1
|
Babayev E, Xu M, Shea LD, Woodruff TK, Duncan FE. Follicle isolation methods reveal plasticity of granulosa cell steroidogenic capacity during mouse in vitro follicle growth. Mol Hum Reprod 2022; 28:6693628. [PMID: 36069625 PMCID: PMC9802420 DOI: 10.1093/molehr/gaac033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Indexed: 01/07/2023] Open
Abstract
Follicles are the functional unit of the ovary and several methods have been developed to grow follicles ex vivo, which recapitulate key events of oogenesis and folliculogenesis. Enzymatic digestion protocols are often used to increase the yield of follicles from the ovary. However, the impact of these protocols on the outermost theca and granulosa cells, and thereby follicle function, is not well defined. To investigate the impact of enzymatic digestion on follicle function, we collected preantral follicles from CD1 mice either by enzymatic digestion (Enzy-FL) or mechanical isolation (Mech-FL) and compared follicle growth, steroidogenesis and cell differentiation within an encapsulated in vitro follicle growth system which maintains the 3D architecture of the oocyte and its surrounding somatic cells. Follicles were encapsulated in 0.5% alginate and cultured for 8 days. Compared with Enzy-FL, Mech-FL grew more rapidly and produced significantly higher levels of androstenedione, estradiol and progesterone. The expression of theca-interstitial cell marker genes, Cyp17a1, which encodes 17-hydroxylase/17, 20-lyase and catalyzes the hydroxylation of pregnenolone and progesterone to 17-hydroxypregnenolone and 17-hydroxyprogesterone, and the conversion of these products into dehydroepiandrosterone and androstenedione, and Star, which encodes a transport protein essential for cholesterol entry into mitochondria, were also higher in Mech-FL than in Enzy-FL. Mech-FL maintained an intact theca-interstitial layer on the outer edge of the follicle that phenocopied in vivo patterns as confirmed by alkaline phosphatase staining, whereas theca-interstitial cells were absent from Enzy-FL from the onset of culture. Therefore, preservation of the theca cell layer at the onset of culture better supports follicle growth and function. Interestingly, granulosa cells in the outermost layers of Enzy-FL expressed CYP17A1 by Day 4 of culture while maintaining inhibin α-subunit expression and a cuboidal nucleus. Thus, in the absence of theca-interstitial cells, granulosa cells have the potential to differentiate into androgen-producing cells. This work may have implications for human follicle culture, where enzymatic isolation is required owing to the density of the ovarian cortex.
Collapse
Affiliation(s)
| | | | - Lonnie D Shea
- Member of the Oncofertility Consortium, Michigan State University, East Lansing, MI, USA,Institute of Bionanotechnology in Medicine, Northwestern University, Chicago, IL, USA,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Teresa K Woodruff
- Correspondence address. Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA. E-mail: (F.E.D.); Department of Obstetrics and Gynecology and Department of Biomedical Engineering, Michigan State University, 965 Wilson Road, Room A626B, East Lansing, MI 48824-1316, USA. E-mail: (T.K.W.)
| | - Francesca E Duncan
- Correspondence address. Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA. E-mail: (F.E.D.); Department of Obstetrics and Gynecology and Department of Biomedical Engineering, Michigan State University, 965 Wilson Road, Room A626B, East Lansing, MI 48824-1316, USA. E-mail: (T.K.W.)
| |
Collapse
|
2
|
Marchais M, Gilbert I, Bastien A, Macaulay A, Robert C. Mammalian cumulus-oocyte complex communication: a dialog through long and short distance messaging. J Assist Reprod Genet 2022; 39:1011-1025. [PMID: 35499777 PMCID: PMC9107539 DOI: 10.1007/s10815-022-02438-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Communications are crucial to ovarian follicle development and to ovulation, and while both folliculogenesis and oogenesis are distinct processes, they share highly interdependent signaling pathways. Signals from distant organs such as the brain must be processed and compartments within the follicle have to be synchronized. The hypothalamic–pituitary–gonadal (HPG) axis relies on long-distance signalling analogous to wireless communication by which data is disseminated in the environment and cells equipped with the appropriate receptors receive and interpret the messages. In contrast, direct cell-to-cell transfer of molecules is a very targeted, short distance messaging system. Numerous signalling pathways have been identified and proven to be essential for the production of a developmentally competent egg. The development of the cumulus-oocyte complex relies largely on short distance communications or direct transfer type via extensions of corona radiata cells through the zona pellucida. The type of information transmitted through these transzonal projections is still largely uncharacterized. This review provides an overview of current understanding of the mechanisms by which the gamete receives and transmits information within the follicle. Moreover, it highlights the fact that in addition to the well-known systemic long-distance based communications from the HPG axis, these mechanisms acting more locally should also be considered as important targets for controlling/optimizing oocyte quality.
