underlying osteoarthritis in primary tissues.
Collapse
Affiliation(s)
- Peter Kreitmaier
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Graduate School of Experimental Medicine, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2RX, UK.
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, 81675 Munich, Germany.
| |
Collapse
|
2
|
Roa LA, Bloemen M, Carels CEL, Wagener FADTG, Von den Hoff JW. Retinoic acid disrupts osteogenesis in pre-osteoblasts by down-regulating WNT signaling. Int J Biochem Cell Biol 2019; 116:105597. [PMID: 31479736 DOI: 10.1016/j.biocel.2019.105597] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
The skull bones are formed by osteoblasts by intramembranous ossification. WNT signaling is a regulator of bone formation. Retinoic Acid (RA) act as a teratogen affecting craniofacial development. We evaluated the effects of RA on the differentiation and mineralization of MC-3T3 cells, and on the expression of WNT components. MC-3T3 were cultured with or without 0.5 μM RA in osteogenic medium and mineralization was assessed by alizarin red staining. The expression of osteogenic marker genes and WNT genes was evaluated at several time points up to 28 days. RA significantly inhibited MC-3T3 mineralization (p < 0.01), without affecting ALP activity or Alp gene expression. Both parameters gradually increased in time. During culture, RA stimulated Runx2 expression at 14 and 28 days compared to the respective controls (p < 0.05). Also, RA significantly reduced Sp7 expression at days 14 and 21 (p < 0.05). Simultaneously, RA significantly reduced the expression of the WNT genes cMyc, Lef1, Lrp5, Lrp6 and Wnt11 compared to the controls (p < 0.05). In contrast, RA increased the expression of the WNT inhibitors Dkk1 at day 21 and Dkk2 at days 14 and 21 (p < 0.01). Our data indicate that RA disrupts osteogenic differentiation and mineralization by inhibiting WNT signaling.
Collapse
Affiliation(s)
- Laury A Roa
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands
| | - Marjon Bloemen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands
| | - Carine E L Carels
- Department of Oral Health Sciences, University KU Leuven. Herestraat 49, Leuven, Belgium
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Excessive dietary intake of vitamin A reduces skull bone thickness in mice. PLoS One 2017; 12:e0176217. [PMID: 28426756 PMCID: PMC5398668 DOI: 10.1371/journal.pone.0176217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/09/2017] [Indexed: 01/05/2023] Open
Abstract
Calvarial thinning and skull bone defects have been reported in infants with hypervitaminosis A. These findings have also been described in humans, mice and zebrafish with loss-of-function mutations in the enzyme CYP26B1 that degrades retinoic acid (RA), the active metabolite of vitamin A, indicating that these effects are indeed caused by too high levels of vitamin A and that evolutionary conserved mechanisms are involved. To explore these mechanisms, we have fed young mice excessive doses of vitamin A for one week and then analyzed the skull bones using micro computed tomography, histomorphometry, histology and immunohistochemistry. In addition, we have examined the effect of RA on gene expression in osteoblasts in vitro. Compared to a standard diet, a high dietary intake of vitamin A resulted in a rapid and significant reduction in calvarial bone density and suture diastasis. The bone formation rate was almost halved. There was also increased staining of tartrate resistant acid phosphatase in osteocytes and an increased perilacunar matrix area, indicating osteocytic osteolysis. Consistent with this, RA induced genes associated with bone degradation in osteoblasts in vitro. Moreover, and in contrast to other known bone resorption stimulators, vitamin A induced osteoclastic bone resorption on the endocranial surfaces.
Collapse
|
4
|
Loewen TN, Carriere B, Reist JD, Halden NM, Anderson WG. Linking physiology and biomineralization processes to ecological inferences on the life history of fishes. Comp Biochem Physiol A Mol Integr Physiol 2016; 202:123-140. [PMID: 27328377 DOI: 10.1016/j.cbpa.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023]
Abstract
Biomineral chemistry is frequently used to infer life history events and habitat use in fishes; however, significant gaps remain in our understanding of the underlying mechanisms. Here we have taken a multidisciplinary approach to review the current understanding of element incorporation into biomineralized structures in fishes. Biominerals are primarily composed of calcium-based derivatives such as calcium carbonate found in otoliths and calcium phosphates found in scales, fins and bones. By focusing on non-essential life elements (strontium and barium) and essential life elements (calcium, zinc and magnesium), we attempt to connect several fields of study to synergise how physiology may influence biomineralization and subsequent inference of life history. Data provided in this review indicate that the presence of non-essential elements in biominerals of fish is driven primarily by hypo- and hyper-calcemic environmental conditions. The uptake kinetics between environmental calcium and its competing mimics define what is ultimately incorporated in the biomineral structure. Conversely, circannual hormonally driven variations likely influence essential life elements like zinc that are known to associate with enzyme function. Environmental temperature and pH as well as uptake kinetics for strontium and barium isotopes demonstrate the role of mass fractionation in isotope selection for uptake into fish bony structures. In consideration of calcium mobilisation, the action of osteoclast-like cells on calcium phosphates of scales, fins and bones likely plays a role in fractionation along with transport kinetics. Additional investigations into calcium mobilisation are warranted to understand differing views of strontium, and barium isotope fractionation between calcium phosphates and calcium carbonate structures in fishes.
Collapse
Affiliation(s)
- T N Loewen
- Interdisciplinary Studies (Geological Sciences), University of Manitoba, Winnipeg, MB, Canada; Freshwater Institute, Fisheries & Oceans, Winnipeg, MB, Canada.
| | - B Carriere
- Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - J D Reist
- Freshwater Institute, Fisheries & Oceans, Winnipeg, MB, Canada
| | - N M Halden
- Geological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - W G Anderson
- Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Shi QQ, Sun M, Zhang ZT, Zhang YN, Elsayed AK, Zhang L, Huang XM, Li BC. A screen of suitable inducers for germline differentiation of chicken embryonic stem cells. Anim Reprod Sci 2014; 147:74-85. [PMID: 24786547 DOI: 10.1016/j.anireprosci.2014.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/26/2014] [Accepted: 04/06/2014] [Indexed: 11/28/2022]
Abstract
Differentiation of germ cells from embryonic stem cells in vitro could have great application for treating infertility and provide an excellent model for uncovering molecular mechanisms of germline generation. In this study, we aim to screen the suitable inducers that may prove the efficiency of driving chicken embryonic stem cells (ES cells) toward germ cells. The male ES cells were separeted into different groups: single retinoic acid (RA) treatment, co-cultured with sertoli cell feeder with RA induction, cultured on matrix proteins (fibronectin, laminin and collagen) with RA treatment, cultured on fibronectin with sertoli cell feeder and RA induction, and single bone morphogenetic protein 4 (BMP4) treatment. Quantitative RT-PCR and immunoourescence were performed to characterize the ES cells differentiation process. The results showed that spermatogonial stem cells (SSCs)-like were not detected in single RA and RA with collagen groups, but were observed in the other groups. The expression of ES specific genes (Nanog and Sox2) was decreased while SSCs marker genes (Dazl, Stra8, integrin α6, integrinβ1 and C-kit) was remarkably increased. The multiple comparsion results showed that the expression of SSCs marker genes in RA with sertoli cells group was significantly higher than the other groups(P<0.05). Collectively, our results suggested that chicken ES cells possess the potency to differentiate into SSCs-like cells in vitro through RA, matrix proteins, sertoli cells and BMP4 induction, of which co-cultured with sertoli cell feeder with RA induction was proved to be the best.
Collapse
Affiliation(s)
- Qing-Qing Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Min Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Zhen-Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Ya-Ni Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Ahmed Kamel Elsayed
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Suez Canal University, Ismailia 41522, Egypt.
| | - Lei Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Xiao-Mei Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| | - Bi-Chun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, Yangzhou 225009, China.
| |
Collapse
|
6
|
Blasioli DJ, Kaplan DL. The roles of catabolic factors in the development of osteoarthritis. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:355-63. [PMID: 24172137 DOI: 10.1089/ten.teb.2013.0377] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Osteoarthritis (OA) is the most prevalent disease of articular joints characterized by joint space narrowing on X-ray, joint pain, and a loss of joint function through progressive cartilage degradation and intermittent synovial inflammation. Current in vitro models of OA are often monolayer cultured primary cells exposed to high concentrations of cytokines or chemokines, usually IL-1β or TNF-α. IL-1β could play a role in the early progression or even initiation of OA as evidenced by many of the in vitro studies. However, the inconsistent or outright lack of detectable IL-1β combined with high concentrations of the natural inhibitor IL-1Ra in the OA synovial fluid makes the idea of OA being IL-1β-driven questionable. Further, other stimulants, including IL-6 and matrix fragments, have been shown in vitro to cause many of the effects seen in OA at relevant concentrations found in the OA synovial fluid. More work with these stimulants and IL-1β-independent models needs to be done. Concurrently, research should be conducted with patients with OA as early as possible in the progression of their disease to be able to potentially identify, target, and treat the initiation of the disease.
Collapse
|
7
|
Varghese S, Rydziel S, Canalis E. Bone morphogenetic protein-2 suppresses collagenase-3 promoter activity in osteoblasts through a runt domain factor 2 binding site. J Cell Physiol 2005; 202:391-9. [PMID: 15389594 DOI: 10.1002/jcp.20130] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transforming growth factor-beta (TGFbeta) superfamily of growth factors, which include bone morphogenetic proteins (BMPs), have multiple effects in osteoblasts. In this study, we examined the regulation of collagenase-3 promoter activity by BMP-2 in osteoblast-enriched (Ob) cells from fetal rat calvariae. BMP-2 suppressed the activity of a -2 kb collagenase-3 promoter/luciferase recombinant in a time- and dose-dependent manner. The BMP-2 effect on the collagenase-3 promoter was further tested in several collagenase-3 promoter deletion constructs and it was narrowed down to a -148 to -94 nucleotide segment of the promoter containing a runt domain factor 2 (Runx2) site at nucleotide -132 to -126. The effect of BMP-2 was obliterated in a collagenase-3 promoter/luciferase construct containing a mutated Runx2 (mRunx2) sequence indicating that the Runx2 site mediates the BMP-2 response. Electrophoretic mobility shift assays, using nuclear extracts from control and BMP-2-treated Ob cells, indicated that the Runx2 protein is a component of the specific DNA-protein complex formed on the Runx2 site and that the BMP-2 effect may be associated with minor protein modifications rather than major changes in the composition of specific proteins interacting with the Runx2 site. We confirmed that other members of the TGFbeta family can down-regulate the collagenase-3 promoter by showing that TGFbeta1 also suppresses the promoter activity in a time- and dose-dependent manner. In conclusion, this study demonstrates that BMP-2 and TGFbeta1 suppress collagenase-3 promoter activity in osteoblasts and establishes a link between BMP-2 action and collagenase-3 expression via Runx2, a major regulator of osteoblast formation and function.
Collapse
Affiliation(s)
- Samuel Varghese
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | | | |
Collapse
|
8
|
Mao JT, Tashkin DP, Belloni PN, Baileyhealy I, Baratelli F, Roth MD. All-trans retinoic acid modulates the balance of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in patients with emphysema. Chest 2003; 124:1724-32. [PMID: 14605041 DOI: 10.1378/chest.124.5.1724] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
STUDY OBJECTIVE The balance between proteases and antiproteases plays an essential role in the pathogenesis of emphysema. This study was designed to evaluate the impact of all-trans retinoic acid (ATRA) on the balance of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in patients with emphysema. DESIGN AND SETTING As part of a clinical study, ATRA was administered to 20 patients with emphysema for 12 weeks and evaluated for its effects on plasma levels of MMP-9 and TIMP-1. Plasma MMP-9 levels were also measured in a separate cohort of patients with emphysema and matched control subjects to evaluate the relationship of circulating enzyme levels to lung disease. To further investigate the effects of ATRA on protease activity within the lung microenvironment, alveolar macrophages (AM) recovered from the lungs of active smokers with COPD were cultured with ATRA in vitro. MEASUREMENTS AND RESULTS Administration of ATRA to patients with emphysema produced a 45 +/- 14% reduction (mean +/- SEM) in plasma MMP-9 by enzyme-linked immunosorbent assay and a similar reduction in MMP-9 enzyme activity, while having little effect on TIMP-1 levels. Baseline MMP-9 levels were higher in patients with emphysema compared to nonsmoking control subjects, suggesting a relationship between plasma levels and the presence of lung disease. In vitro, concentrations of ATRA similar to those achieved in the plasma of study subjects significantly reduced both the production and enzyme activity of MMP-9 by AM. In the same experiments, TIMP-1 levels increased significantly, resulting in a marked reduction in the MMP-9/TIMP-1 molar ratio. CONCLUSION We conclude that ATRA can modulate protease/antiprotease balance in a manner that may impact on disease pathogenesis.