Collapse
Affiliation(s)
- Mathilde Marchais
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Alexandre Bastien
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Angus Macaulay
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Kim E, Cai L, Hyun SH. Effects of Stem Cell Factor/c-Kit Signaling on In Vitro Maturation of Porcine Oocytes and Subsequent Developmental Competence After Fertilization. Front Vet Sci 2021; 8:745488. [PMID: 34692812 PMCID: PMC8531509 DOI: 10.3389/fvets.2021.745488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Stem cell factor (SCF), also known as c-Kit ligand, plays an important role in the proliferation of primordial germ cells and the survival of oocytes during follicular development. The aim of this study was to investigate the effect of SCF/c-Kit signaling on in vitro maturation (IVM) of porcine oocytes by analyzing nuclear and cytoplasmic maturation, oocyte size, cumulus cell expansion, and developmental competence to the blastocyst stage. Moreover, mRNA expression patterns of porcine cumulus cells and oocytes were evaluated using qRT-PCR. Following 42 h of IVM, 10 and 50 ng/mL SCF-treated groups exhibited significantly (P < 0.05) increased polar body extrusion rates and intracellular glutathione levels compared with the control group. The cumulus expansion index significantly (P < 0.05) increased in all SCF-treated groups compared with the control samples. mRNA levels of the proapoptotic gene Bax and apoptosis-related cysteine peptidase Caspase3 were lower in SCF-treated cumulus cells than in the control group. Notably, the diameter of oocytes after IVM, the mRNA expression of well-known oocyte-secreted factors (GDF9 and BMP15), and an oocyte-specific protein essential for ovulation and oocyte health (YBX2) were significantly (P < 0.05) higher in SCF-treated than in non-treated oocytes. Inhibition of c-Kit during porcine IVM using ACK2, an antagonistic blocker of c-Kit, significantly (P < 0.05) decreased the polar body extrusion rate compared with the control, as well as blastocyst formation rate compared with the 10 ng/mL SCF-treated group. In conclusion, the effect of SCF/c-Kit-mediated signaling during porcine IVM could be ascribed to the reduced expression of apoptosis-related genes and higher expression of oocyte-specific/secreted factors.
Collapse
Affiliation(s)
- Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
4
|
Jones A, Bernabé BP, Padmanabhan V, Li J, Shikanov A. Capitalizing on transcriptome profiling to optimize and identify targets for promoting early murine folliculogenesis in vitro. Sci Rep 2021; 11:12517. [PMID: 34131220 PMCID: PMC8206164 DOI: 10.1038/s41598-021-92036-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
In vitro ovarian follicle culture is an active area of research towards providing fertility options for survivors of childhood cancer. Late-stage murine follicles (multilayer secondary and onwards) can be cultured successfully to maturity to obtain a meiotically competent oocyte for fertilization, but primordial and primary follicles usually die in culture because many key components of early follicle development are still unknown and difficult to mimic in vitro. To engineer a biomimetic three-dimensional culture system with high efficacy and reproducibility for the clinic, detailed mechanisms of early folliculogenesis must be uncovered. Previous studies have shown that primary murine follicles co-cultured in groups, in contrast to single follicles cultured in isolation, can reach preovulatory size and produce competent oocytes, but the factors accounting for the synergy of follicle co-culture are still unknown. To probe the underlying mechanisms of successful follicle co-culture, we conducted a time-course experiment for murine follicles encapsulated in 0.3% alginate hydrogels and compared between two conditions: groups of 5 (5X) versus groups of 10 (10X). For every 2 days during the course of 12 days, follicles were dissociated and somatic cells were isolated for microarray-based gene expression analysis (n = 380 follicles for 5X and n = 430 follicles for 10X). Gene activities in follicles co-cultured in larger groups (10X) had a distinct transcriptomic profile of key genes and pathways such as prolactin signaling and angiogenesis-related genes when compared to cells from follicles co-cultured in the smaller cohort (5X). To benchmark the results for follicles grown in culture, we compared our microarray data to data from murine follicles freshly isolated from the ovary at comparable stages of development previously published by Bernabé et al. Comparison of these datasets identified similarities and differences between folliculogenesis in the native microenvironment and the engineered in vitro system. A more detailed understanding of follicle growth in vitro will not only allow for better culture methods but also advance the field towards providing improved fertility options for survivors of childhood cancer.
Collapse
Affiliation(s)
- Andrea Jones
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Beatriz Peñalver Bernabé
- Department of Bioengineering, College of Medicine, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jun Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI, 48109, USA.
- Department of Obstetrics and Gynecology, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI, 48109, USA.
- Department of Macromolecular Science and Engineering, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Abstract
Mammalian follicles are composed of oocytes, granulosa cells, and theca cells. Theca cells form in the secondary follicles, maintaining follicular structural integrity and secreting steroid hormones. Two main sources of theca cells exist: Wilms tumor 1 positive (Wt1+) cells native to the ovary and Gli1+ mesenchymal cells migrated from the mesonephros. Normal folliculogenesis is a process where oocytes, granulosa cells, and theca cells constantly interact with and support each other through autocrine and paracrine mechanisms. The proliferation and differentiation of theca cells are regulated by oocyte-derived factors, including growth development factor 9 and bone morphogenetic protein 15, and granulosa cell-derived factors, including desert hedgehog, Indian hedgehog, kit ligand, insulin-like growth factor 1, as well as hormones such as insulin and growth hormones. Current research on the origin of theca cells is limited. Identifying the origin of theca cells will help us to systematically elaborate the mechanisms of follicular formation and development.
Collapse
|
6
|
Activation-induced cytidine deaminase is a possible regulator of cross-talk between oocytes and granulosa cells through GDF-9 and SCF feedback system. Sci Rep 2021; 11:3833. [PMID: 33589683 PMCID: PMC7884688 DOI: 10.1038/s41598-021-83529-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 01/08/2023] Open
Abstract
Activation-induced cytidine deaminase (AID, Aicda) is a master gene regulating class switching of immunoglobulin genes. In this study, we investigated the significance of AID expression in the ovary. Immunohistological study and RT-PCR showed that AID was expressed in murine granulosa cells and oocytes. However, using the Aicda-Cre/Rosa-tdRFP reporter mouse, its transcriptional history in oocytes was not detected, suggesting that AID mRNA in oocytes has an exogenous origin. Microarray and qPCR validation revealed that mRNA expressions of growth differentiation factor-9 (GDF-9) in oocytes and stem cell factor (SCF) in granulosa cells were significantly decreased in AID-knockout mice compared with wild-type mice. A 6-h incubation of primary granuloma cells markedly reduced AID expression, whereas it was maintained by recombinant GDF-9. In contrast, SCF expression was induced by more than threefold, whereas GDF-9 completely inhibited its increase. In the presence of GDF-9, knockdown of AID by siRNA further decreased SCF expression. However, in AID-suppressed granulosa cells and ovarian tissues of AID-knockout mice, there were no differences in the methylation of SCF and GDF-9. These findings suggest that AID is a novel candidate that regulates cross-talk between oocytes and granulosa cells through a GDF-9 and SCF feedback system, probably in a methylation-independent manner.
Collapse
|
7
|
Ghezelayagh Z, Abtahi NS, Rezazadeh Valojerdi M, Mehdizadeh A, Ebrahimi B. The combination of basic fibroblast growth factor and kit ligand promotes the proliferation, activity and steroidogenesis of granulosa cells during human ovarian cortical culture. Cryobiology 2020; 96:30-36. [PMID: 32871128 DOI: 10.1016/j.cryobiol.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
Different factors, such as basic fibroblast growth factor (bFGF) and kit ligand (KL), are used in ovarian cortical culture to promote activation of primordial follicles. In the present study, the effects of bFGF and KL, alone and in combination, were evaluated on human follicular activation and growth during in-situ cortical culture. Slow frozen-thawed human ovarian cortical tissues (n = 6) were cultured in 4 different groups: 1) control (base medium), 2) KL (base medium; BM + 100 ng/ml KL), 3) bFGF (BM + 100 ng/ml bFGF) and 4) bFGF + KL (BM + 100 ng/ml KL + 100 ng/ml bFGF) for a week. The proportion of morphologically normal and degenerated follicles at different developmental stages, secreted hormonal levels and specific gene expressions were compared. Although the proportion of growing follicles was higher than primordial counterpart in all cultured groups, no significant differences were observed among the cultured groups. In all cultured groups, anti-Müllerian hormone (AMH), progesterone and estradiol hormones levels increased after 7 days of culture; however, this increase was only significant for estradiol in the bFGF + KL group. The expression of Ki67 gene indicated an increase in ovarian cell proliferation in the three experimental groups compared to the control group, however this increment was only significant for the bFGF + KL group. It can be concluded that KL and bFGF factors individually have no beneficial effects on in-situ follicular growth, but their combination positively influences steroidogenesis of granulosa cells without significantly increasing the number of growing follicles.
Collapse
Affiliation(s)
- Zeinab Ghezelayagh
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Naeimeh Sadat Abtahi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Aboulfazl Mehdizadeh
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
8
|
Islam MN, Alam MH, Khatun A, Akter I, Modak AK, Hashem MA, Moniruzzaman M. Effects of stem cell factor on in vitro growth of buffalo oocytes. Theriogenology 2019; 142:114-119. [PMID: 31590129 DOI: 10.1016/j.theriogenology.2019.09.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022]
Abstract
Stem cell factor (SCF) plays important roles in primordial follicle activation, oocyte growth and survival, granulosa cell proliferation, theca cell recruitment, and ovarian steroidogenesis. The aim of this study was to investigate the effect of SCF on in vitro growth of buffalo oocytes. Oocyte-granulosa cell complexes (OGCs) were dissected from early antral follicles of slaughtered buffalo ovaries and cultured for 6 days in media supplemented with 0, 50 or 100 ng/mL SCF. In vitro grown oocytes were further cultured for in vitro maturation for 24 h. The results showed that SCF significantly (P < 0.05) increased oocyte diameter in vitro. The percentages of surviving oocytes were 60, 81 and 92 in 0, 50 and 100 ng/mL SCF supplemented group, respectively. SCF promoted formation of antrum-like structures in culture. The results also showed that SCF enhanced the maturation of in vitro grown buffalo oocytes. Here, 14% in vitro grown oocytes reached metaphase II (MII) stage in 50 ng/mL SCF supplemented group, whereas the percentage was increased to 26% in 100 ng/mL SCF treated group. These results show that SCF supports the growth, viability and nuclear maturation of buffalo oocytes in vitro.
Collapse
Affiliation(s)
- M N Islam
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Hasanur Alam
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - A Khatun
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - I Akter
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - A K Modak
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - M A Hashem
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - M Moniruzzaman
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
9
|
Nagashima JB, Wildt DE, Travis AJ, Songsasen N. Activin promotes growth and antral cavity expansion in the dog ovarian follicle. Theriogenology 2019; 129:168-177. [PMID: 30856402 PMCID: PMC6445547 DOI: 10.1016/j.theriogenology.2019.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2018] [Revised: 01/29/2019] [Accepted: 02/21/2019] [Indexed: 01/16/2023]
Abstract
Understanding regulators of folliculogenesis remains limited in the domestic dog (Canis familiaris), which challenges our ability to develop in vitro follicle culture systems for canid genome rescue efforts. Here, we investigated the influence of activin on dog follicle development and survival, oocyte quality, and FSH receptor expression in culture. Preantral (150 - ≤230 μm diameter), early antral (231 - ≤330 μm), and antral (>330-550 μm) stage follicles were encapsulated in a fibrin-alginate hydrogel with 0, 100, or 200 ng/ml rhActivin plus 0, 0.1, 1, or 10 μg/ml FSH for 12 or 21 d of in vitro culture. All follicle groups increased in diameter (P < 0.05) with activin acting synergistically with FSH to improve (P < 0.05) growth and antral cavity expansion (to >630 μm) in early antral and antral cohorts. This complementary effect was not linked to changes in FSHR mRNA expression (P > 0.05). Although not influencing (P > 0.05) follicle survival or transzonal projection (TZP) density in shorter term 12 d culture, activin in the presence of 1 ng/ml FSH maintained TZP density from the 12-21 d interval. Activin also increased oocyte diameter and improved nuclear integrity compared to un-supplemented controls. These results indicate that activin acts synergistically with FSH to promote growth and antral cavity expansion of the dog follicle in vitro, information useful to formulating an effective culture microenvironment for this species.