Collapse
Affiliation(s)
- Jenny T Mao
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Varghese S, Canalis E. Transcriptional regulation of collagenase-3 by interleukin-1 alpha in osteoblasts. J Cell Biochem 2003; 90:1007-14. [PMID: 14624460 DOI: 10.1002/jcb.10732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-1 (IL-1)alpha is an autocrine/paracrine agent of the skeletal tissue and it regulates bone remodeling. Collagenase-3 or matrix metalloproteinase (MMP)-13 is expressed in osteoblasts and its expression is modulated by several cytokines including IL-1alpha. Because the molecular mechanism of increased synthesis of collagenase-3 in bone cells by IL-1alpha is not known, we investigated if collagenase-3 expression by IL-1alpha in osteoblasts is mediated by transcriptional or post-transcriptional mechanisms. Exposure of rat osteoblastic cultures (Ob cells) to IL-1alpha at concentrations higher than 0.5 nM increased the synthesis of collagenase-3 mRNA up to eightfold and the secretion of immunoreactive protein up to 21-fold. The effects of IL-1alpha on collagenase-3 were time- and dose-dependent. Although prostaglandins stimulate collagenase-3 expression, stimulation of collagenase-3 in Ob cells by IL-1alpha was not mediated through increased biosynthesis of prostaglandins. The half-life of collagenase-3 mRNA from control and IL-1alpha-treated Ob cells was similar suggesting that the stabilization of collagenase-3 mRNA did not contribute to the increase in collagenase-3. However, IL-1alpha stimulated the rate of transcription of the collagenase-3 gene by twofold to fourfold indicating regulation of collagenase-3 expression in Ob cells at the transcriptional level. Stimulation of collagenase-3 by IL-1alpha in osteoblasts may in part mediate the effects of IL-1alpha in bone metabolism.
Collapse
Affiliation(s)
- Samuel Varghese
- The Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | |
Collapse
|
10
|
Wang JY, Guo JS, Yang CQ. Expression of exogenous rat collagenase in vitro and in a rat model of liver fibrosis. World J Gastroenterol 2002; 8:901-7. [PMID: 12378639 PMCID: PMC4656584 DOI: 10.3748/wjg.v8.i5.901] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: The present study was conducted to test the hypothesis that the introduction of the collagenase gene into tissue culture cells and into a rat model of liver fibrosis would result in the expression of enzymatically active product.
METHODS: FLAG-tagged full-length rat collagenase cDNA was PCR amplified and cloned into a mammalian expression vector. NIH3T3 cells were then transiently transfected with this construct. Expression of exogenous collagenase mRNA was assessed by RT-PCR, and the exogenous collagenase detected by Western blotting using anti-FLAG monoclonal antibody. Enzymatic activity was detected by gelatin zymography. To determine the effects of exogenous collagenase production in vivo, the construct was bound to glycosyl-poly-L-lysine and then transduced into rats that had developed liver fibrosis as a result of CCl4 plus ethanol treatment. The hepatic expression of the construct and its effect on the formation of liver fibrosis were demonstrated using RT-PCR and immunohistochemistry.
RESULTS: It was found that exogenously expressed rat collagenase mRNA could be detected in NIH3T3 cells following transfection. Enzymatically active collagenase could also be detected in the culture medium. The recombinant plasmid was also expressed in rat liver after in vivo gene transfer. Expression of exogenous rat collagenase correlated with decreased deposition of collagen types I and III in the livers of rats with experimentally induced liver fibrosis.
CONCLUSION: The expression of active exogenous rat collagenase could be achieved in vitro and in vivo. It was suggested that in vivo expression of active exogenous collagenase may have therapeutic effects on the formation of liver fibrosis.
Collapse
Affiliation(s)
- Ji-Yao Wang
- Division of Gastroenterology, Zhongshan Hospital, Fu Dan University, Shanghai 200032, China.
| | | | | |
Collapse
|
11
|
Onodera S, Nishihira J, Iwabuchi K, Koyama Y, Yoshida K, Tanaka S, Minami A. Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and -13 in rat osteoblasts. Relevance to intracellular signaling pathways. J Biol Chem 2002; 277:7865-74. [PMID: 11751895 DOI: 10.1074/jbc.m106020200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neutral matrix metalloproteinases (MMPs) play an important role in bone matrix degradation accompanied by bone remodeling. We herein show for the first time that macrophage migration inhibitory factor (MIF) up-regulates MMP-13 (collagenase-3) mRNA of rat calvaria-derived osteoblasts. The mRNA up-regulation was seen at 3 h in response to MIF (10 microg/ml), reached the maximum level at 6-12 h, and returned to the basal level at 36 h. MMP-13 mRNA up-regulation was preceded by up-regulation of c-jun and c-fos mRNA. Tissue inhibitor of metalloproteinase (TIMP)-1 and MMP-9 (92-kDa type IV collagenase) were also up-regulated, but to a lesser extent. The MMP-13 mRNA up-regulation was significantly suppressed by genistein, herbimycin A and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine. Similarly, a selective mitogen-activated protein kinase (MAPK) kinase (MEK)1/2 inhibitor (PD98059) and c-jun/activator protein (AP)-1 inhibitor (curcumin) suppressed MMP-13 mRNA up-regulation induced by MIF. The mRNA levels of c-jun and c-fos in response to MIF were also inhibited by PD98059. Consistent with these results, MIF stimulated phosphorylation of tyrosine, autophosphorylation of Src, activation of Ras, activation of extracellular signal-regulated kinases (ERK) 1/2, a MAPK, but not c-Jun N-terminal kinase or p38, and phosphorylation of c-Jun. Osteoblasts obtained from calvariae of newborn JunAA mice, defective in phosphorylation of c-Jun, or newborn c-Fos knockout (Fos -/- ) mice, showed much less induction of MMP-13 with the addition of MIF than osteoblasts obtained from wild-type or littermate control mice. Taken together, these results suggest that MIF increases the MMP-13 mRNA level of rat osteoblasts via the Src-related tyrosine kinase-, Ras-, ERK1/2-, and AP-1-dependent pathway.