Collapse
Affiliation(s)
- Jennifer B Nagashima
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA; Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - David E Wildt
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA; Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY, 14853, USA
| | - Nucharin Songsasen
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| |
Collapse
|
10
|
Wang JL, Liu B, Zhang C, Wang XM, Zhen D, Huang XM, Chen W, Gao JM. Effects of icariin on ovarian function in d-galactose-induced aging mice. Theriogenology 2019; 125:157-167. [PMID: 30447495 DOI: 10.1016/j.theriogenology.2018.10.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2018] [Revised: 10/13/2018] [Accepted: 10/29/2018] [Indexed: 01/15/2023]
Abstract
In this study, effects of icariin (Ica) on were examined in a mouse model of d-galactose (D-gal)-induced ovarian aging. Kunming white mice were divided into three groups: aging group induced with D-gal, experiment group treated with Ica at low (50 mg/kg), middle (100 mg/kg) and high (200 mg/kg) concentrations, and control group with no treatment. Ovarian histomorphology, serum FSH, LH and E2 levels, and reproductive function were compared among the groups. Ovarian expression of Amh, Bax and Bcl-2 was examined by qPCR and western blotting. Our results showed that diameters of secondary and tertiary follicles were significantly reduced in the aging group when compared with control group (P < 0.01), and were restored to normal in Ica 100 and Ica 200 treatment groups. The diameter of atretic follicles was significantly smaller in the aging group compared with control group and Ica 200 treatment group (P < 0.05). The proportion of secondary and atretic follicles was higher in the aging group compared with control group, Ica 100 and 200 treatment groups, whereas the proportion of tertiary and mature follicles was reduced in the aging group versus control, Ica 100 and 200 groups. The aging group lacked mature follicles, whereas Ica treatment induced mature follicle development. Primary and secondary follicles exhibited similar theca cell numbers and theca interna and externa cell layers in all groups examined, whereas theca interna and externa cell layers were decreased and increased, respectively, in tertiary follicles of aging group compared with control and I 200 groups. In the aging group, FSH and LH levels were significantly higher than those in control and Ica 200 groups (P < 0.05), and the E2 level was significantly reduced compared with control (P < 0.01), Ica 200 (P < 0.01), and Ica 100 (P < 0.05) groups. Serum hormone levels were equivalent in the control, Ica 100 and Ica 200 groups. The pregnancy rate was reduced in the aging group compared with other groups. The average litter size per birth, birth litter weight, and weaning weight of litters were all significantly lower in the aging group compared with control, Ica 100 and 200 groups (P < 0.05). The ovarian expression of AMH and Bcl-2 mRNA was significantly reduced in the aging group compared with those in control and Ica-treated groups (P < 0.01). In contrast, Bax expression was significantly higher in the aging group compared with all other groups (P < 0.01), and the Bcl-2/Bax ratio was markedly reduced in aging group compared with control, Ica 100 and 200 groups (P < 0.01), and Ica 50 group (P < 0.05). Ovarian expression of AMH protein was elevated in the Ica 100 group compared with the aging, control and Ica 50 groups (P < 0.01) and Ica 200 group (P < 0.05). Ovarian Bcl-2 protein levels and the Bcl-2/Bax ratio were significantly higher in the Ica 100 group than those in the Ica 50, 200 and aging groups (P < 0.05), and were similar or reduced (P < 0.05), respectively, compared to those in control group. Ovarian Bax expression was similar in each group. These findings suggest that Ica can improve ovarian follicular development, inhibit follicular atresia, decrease FSH and LH levels and increase E2, upregulate ovarian AMH expression and increase the Bcl-2/Bax ratio in aging mice. Therefore, Ica can partially restore ovarian function of aging mice and enhance their fertility. Optimal reproductive effects were obtained with the Ica 100 group.
Collapse
Affiliation(s)
- Jun-Li Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Bing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Chao Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xin-Mei Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Di Zhen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiao-Meng Huang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Wu Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| | - Jian-Ming Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
11
|
Jones ASK, Shikanov A. Follicle development as an orchestrated signaling network in a 3D organoid. J Biol Eng 2019; 13:2. [PMID: 30647770 PMCID: PMC6327556 DOI: 10.1186/s13036-018-0134-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2018] [Accepted: 12/13/2018] [Indexed: 02/12/2023] Open
Abstract
The ovarian follicle is the structural and functional unit of the ovary, composed of the female gamete (the oocyte) and supportive somatic cells. Follicles are not only the source of a female's germ cell supply, but also secrete important hormones necessary for proper endocrine function. Folliculogenesis, the growth and maturation of the follicular unit, is a complex process governed by both intrafollicular crosstalk and pituitary-secreted hormones. While the later stages of this process are gonadotropin-dependent, early folliculogenesis appears to be controlled by the ovarian microenvironment and intrafollicular paracrine and autocrine signaling. In vitro follicle culture remains challenging because of the limited knowledge of growth factors and other cytokines influencing early follicle growth. Here we discuss the current state of knowledge on paracrine and autocrine signaling influencing primary follicles as they develop into the antral stage. Given the importance of intrafollicular signaling and the ovarian microenvironment, we reviewed the current engineering approaches for in vitro follicle culture, including 3D systems using natural hydrogels such as alginate and synthetic hydrogels such as poly(ethylene glycol). Our discussion is focused on what drives the proliferation of granulosa cells, development of the thecal layer, and antrum formation-three processes integral to follicle growth up to the antral stage. Further research in this area may reveal the mechanisms behind these complex signaling relationships within the follicle, leading to more successful and physiologically-relevant in vitro culture methods that will translate well to clinical applications.