Collapse
Affiliation(s)
- Shin Onodera
- Department of Orthopaedics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang X, Wu J, Shidoji Y, Muto Y, Ohishi N, Yagi K, Ikegami S, Shinki T, Udagawa N, Suda T, Ishimi Y. Effects of geranylgeranoic acid in bone: induction of osteoblast differentiation and inhibition of osteoclast formation. J Bone Miner Res 2002; 17:91-100. [PMID: 11771673 DOI: 10.1359/jbmr.2002.17.1.91] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Retinoids are known to be of special importance for normal bone growth and development. Recently, we reported that retinoids not only induced osteoblast differentiation, but also inhibited osteoclast formation in vitro. In this study, we examined the osteogenic effects of geranylgeranoic acid (GGA), a chemically synthesized acyclic retinoid, in bone in vitro and in vivo. GGA not only suppressed proliferation of osteoblastic MC3T3-E1 cells, but also up-regulated differentiation markers of osteoblasts such as alkaline phosphatase (ALP) activity and expression of osteopontin (OP) messenger RNA (mRNA). In contrast, GGA inhibited osteoclast formation induced by 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] in cocultures of mouse bone marrow cells and primary osteoblasts. Treatment of stromal ST2 cells with GGA restored the 1alpha,25(OH)2D3- or prostaglandin E2 (PGE2)-induced suppression of osteoprotegerin (OPG) mRNA expression. GGA inhibited osteoclast formation induced by macrophage colony-stimulating factor (M-CSF) and soluble receptor activator of nuclear factor kappaB ligand (sRANKL) in the culture of bone marrow macrophages. Thus, it is likely that GGA inhibits osteoclast formation by affecting both osteoblasts and osteoclast progenitors in the coculture system. Furthermore, in vivo, GGA increased bone mineral density (BMD) of total as well as distal femur in a P6 strain of senescence-accelerated mice (SAMP6). These results indicate that GGA increases bone mass by maintaining a positive balance of bone turnover by inducing osteoblast differentiation and suppressing osteoclast formation.
Collapse
Affiliation(s)
- Xinxiang Wang
- Division of Food Science, National Institute of Health and Nutrition, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jiménez MJ, Balbín M, Alvarez J, Komori T, Bianco P, Holmbeck K, Birkedal-Hansen H, López JM, López-Otín C. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. J Cell Biol 2001; 155:1333-44. [PMID: 11748248 PMCID: PMC2199331 DOI: 10.1083/jcb.200106147] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tissue-remodeling processes are largely mediated by members of the matrix metalloproteinase (MMP) family of endopeptidases whose expression is strictly controlled both spatially and temporally. In this article, we have examined the molecular mechanisms that could contribute to modulate the expression of MMPs like collagenase-3 and MT1-MMP during bone formation. We have found that all-trans retinoic acid (RA), which usually downregulates MMPs, strongly induces collagenase-3 expression in cultures of embryonic metatarsal cartilage rudiments and in chondrocytic cells. This effect is dose and time dependent, requires the de novo synthesis of proteins, and is mediated by RAR-RXR heterodimers. Analysis of the signal transduction mechanisms underlying the upregulating effect of RA on collagenase-3 expression demonstrated that this factor acts through a signaling pathway involving p38 mitogen-activated protein kinase. RA treatment of chondrocytic cells also induces the production of MT1-MMP, a membrane-bound metalloproteinase essential for skeletal formation, which participates in a proteolytic cascade with collagenase-3. The production of these MMPs is concomitant with the development of an RA-induced differentiation program characterized by formation of a mineralized bone matrix, downregulation of chondrocyte markers like type II collagen, and upregulation of osteoblastic markers such as osteocalcin. These effects are attenuated in metatarsal rudiments in which RA induces the invasion of perichondrial osteogenic cells from the perichondrium into the cartilage rudiment. RA treatment also resulted in the upregulation of Cbfa1, a transcription factor responsible for collagenase-3 and osteocalcin induction in osteoblastic cells. The dynamics of Cbfa1, MMPs, and osteocalcin expression is consistent with the fact that these genes could be part of a regulatory cascade initiated by RA and leading to the induction of Cbfa1, which in turn would upregulate the expression of some of their target genes like collagenase-3 and osteocalcin.
Collapse
Affiliation(s)
- M J Jiménez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Filanti C, Dickson GR, Di Martino D, Ulivi V, Sanguineti C, Romano P, Palermo C, Manduca P. The expression of metalloproteinase-2, -9, and -14 and of tissue inhibitors-1 and -2 is developmentally modulated during osteogenesis in vitro, the mature osteoblastic phenotype expressing metalloproteinase-14. J Bone Miner Res 2000; 15:2154-68. [PMID: 11092396 DOI: 10.1359/jbmr.2000.15.11.2154] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During osteogenesis, in vitro, of tibial-derived rat osteoblasts (ROB) and derived clones, changes occur in the interactions of mature osteoblasts with the endogenous extracellular matrix (ECM) and these culminate in the formation of tridimensional nodules, which become sites of mineral deposition. We investigated if these changes might be mediated by remodeling of ECM, and we focused our study on the neutral metalloproteinases (MMPs), known agents of matrix remodeling, and on their tissue inhibitors (TIMPs). We report that during in vitro differentiation, osteoblasts express the secreted MMP-2 and -9 and the membrane gelatinase MMP-14. These, along with the tissue inhibitors TIMP-1 and -2, are developmentally regulated according to the maturation stage of osteoblasts. Their levels change in a similar association with osteoblast phenotypic maturation in different populations of ROB, which take different times to complete osteogenesis in vitro. MMP-14 expression coincides in both cell populations with the mature osteoblastic phenotype and is localized in the cells forming nodules. MMP-2 and -9 are expressed diffusely in the osteoblast population. Developmentally associated changes in the activation of MMP-2 are detected, associated in their timing with the expression of MMP-14 in both populations of ROB, and MMP-14 activates pro-MMP-2 in vitro. Expression of messenger RNAs (mRNAs) for the three MMPs increases up to the time of nodule formation. At this stage, TIMP-1 mRNA levels are lowest. TIMP-2 mRNA decreases throughout osteogenesis. In situ hybridization in 7-day-old rat tibias shows the strongest expression of MMP-14 among osteogenic cells, in lining osteoblasts on the newly formed trabeculae under the growth plate, and on the endosteal surface of cortical bone. Our data support the concept that the developmentally regulated expression of MMP-14 triggers localized proteolysis within the osteogenic population, concomitant in vitro to nodule formation.
Collapse
Affiliation(s)
- C Filanti
- Department of Oncology, Biology and Genetics, University of Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Medhora MM. Retinoic acid upregulates beta(1)-integrin in vascular smooth muscle cells and alters adhesion to fibronectin. Am J Physiol Heart Circ Physiol 2000; 279:H382-7. [PMID: 10899079 DOI: 10.1152/ajpheart.2000.279.1.h382] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoic acid has an established physiological role in differentiation, development, and cellular growth. This study investigated the action of all-trans retinoic acid (ATRA) on vascular integrins, cell-surface receptors that control growth and remodeling of blood vessels. The beta(1)-integrin subunit mRNA and protein was induced after treatment with ATRA in two different rat vascular smooth muscle cell lines. To relate this result to the in vivo state, the aortas from adult rats fed with therapeutic doses of ATRA were examined for beta(1)-integrin protein. A significant upregulation of the integrin subunit was observed in vivo. To assess if this increase contributed to physiological changes in cellular function, cells treated with ATRA were tested for alterations in adhesion to extracellular matrix proteins. The cells exposed to the retinoid were seen to adhere more strongly to fibronectin, via the beta(1)-integrin. These results showed that modulation of vascular integrins by ATRA in adult rats contributes to functional changes that can cause remodeling of blood vessels.
Collapse
Affiliation(s)
- M M Medhora
- Department of Physiology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
16
|
Quinn CO, Bizek GM, Agapova OA. Induction of rat interstitial collagenase (MMP-13) mRNA in a development-dependent manner by parathyroid hormone in osteoblastic cells. Endocrine 2000; 12:227-36. [PMID: 10963042 DOI: 10.1385/endo:12:3:227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/1999] [Revised: 12/21/1999] [Accepted: 01/04/2000] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to determine whether the production of interstitial collagenase mRNA in response to parathyroid hormone (PTH) changes with osteoblast phenotypic development. To accomplish this, cells derived from fetal rat calvaria were examined. The calvarial osteoblasts, which proliferate when placed in culture, can be made to differentiate after confluence. Studies were performed on cells while they were proliferating, at confluence, and during the differentiation process. The cells were treated with PTH for various times, and interstitial collagenase mRNA was quantified by RNase protection assay. We concluded that the ability of PTH to induce interstitial collagenase mRNA in these cells increased with osteoblast phenotypic development. We also determined that the response could be mimicked by combining the effect of 8-bromo-cAMP and 12-O-tetradecanoyl-phorbol-13-acetate, stimulators of the protein kinase A and protein kinase C pathways, respectively, both known to be activated by PTH. The binding of nuclear factors to two regions previously reported to be important for PTH induction of the gene in UMR 106-01 cells was also examined. These data indicated that the binding of nuclear factors to oligonucleotides encompassing the TRE (-51) or the PEA3 (-80) elements changed with development of the osteoblast phenotype. The latter was also shown to be PTH responsive.
Collapse
Affiliation(s)
- C O Quinn
- Pediatric Research Institute, Department of Pediatrics, St. Louis University Health Sciences Center, MO 63110, USA.
| | | | | |
Collapse
|
17
|
Barmina OY, Walling HW, Fiacco GJ, Freije JM, López-Otín C, Jeffrey JJ, Partridge NC. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization. J Biol Chem 1999; 274:30087-93. [PMID: 10514495 DOI: 10.1074/jbc.274.42.30087] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.
Collapse
Affiliation(s)
- O Y Barmina
- Department of Pharmacological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Yang EV, Gardiner DM, Carlson MR, Nugas CA, Bryant SV. Expression of Mmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration. Dev Dyn 1999; 216:2-9. [PMID: 10474160 DOI: 10.1002/(sici)1097-0177(199909)216:1<2::aid-dvdy2>3.0.co;2-p] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
One of the earliest events in limb regeneration is the extensive remodeling of the extracellular matrix (ECM). Matrix metalloproteinases (MMPs) are a family of matrix degrading enzymes that have been identified in both normal and disease states. Using RT-PCR and cDNA library screening, we have isolated sequences homologous to four different Mmp genes. The spatial and temporal expression of one of these, Mmp-9, has been analyzed during axolotl limb regeneration. Northern blot analysis identifies a 3.8 kb transcript that is abundantly expressed during regeneration, and whole-mount in situ hybridization has uncovered an unusual bi-phasic expression pattern. The first phase begins at 2 hours after amputation, and expression is confined to the healed wound epithelium. This phase continues for 2 days, showing peak expression at 14 hours after amputation. This early phase may be needed to retard reformation of the basal lamina of the epidermis, and thereby facilitate the epidermal-mesenchymal interactions required for successful regeneration. The second phase begins a few days later when a small blastema has formed. During this phase, expression is in the mesenchyme, localized to cells around the tips of the cut skeletal elements. This expression is maintained through several stages until redifferentiation begins. The timing and position of the second phase of expression is consistent with a role for Mmp-9 in the removal of damaged cartilage matrix. We have also discovered that the time of onset of Mmp-9 expression is sensitive to denervation, which causes a delay of several hours. Finally, retinoids, known for their dramatic effects on the pattern of regenerating limbs, can cause a down regulation of Mmp-9 expression. Dev Dyn 1999;216:2-9.