Collapse
Affiliation(s)
- Andrea S. K. Jones
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|
12
|
Conde P, Morado S, Alvarez G, Smitz J, Gentile T, Cetica P. Effect of the hematopoietic growth factors erythropoietin and kit ligand on bovine oocyte in vitro maturation and developmental competence. Theriogenology 2019; 123:37-44. [DOI: 10.1016/j.theriogenology.2018.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 11/28/2022]
|
13
|
Xu M, Sun J, Wang Q, Zhang Q, Wei C, Lai D. Chronic restraint stress induces excessive activation of primordial follicles in mice ovaries. PLoS One 2018; 13:e0194894. [PMID: 29601583 PMCID: PMC5877864 DOI: 10.1371/journal.pone.0194894] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2017] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Chronic stress is an important factor influencing people's health. It usually causes endocrinal disorders and a decline in reproduction in females. Although studies of both human and animals suggest a detrimental effect of stress on reproduction, the influence of chronic stress on the ovarian reservation and follicular development is still not clear. In this study, a chronic restraint stress (CRS) mouse model was used to investigate the effect of stress on ovarian reservation and follicular development and explore the underlying mechanism. In this study, after 8 weeks of CRS, primordial follicles were excessively activated in the ovaries of the CRS group compared with the control group. Further results showed that the activation of primordial follicles induced by CRS was involved in the increasing expression level of Kit ligand and its receptor Kit and the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/protein kinase B (Akt) pathway. The corticotropin-releasing hormone (CRH) is a neuropeptide released due to stress, which plays an important role in regulating follicle development. A high level of serum CRH was detected in the CRS mouse model, and the real-time polymerase chain reaction assay showed that the mRNA level of its main receptor CRHR1increased in the ovaries of the CRS mouse group. Moreover, 100nM CRH significantly improved the activation of primordial follicles in newborn mouse ovaries in vitro. These results demonstrated that CRS could induce immoderate activation of primordial follicles accompanied by the activation of Kit-PI3K signaling, in which CRH might be an important endocrine factor.
Collapse
Affiliation(s)
- Minhua Xu
- The International Peace Maternity and Child Health Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junyan Sun
- The International Peace Maternity and Child Health Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qian Wang
- The International Peace Maternity and Child Health Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chunsheng Wei
- Eye and ENT Hospital, Fudan University, Shanghai, China
- * E-mail: (DL); (CW)
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail: (DL); (CW)
| |
Collapse
|
14
|
Romereim SM, Summers AF, Pohlmeier WE, Zhang P, Hou X, Talbott HA, Cushman RA, Wood JR, Davis JS, Cupp AS. Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions. Mol Cell Endocrinol 2017; 439:379-394. [PMID: 27693538 PMCID: PMC6711749 DOI: 10.1016/j.mce.2016.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/01/2016] [Revised: 08/31/2016] [Accepted: 09/27/2016] [Indexed: 01/24/2023]
Abstract
After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these four cell types. Analysis of the RNA present in each bovine cell type using Affymetrix microarrays yielded new cell-specific genetic markers, functional insight into the behavior of each cell type via Gene Ontology Annotations and Ingenuity Pathway Analysis, and evidence of small and large luteal cell lineages using Principle Component Analysis. Enriched expression of select genes for each cell type was validated by qPCR. This expression analysis offers insight into cell-specific behaviors and the differentiation process that transforms somatic follicular cells into luteal cells.
Collapse
Affiliation(s)
- Sarah M Romereim
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2)
| | - Adam F Summers
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2).
| | - William E Pohlmeier
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2)
| | - Pan Zhang
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | - Xiaoying Hou
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | - Heather A Talbott
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | - Robert A Cushman
- USDA, ARS, U.S. Meat Animal Research Center, Nutrition and Environmental Management Research, Spur 18D, Clay Center, NE 68933, USA.
| | - Jennifer R Wood
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2)
| | - John S Davis
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| | - Andrea S Cupp
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2).
| |
Collapse
|
15
|
Atwood CS, Vadakkadath Meethal S. The spatiotemporal hormonal orchestration of human folliculogenesis, early embryogenesis and blastocyst implantation. Mol Cell Endocrinol 2016; 430:33-48. [PMID: 27045358 DOI: 10.1016/j.mce.2016.03.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/08/2016] [Accepted: 03/30/2016] [Indexed: 11/18/2022]
Abstract
The early reproductive events starting with folliculogenesis and ending with blastocyst implantation into the uterine endometrium are regulated by a complex interplay among endocrine, paracrine and autocrine factors. This review examines the spatiotemporal integration of these maternal and embryonic signals that are required for successful reproduction. In coordination with hypothalamic-pituitary-gonadal (HPG) hormones, an intraovarian HPG-like axis regulates folliculogenesis, follicular quiescence, ovulation, follicular atresia, and corpus luteal functions. Upon conception and passage of the zygote through the fallopian tube, the contribution of maternal hormones in the form of paracrine secretions from the endosalpinx to embryonic development declines, with autocrine and paracrine signaling becoming increasingly important as instructional signals for the differentiation of the early zygote/morula into a blastocyst. These maternal and embryonic signals include activin and gonadotropin-releasing hormone 1 (GnRH1) that are crucial for the synthesis and secretion of the 'pregnancy' hormone human chorionic gonadotropin (hCG). hCG in turn signals pre-implantation embryonic cell division and sex steroid production required for stem cell differentiation, and subsequent blastulation, gastrulation, cavitation and blastocyst formation. Upon reaching the uterus, blastocyst hatching occurs under the influence of decreased activin signaling, while the attachment and invasion of the trophoblast into the endometrium appears to be driven by a decrease in activin signaling, and by increased GnRH1 and hCG signaling that allows for tissue remodeling and the controlled invasion of the blastocyst into the uterine endometrium. This review demonstrates the importance of integrative endocrine, paracrine, and autocrine signaling for successful human reproduction.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027 WA, Australia.