Collapse
Affiliation(s)
- E V Yang
- Developmental Biology Center and Department of Developmental and Cell Biology, University of California, Irvine, California 92697-2275, USA
| | | | | | | | | |
Collapse
|
19
|
von Marschall Z, Riecken EO, Rosewicz S. Induction of matrix metalloprotease-1 gene expression by retinoic acid in the human pancreatic tumour cell line Dan-G. Br J Cancer 1999; 80:935-9. [PMID: 10362099 PMCID: PMC2363049 DOI: 10.1038/sj.bjc.6690446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We have investigated the effects of retinoic acid (RA) on matrix metalloprotease-1 (MMP-1) gene expression in the human pancreatic tumour cell line Dan-G. 13-cis RA results in a time- and dose-dependent increase of MMP-1 protein concentration. These stimulatory effects were paralleled by a time- and dose-dependent increase of MMP-1 mRNA steady-state concentrations. Nuclear run-on analysis revealed that the increase of MMP-1 mRNA was partially due to an increase of MMP-1 gene transcription. In addition, 13-cis RA treatment results in an increase of MMP-1 mRNA stability. These data demonstrate that RA stimulates MMP-1 gene expression in human pancreatic carcinoma cells by transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Z von Marschall
- Medizinische Klinik I, Gastroenterologie/Infektiologie, Klinikum Benjamin Franklin, Berlin, Germany
| | | | | |
Collapse
|
20
|
Uría JA, Balbín M, López JM, Alvarez J, Vizoso F, Takigawa M, López-Otín C. Collagenase-3 (MMP-13) expression in chondrosarcoma cells and its regulation by basic fibroblast growth factor. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:91-101. [PMID: 9665469 PMCID: PMC1852961 DOI: 10.1016/s0002-9440(10)65549-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human collagenase-3 (MMP-13) is a member of the matrix metalloproteinase family of enzymes that was originally identified in breast carcinomas and subsequently detected during fetal ossification and in arthritic processes. In this work, we have found that collagenase-3 is produced by HCS-2/8 human chondrosarcoma cells. An analysis of the ability of different cytokines and growth factors to induce the expression of collagenase-3 in these cells revealed that basic fibroblast growth factor (bFGF or FGF-2) strongly up-regulated the expression of this gene. By contrast, other factors, including interleukin-1beta and transforming growth factor-beta, previously found to induce collagenase-3 expression in other cell types, did not exhibit any effect on the expression of this gene in chondrosarcoma cells. Further analysis of the bFGF-induced expression of collagenase-3 in human chondrosarcoma cells revealed that its effect was time and dose dependent, but independent of the de novo synthesis of proteins. Western blot analysis revealed that the up-regulatory effect of bFGF on collagenase-3 was also reflected at the protein level as demonstrated by the increase of immunoreactive protein in the conditioned medium of HCS-2/8 cells treated with bFGF. Immunohistochemical analysis of the presence of collagenase-3 in a series of 8 benign and 16 malignant cartilage-forming neoplasms revealed that all analyzed malignant chondrosarcomas stained positively for collagenase-3, whereas only 2 of 8 benign lesions produced this protease. In addition, the finding that bFGF was detected in all analyzed chondrosarcomas, together with the above in vitro studies on HCS-2/8 cells, suggest that this growth factor may be an in vivo modulator of collagenase-3 expression in these malignant tumors. These results extend the pattern of tumor types with ability to produce this matrix metalloproteinase and suggest that collagenase-3 upregulation may contribute to the progression of human chondrosarcomas.
Collapse
Affiliation(s)
- J A Uría
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Shlopov BV, Lie WR, Mainardi CL, Cole AA, Chubinskaya S, Hasty KA. Osteoarthritic lesions: involvement of three different collagenases. ARTHRITIS AND RHEUMATISM 1997; 40:2065-74. [PMID: 9365097 DOI: 10.1002/art.1780401120] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To assess the presence of fibroblast collagenase (MMP-1), neutrophil collagenase (MMP-8), and collagenase 3 (MMP-13) in osteoarthritic (OA) cartilage, with particular emphasis on areas of macroscopic cartilage erosion. METHODS Messenger RNA (mRNA) levels were assessed by reverse transcriptase-polymerase chain reaction (RT-PCR), in situ hybridization, and Northern blot analysis. RESULTS MMP-1 and MMP-13 were expressed at higher levels by OA chondrocytes than by normal chondrocytes. In addition, mRNA for MMP-8 was present in OA cartilage but not normal cartilage by PCR and Northern blot analyses. Chondrocytes from areas surrounding the OA lesion expressed greater quantities of MMP-1 and MMP-13 compared with normal chondrocytes, suggesting local modulation by mechanical and inflammatory factors. Tumor necrosis factor alpha stimulated the expression of all 3 collagenases. Retinoic acid, an agent which induces autodigestion of cartilage in vitro, stimulated only the expression of MMP-13. CONCLUSION These findings suggest a key role of MMP-13 and MMP-8, as well as MMP-1 in osteoarthritis.
Collapse
|
22
|
Abstract
Insulin-like growth factors (IGF) I and II are the most abundant growth factors secreted by skeletal cells, and retinoic acid has many important action on cell differentiation and osteoblastic function. Some of these actions may be mediated by changes in the expression of IGF I and II since IGFs are known to enhance the differentiated function of the osteoblast. We examined the effects of all-transretinoic acid on IGF I and IGF II expression in cultures of osteoblast-enriched cells from 22 day fetal rat calvariae (Ob cells). Retinoic acid caused a transient increase in IGF I and IGF II mRNA levels after 6 h, but after 24 and 48 h of treatment a dose-dependent decrease was observed. Cycloheximide prevented the inhibitory effect of retinoic acid. Retinoic acid treatment for 48 h decreased IGF I polypeptide levels in the culture medium. In contrast, 48 h exposure to retinoic acid increased IGF II polypeptide levels, possible due to increased levels of IGF binding protein-6. The decay of IGF I and II mRNA in transcriptionally arrested Ob cells was similar in control and retinoic acid-treated cells. After 2 h, retinoic acid increased the rates of IGF I and II transcription, as determined by a nuclear run-on assay and heterogeneous nuclear RNA levels, but after 24 h retinoic acid was inhibitory. Retinoic acid had opposite effects to IGFs in osteoblasts and inhibited DNA and collagen synthesis. In conclusion, following a small transient increase, retinoic acid causes a pronounced decrease in IGF I and IGF II mRNA expression in Ob cells. However, treatment with retinoic acid causes a decrease in IGF I and an increase in IGF II polypeptide levels. These changes in the IGF/IGFBP axis may be relevant to the mechanism of action of retinoic acid in bone.
Collapse
Affiliation(s)
- B Gabbitas
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA
| | | |
Collapse
|
23
|
Abstract
Bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor superfamily of peptides, induces ectopic bone formation in vivo. The actions of BMP-2 on osteoblastic cells include stimulation of collagen synthesis, but the role of BMP-2 on collagen degradation is not known. We examined whether BMP-2 affects the expression of collagenase-3, an enzyme that degrades type I collagen at neutral pH, and that of tissue inhibitors of matrix metalloproteinases (TIMPs) in primary osteoblast-enriched cells from 22-day-old fetal rat calvariae. BMP-2 suppressed collagenase messenger RNA (mRNA) and immunoreactive protein levels. BMP-2 did not affect collagenase mRNA stability, but it reduced collagenase heterogeneous nuclear RNA levels and decreased the rate of transcription of the collagenase gene. BMP-2 also stimulated TIMP 1 and TIMP 3 mRNA levels, but failed to alter TIMP 2 expression. In conclusion, our studies indicate that BMP-2 suppresses collagenase-3 gene transcription and stimulates TIMP 1 and TIMP 3 expression in osteoblasts. The regulation of collagenase and TIMPs by BMP-2 in osteoblasts may play a role in osteoinduction.
Collapse
Affiliation(s)
- S Varghese
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | |
Collapse
|
24
|
Rydziel S, Varghese S, Canalis E. Transforming growth factor beta1 inhibits collagenase 3 expression by transcriptional and post-transcriptional mechanisms in osteoblast cultures. J Cell Physiol 1997; 170:145-52. [PMID: 9009143 DOI: 10.1002/(sici)1097-4652(199702)170:2<145::aid-jcp6>3.0.co;2-o] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transforming growth factor (TGF) beta1 is an autocrine regulator of bone cell function. We demonstrated that TGF beta1 enhances bone collagen synthesis, but its effects on collagen degradation are not well characterized. We tested the effects of TGF beta1 on rat collagenase 3 expression in cultures of osteoblast-enriched cells from fetal rat calvariae (Ob cells). Treatment with TGF beta1 at 0.4 nM decreased steady state collagenase mRNA levels after 2 to 24 h. This dose-dependent effect was observed at TGF beta1 concentrations of 4 pM to 1.2 nM, and was accompanied by decreased levels of immunoreactive procollagenase. The protein synthesis inhibitor cycloheximide increased collagenase transcripts, but did not prevent the effect of TGF beta1 on collagenase mRNA levels. TGF beta1 accelerated the decay of collagenase mRNA in transcriptionally arrested Ob cells. In addition, TGF beta1 decreased the levels of collagenase heterogeneous nuclear RNA and the rate of collagenase gene transcription in Ob cells. TGF beta1 enhanced the expression of tissue inhibitors of metalloproteinases (TIMP) 1 and 3 and caused a modest decrease of TIMP 2 mRNA levels. In conclusion, TGF beta1 decreases interstitial collagenase transcripts and protease levels in Ob cells by transcriptional and post-transcriptional mechanisms, and this effect may contribute to its actions on bone matrix.
Collapse
Affiliation(s)
- S Rydziel
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | | | |
Collapse
|
25
|
Twining SS, Schulte DP, Zhou X, Wilson PM, Fish BL, Moulder JE. Changes in rat corneal matrix metalloproteinases and serine proteinases under vitamin A deficiency. Curr Eye Res 1997; 16:158-65. [PMID: 9068947 DOI: 10.1076/ceyr.16.2.158.5085] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Vitamin A deficiency alters the transparency of the cornea due to epithelial cell keratinization and increases the susceptibility of the cornea to ulceration. The purpose of this study was to determine the effect of vitamin A deficiency on rat corneal matrix metalloproteinases and serine proteinases. METHODS Four dietary groups of male WAG/RijMCW rats were prepared: (1) Vitamin A deficient rats were raised on a casein-based retinoid deficient diet; (2) Retinol repleted rats were raised on the retinoid deficient diet. On the eighty-sixth day on this diet, the rats were fed retinyl palmitate and then given free access to the retinyl palmitate-supplemented control diet; (3) The weight-matched, pair-fed rats were restricted in their intake of the retinyl palmitate-supplemented diet so that their weight gain matched that of the A-rats; (4) The non-restricted rats were given free access to the retinyl palmitate-supplemented diet. The animals were killed at the late plateau stage for weight of the deficiency (102-106 days). Zymography was used to study proteinases in the corneal extracts. RESULTS Vitamin A deficient and control rat corneas contain multiple matrix metalloproteinases and serine proteinases. The matrix metalloproteinases at 90/92 kDa (gelatinase B) and 66/63/57 kDa (gelatinase A) were significantly decreased in the corneas of the vitamin A deficient rats relative to the control corneas. Corneas from the four groups of rats contained 76, 45, 38, 28 and 22 kDa proteinases that cleaved casein. Only the vitamin A deficient corneas contained a 50 kDa casein cleaving enzyme. The 76, 45, 38 and 28 kDa serine proteinases were significantly lower in the vitamin A deficient corneas. The major 22 kDa enzyme was not altered by the deficiency. All casein cleaving proteinases were inhibited by phenylmethylsulfonyl fluoride and chymostatin except for a minor 76 kDa band. The activity of this band was not altered by inhibitors for the other classes of proteinases, ethylenediaminetetraacetic acid, E-64 or pepstatin. The concentrations of the 61, 52 and 40 kDa plasminogen activators were not altered by the deficiency. CONCLUSIONS Alterations in corneal proteinases under vitamin A deficiency conditions may be involved in the characteristic changes observed in the cornea under vitamin A deficiency conditions: decreased exfoliation of epithelial cells, increased levels of keratofibrils in the corneal keratocytes, increased stromal keratocyte degradation and increased susceptibility towards ulceration.
Collapse
Affiliation(s)
- S S Twining
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Retinoic acid has important actions on cell differentiation and osteoblastic function, and some of these actions may be mediated by changes in the insulin-like growth factor (IGF) axis. Skeletal cells synthesize IGF I and II and the six known IGF binding proteins (IGFBP). IGFBP-6 binds IGF II with high affinity and prevents IGF II-mediated effects. In fibroblasts, IGFBP-6 levels are regulated by retinoic acid, and we postulated that retinoic acid may regulate IGF II in bone by altering IGFBP-6 synthesis. We examined the effect of retinoic acid on IGFBP-6 expression in cultures of osteoblast-enriched cells from 22-day fetal rat calvariae (Ob cells). Retinoic acid caused a time- and dose-dependent increase in IGFBP-6 mRNA levels, as determined by Northern blot analysis. The effect was maximal after 48 h of treatment and observed with retinoic acid at concentrations of 10 nM to 1 microM. Retinoic acid increased IGFBP-6 polypeptide levels in the culture medium, as determined by Western immunoblot analysis. Cycloheximide at 3.6 microM slightly decreased IGFBP-6 transcripts but did not prevent the stimulatory effect of retinoic acid. The decay of IGFBP-6 mRNA in transcriptionally arrested Ob cells was similar in control and retinoic acid-treated cells, and retinoic acid increased the rates of IGFBP-6 transcription, as determined by nuclear run on assays. In conclusion, retinoic acid enhances IGFBP-6 expression in Ob cells by transcriptional mechanisms. Since IGFBP-6 prevents the effects of IGF II, increased synthesis of IGFBP-6 could mediate selected actions of retinoic acid in bone.