| | - Sivan Vadakkadath Meethal
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, WI 53792, USA
| |
Collapse
|
16
|
Abstract
Sexual reproduction is dependent on the activity of androgenic steroid hormones to promote gonadal development and gametogenesis. Leydig cells of the testis and theca cells of the ovary are critical cell types in the gonadal interstitium that carry out steroidogenesis and provide key androgens for reproductive organ function. In this chapter, we will discuss important aspects of interstitial androgenic cell development in the gonad, including: the potential cellular origins of interstitial steroidogenic cells and their progenitors; the molecular mechanisms involved in Leydig cell specification and differentiation (including Sertoli-cell-derived signaling pathways and Leydig-cell-related transcription factors and nuclear receptors); the interactions of Leydig cells with other cell types in the adult testis, such as Sertoli cells, germ cells, peritubular myoid cells, macrophages, and vascular endothelial cells; the process of steroidogenesis and its systemic regulation; and a brief discussion of the development of theca cells in the ovary relative to Leydig cells in the testis. Finally, we will describe the dynamics of steroidogenic cells in seasonal breeders and highlight unique aspects of steroidogenesis in diverse vertebrate species. Understanding the cellular origins of interstitial steroidogenic cells and the pathways directing their specification and differentiation has implications for the study of multiple aspects of development and will help us gain insights into the etiology of reproductive system birth defects and infertility.
Collapse
Affiliation(s)
- Sarah J Potter
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Deepti Lava Kumar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
17
|
Cross Talk between KGF and KITLG Proteins Implicated with Ovarian Folliculogenesis in Buffalo Bubalus bubalis. PLoS One 2015; 10:e0127993. [PMID: 26083339 PMCID: PMC4470682 DOI: 10.1371/journal.pone.0127993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
Molecular interactions between mesenchymal-derived Keratinocyte growth factor (KGF) and Kit ligand (KITLG) are essential for follicular development. These factors are expressed by theca and granulosa cells. We determined full length coding sequence of buffalo KGF and KITLG proteins having 194 and 274 amino acids, respectively. The recombinant KGF and KITLG proteins were solubilized in 10 mM Tris, pH 7.5 and 50 mM Tris, pH 7.4 and purified using Ni-NTA column and GST affinity chromatography, respectively. The purity and molecular weight of His-KGF (~23 kDa) and GST-KITLG (~57 kDa) proteins were confirmed by SDS-PAGE and western blotting. The co-immunoprecipitation assay accompanied with computational analysis demonstrated the interaction between KGF and KITLG proteins. We deduced 3D structures of the candidate proteins and assessed their binding based on protein docking. In the process, KGF specific residues, Lys123, Glu135, Lys140, Lys155 and Trp156 and KITLG specific ones, Ser226, Phe233, Gly234, Ala235, Phe236, Trp238 and Lys239 involved in the formation of KGF-KITLG complex were detected. The hydrophobic interactions surrounding KGF-KITLG complex affirmed their binding affinity and stability to the interacting interface. Additionally, in-silico site directed mutagenesis enabled the assessment of changes that occurred in the binding energies of mutated KGF-KITLG protein complex. Our results demonstrate that in the presence of KITLG, KGF mimics its native binding mode suggesting all the KGF residues are specific to their binding complex. This study provides an insight on the critical amino acid residues participating in buffalo ovarian folliculogenesis.
Collapse
|
18
|
Tuck AR, Robker RL, Norman RJ, Tilley WD, Hickey TE. Expression and localisation of c-kit and KITL in the adult human ovary. J Ovarian Res 2015; 8:31. [PMID: 26008799 PMCID: PMC4460643 DOI: 10.1186/s13048-015-0159-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The c-kit/kit ligand (KITL) signalling axis is an essential component of ovarian folliculogenesis in mammals, but little is known about expression and localisation of its key components in the ovaries of reproductive age women. This study aimed to characterise mRNA expression of c-kit and KITL isoforms and the localisation of c-kit and KITL proteins in adult human premenopausal ovaries. METHODS This study utilised granulosa cells obtained from the preovulatory follicles of women undergoing assisted reproduction, pieces of ovarian tissue obtained from premenopausal women undergoing gynaecological surgeries and archival paraffin-embedded premenopausal ovarian tissues. Methodology included PCR for gene expression and Western blot or immunohistochemistry for protein expression. RESULTS Both c-kit mRNA isoforms, known as GNNK+ and GNNK-, were detected in human ovarian cortex, while KITL protein isoforms (KITL1 and KITL2) were present in ovarian cortex and human granulosa cells. Immunohistochemistry showed expression of KITL and c-kit protein in multiple cell types within follicles throughout development, from primordial follicles to large antral follicles, in addition to atretic follicles. Oocytes of all follicle stages expressed c-kit protein exclusively. Interestingly, unlike animal models, expression of both proteins displayed a less cell-type specific distribution with immunostaining present in granulosa, theca and stromal cells, suggesting that autocrine signalling occurs within the human ovary. CONCLUSION The results of this study indicate that c-kit/KITL signalling also occurs in the human ovary, as established in various animal models, and may involve previously unknown autocrine signalling.