Collapse
Affiliation(s)
- B Gabbitas
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | |
Collapse
|
27
|
Santibáñez JF, Silva S, Martínez J. Soluble factors produced by PC-3 prostate cells decrease collagen content and mineralisation rate in fetal rat osteoblasts in culture. Br J Cancer 1996; 74:418-22. [PMID: 8695358 PMCID: PMC2074652 DOI: 10.1038/bjc.1996.375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Approximately 70% of patients with prostate cancer develop bone metastases in the advanced state of the disease. In the present study, we sought to test the hypothesis that prostatic cancer cells produce factors that inhibit the mineralisation process in vitro, decreasing the content of type I collagen in rat fetal calvaria osteoblasts. We investigated the capacity of conditioned media (CM) from the human prostatic tumour cell line PC-3 to inhibit the expression of the differentiation programme on osteoblasts in culture, with a primary focus on type I collagen synthesis and degradation. Our results show that PC-3 CM inhibits collagen synthesis and stimulates the production of interstitial collagenase from osteoblasts. A consequential decrease in the content of immunoreactive type I collagen was observed. We have previously demonstrated that PC-3 CM blocks osteoblast differentiation in culture. We propose that under the effect of factors present in PC-3 CM, osteoblastic cells retain the undifferentiated phenotype.
Collapse
Affiliation(s)
- J F Santibáñez
- Unidad de Biología Celular, INTA, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
28
|
Witty JP, Foster SA, Stricklin GP, Matrisian LM, Stern PH. Parathyroid hormone-induced resorption in fetal rat limb bones is associated with production of the metalloproteinases collagenase and gelatinase B. J Bone Miner Res 1996; 11:72-8. [PMID: 8770699 DOI: 10.1002/jbmr.5650110111] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of matrix metalloproteinases in parathyroid hormone (PTH)-induced bone resorption was assayed using a fetal rat limb bone culture system. Cotreatment of bones with PTH and recombinant inhibitor of metalloproteinases, TIMP-1, in vitro, inhibited the PTH-stimulated 45Ca release from the limb bones without affecting beta-glucuronidase release. TIMP-1 was fully effective when added during only the final 24 h of a 72 h culture with PTH but was ineffective when added for only the first 24 h of the 72 h culture. In contrast, calcitonin (CT) was effective when added for either the first 24 or the final 24 h of the culture. Using in situ hybridization, the mRNA for collagenase was detected in mononuclear cells of cultured bone. Treatment of the bones with PTH resulted in an increase in the number of cells producing collagenase mRNA, some of which had osteoclastic morphology, PTH also caused a dramatic induction of the mRNA for the 92-kD gelatinase B metalloproteinase in both mononuclear and osteoclastic cells. There was no detectable mRNA for the metalloproteinases stromelysin-1, stromelysin-2, or matrilysin in PTH-treated or control cultures. These results suggest that PTH-induced bone resorption is mediated, at least in part, by the induction of collagenase and gelatinase B mRNA in bone cells.
Collapse
Affiliation(s)
- J P Witty
- Department of Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
29
|
Shingleton WD, Hodges DJ, Brick P, Cawston TE. Collagenase: a key enzyme in collagen turnover. Biochem Cell Biol 1996; 74:759-75. [PMID: 9164646 DOI: 10.1139/o96-083] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The primary agents responsible for cartilage and bone destruction in joint diseases are active proteinases that degrade collagen and proteoglycan. All four main classes of proteolytic enzymes are involved in either the normal turnover of connective tissue or its pathological destruction. These proteinases are made by different cells found within the joints. Both extracellular and intracellular pathways exist and individual enzymes can be inhibited by specific proteinaceous inhibitors that block their activity. Recent research has implicated the matrix metalloproteinases (MMPs) in many of the processes involved in joint diseases. The metalloproteinases are capable of degrading all components of the extracellular matrix. This family of proteinases contains a group of at least three collagenases that are capable of degrading native fibrillar collagen. Collagen degradation within joint disease is recognized as the irreversible step in the destruction of cartilage that leads to a failure in joint function. The collagenases are the enzymes necessary to initiate collagen turnover in normal connective tissue turnover and in disease.
Collapse
Affiliation(s)
- W D Shingleton
- Rheumatology Department, Medical School, Newcastle upon Tyne, U.K.
| | | | | | | |
Collapse
|
30
|
Delany AM, Jeffrey JJ, Rydziel S, Canalis E. Cortisol increases interstitial collagenase expression in osteoblasts by post-transcriptional mechanisms. J Biol Chem 1995; 270:26607-12. [PMID: 7592884 DOI: 10.1074/jbc.270.44.26607] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glucocorticoids regulate both bone formation and bone resorption. In osteoblasts, they inhibit type I collagen synthesis; however, there is limited information about their effects on interstitial collagenase, the enzyme that degrades type I collagen. We used primary cultures of osteoblast-enriched cells from fetal rat calvariae (Ob cells) to study the effects of cortisol on collagenase expression. Northern blot analysis showed that cortisol increased collagenase transcript levels in a dose- and time-dependent manner, which was paralleled by an increase in immunoreactive metalloproteinase in the culture medium. Cortisol increased the half-life of collagenase mRNA from 6 to 12 h in transcription-arrested Ob cells. In contrast, cortisol modestly decreased collagenase gene transcription after 24 h of treatment. The up-regulation of collagenase by cortisol is osteoblast-specific, since the glucocorticoid decreased phorbol 12-myristate 13-acetate-induced collagenase mRNA expression in rat fibroblasts, a result that agrees with other studies of collagenase gene regulation in fibroblastic cells. In conclusion, cortisol increases interstitial collagenase transcript levels by post-transcriptional mechanisms in osteoblastic cells. Our data demonstrate that glucocorticoids regulate collagenase gene expression in a novel tissue-specific manner, further highlighting the differences in gene regulation between osteoblastic and fibroblastic cells.
Collapse
Affiliation(s)
- A M Delany
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | | | | | |
Collapse
|