Collapse
Affiliation(s)
- Astrud R Tuck
- Robinson Research Institute, School of Paediatrics and Reproductive Health, Adelaide, South Australia, Australia. .,Dame Roma Mitchell Cancer Research Laboratories, School of Medicine; University of Adelaide, Adelaide, South Australia, Australia.
| | - Rebecca L Robker
- Robinson Research Institute, School of Paediatrics and Reproductive Health, Adelaide, South Australia, Australia.
| | - Robert J Norman
- Robinson Research Institute, School of Paediatrics and Reproductive Health, Adelaide, South Australia, Australia.
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine; University of Adelaide, Adelaide, South Australia, Australia.
| | - Theresa E Hickey
- Robinson Research Institute, School of Paediatrics and Reproductive Health, Adelaide, South Australia, Australia. .,Dame Roma Mitchell Cancer Research Laboratories, School of Medicine; University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
19
|
Peri LE, Koh BH, Ward GK, Bayguinov Y, Hwang SJ, Gould TW, Mullan CJ, Sanders KM, Ward SM. A novel class of interstitial cells in the mouse and monkey female reproductive tracts. Biol Reprod 2015; 92:102. [PMID: 25788664 DOI: 10.1095/biolreprod.114.124388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2014] [Accepted: 03/12/2015] [Indexed: 01/14/2023] Open
Abstract
Growing evidence suggests important roles for specialized platelet-derived growth factor receptor alpha-positive (PDGFRalpha(+)) cells in regulating the behaviors of visceral smooth muscle organs. Examination of the female reproductive tracts of mice and monkeys showed that PDGFRalpha(+) cells form extensive networks in ovary, oviduct, and uterus. PDGFRalpha(+) cells were located in discrete locations within these organs, and their distribution and density were similar in rodents and primates. PDGFRalpha(+) cells were distinct from smooth muscle cells and interstitial cells of Cajal (ICC). This was demonstrated with immunohistochemical techniques and by performing molecular expression studies on PDGFRalpha(+) cells from mice with enhanced green fluorescent protein driven off of the endogenous promoter for Pdgfralpha. Significant differences in gene expression were found in PDGFRalpha(+) cells from ovary, oviduct, and uterus. Differences in gene expression were also detected in cells from different tissue regions within the same organ (e.g., uterine myometrium vs. endometrium). PDGFRalpha(+) cells are unlikely to provide pacemaker activity because they lack significant expression of key pacemaker genes found in ICC (Kit and Ano1). Gja1 encoding connexin 43 was expressed at relatively high levels in PDGFRalpha(+) cells (except in the ovary), suggesting these cells can form gap junctions to one another and neighboring smooth muscle cells. PDGFRalpha(+) cells also expressed the early response transcription factor and proto-oncogene Fos, particularly in the ovary. These data demonstrate extensive distribution of PDGFRalpha(+) cells throughout the female reproductive tract. These cells are a heterogeneous population of cells that are likely to contribute to different aspects of physiological regulation in the various anatomical niches they occupy.
Collapse
Affiliation(s)
- Lauren E Peri
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Byoung H Koh
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Grace K Ward
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Yulia Bayguinov
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sung Jin Hwang
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Thomas W Gould
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Catrina J Mullan
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M Ward
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
20
|
Tuck AR, Mottershead DG, Fernandes HA, Norman RJ, Tilley WD, Robker RL, Hickey TE. Mouse GDF9 decreases KITL gene expression in human granulosa cells. Endocrine 2015; 48:686-95. [PMID: 24985063 DOI: 10.1007/s12020-014-0335-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/29/2013] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
Abstract
Kit ligand (KITL) is an important granulosa cell-derived growth factor in ovarian folliculogenesis, but its expression and function in human granulosa cells are currently poorly understood. Based on studies performed in animal models, it was hypothesised that KITL gene expression in human granulosa cells is regulated by androgens and/or growth differentiation factor 9 (GDF9). We utilised two models of human granulosa cells, the KGN granulosa tumour cell line and cumulus granulosa cells obtained from preovulatory follicles of women undergoing assisted reproduction. Cells were treated with combinations of 5α-dihydrotestosterone (DHT), recombinant mouse GDF9, and the ALK4/5/7 inhibitor SB431542. KITL mRNA levels were measured by quantitative real-time PCR. No change in KITL mRNA expression was observed after DHT treatment under any experimental conditions, but GDF9 treatment resulted in a significant decrease in KITL mRNA levels in both KGN and cumulus cells. The effect of GDF9 was abolished by the addition of SB431542. These results indicate that KITL is not directly regulated by androgen signalling in human granulosa cells. Moreover, this study provides the first evidence that GDF9 negatively regulates KITL gene expression in human granulosa cells providing new information on the regulation of these important growth factors in the human ovary.
Collapse
Affiliation(s)
- Astrud R Tuck
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5005, Australia,
| | | | | | | | | | | | | |
Collapse
|
21
|
Antimüllerian hormone regulates stem cell factor expression in human granulosa cells. Fertil Steril 2014; 102:1742-50.e1. [PMID: 25241372 DOI: 10.1016/j.fertnstert.2014.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To determine whether there is a correlation between antimüllerian hormone (AMH) and stem cell factor (SCF) in serum, follicular fluid (FF), and granulosa cells (GCs), and to investigate a possible regulatory mechanism of AMH on SCF in human granulosa cells. DESIGN Prospective clinical and experimental study. SETTING Academic center. PATIENT(S) 163 women undergoing IVF. INTERVENTION(S) Serum, FF, and GCs obtained in all women, primary cultures of human GCs. MAIN OUTCOME MEASURE(S) AMH and SCF were analyzed in serum, FF, and GCs, using enzyme-linked immunosorbent assay, reverse-transcription polymerase chain reaction, and immunoblotting. RESULT(S) There was a significant negative correlation between AMH and SCF protein level in FF, and in the mRNA expression of AMH and SCF in GCs. Conversely, there was no correlation between AMH and SCF levels in serum. In primary cultures of human GCs, SCF was down-regulated by treatment with recombinant human AMH and was increased by cyclic adenosine 3':5' monophosphate (cAMP) in a dose-dependent manner. A protein kinase A (PKA) inhibitor (H89) significantly reversed the effects of recombinant human AMH and cAMP on SCF mRNA and protein expression. CONCLUSION(S) This is the first report on a modulatory role for AMH as an ovarian/follicular autocrine/paracrine factor controlling SCF expression via the cAMP/PKA pathway.
Collapse
|
22
|
Yao K, Lau SW, Ge W. Differential regulation of Kit ligand A expression in the ovary by IGF-I via different pathways. Mol Endocrinol 2014; 28:138-50. [PMID: 24243489 PMCID: PMC5426649 DOI: 10.1210/me.2013-1186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
Kit ligand (KITL) plays indispensable roles both in primordial follicle activation and in the maintenance of meiotic arrest of the oocyte. The regulation of KITL expression in the ovary, however, remains largely unknown. In the zebrafish, there are 2 paralogues of KITL, kitlga and kitlgb, and 2 Kit receptors, kita and kitb. Consistent with the situation in mammals, kitlga is only expressed in the ovarian follicle cells, and its cognate receptor kita is expressed in the oocyte. In the present study, we demonstrated that the expression of kitlga was promoted by IGF-I through its receptor IGF-IR. The stimulation involved transcription but not translation, suggesting that the kitlga gene is likely a direct downstream target of IGF-I signaling. Further experiments showed that the stimulatory effect of IGF-I was mediated by phosphatidyl inositol 3-kinase (PI3K)-Akt pathway. IGF-I also activated MEK-ERK pathway; however, this pathway suppressed kitlga expression. The regulation of kitlga expression by IGF-I appeared to depend on the stage of follicle development with a greater induction at early stage than late stage. This may be related to changes in IGF-I signaling pathways and/or local paracrine environment. In support of this were the differential expression of IGF-I receptors (igf1ra and igf1rb) and responsiveness of IGF-I signaling pathways, especially the PI3K-Akt pathway. Furthermore, the IGF-I-induced kitlga expression was inhibited by epidermal growth factor, an oocyte-derived paracrine factor in the zebrafish follicle. This study provides evidence for a controlling mechanism underlying the regulation of KITL expression in the ovary.
Collapse
Affiliation(s)
- Kai Yao
- School of Life Sciences (K.Y., S.-W.L, W.G.) and Centre for Cell and Developmental Biology (W.G.), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; and Faculty of Health Sciences (W.G.), University of Macau, Taipa, Macau, China
| | | | | |
Collapse
|
23
|
Field SL, Dasgupta T, Cummings M, Orsi NM. Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol Reprod Dev 2013; 81:284-314. [DOI: 10.1002/mrd.22285] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2013] [Accepted: 11/18/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Sarah L Field
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| | - Tathagata Dasgupta
- Department of Systems Biology; Harvard Medical School; 200 Longwood Avenue Boston Massachusetts
| | - Michele Cummings
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| | - Nicolas M. Orsi
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| |
Collapse
|
24
|
Yao K, Ge W. Spatial distribution and receptor specificity of zebrafish Kit system--evidence for a Kit-mediated bi-directional communication system in the preovulatory ovarian follicle. PLoS One 2013; 8:e56192. [PMID: 23409152 PMCID: PMC3568072 DOI: 10.1371/journal.pone.0056192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2012] [Accepted: 01/07/2013] [Indexed: 01/28/2023] Open
Abstract
Consisting of Kit ligand and receptor Kit, the Kit system is involved in regulating many ovarian functions such as follicle activation, granulosa cell proliferation, and oocyte growth and maturation. In mammals, Kit ligand is derived from the granulosa cells and Kit receptor is expressed in the oocyte and theca cells. In the zebrafish, the Kit system contains two ligands (Kitlga and Kitlgb) and two receptors (Kita and Kitb). Interestingly, Kitlga and Kitb are localized in the somatic follicle cells, but Kitlgb and Kita are expressed in the oocyte. Using recombinant zebrafish Kitlga and Kitlgb, we demonstrated that Kitlga preferentially activated Kita whereas Kitlgb specifically activated Kitb by Western analysis for receptor phosphorylation. In support of this, Kitlgb triggered a stronger and longer MAPK phosphorylation in follicle cells than Kitlga, whereas Kitlga but not Kitlgb activated MAPK in the denuded oocytes, in agreement with the distribution of Kita and Kitb in the follicle and their specificity for Kitlga and Kitlgb. Further analysis of the interaction between Kit ligands and receptors by homology modeling showed that Kitlga-Kita and Kitlgb-Kitb both have more stable electrostatic interaction than Kitlgb-Kita or Kitlga-Kitb. A functional study of Kit involvement in final oocyte maturation showed that Kitlga and Kitlgb both suppressed the spontaneous maturation significantly; in contrast, Kitlgb but not Kitlga significantly promoted 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) -induced oocyte maturation. Our results provided strong evidence for a Kit-mediated bi-directional communication system in the zebrafish ovarian follicle, which could be part of the complex interplay between the oocyte and the follicle cells in the development of follicles.
Collapse
Affiliation(s)
- Kai Yao
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail:
| |
Collapse
|
25
|
Kundu MC, Wojtusik J, Johnson PA. Expression and regulation of Kit ligand in the ovary of the hen. Gen Comp Endocrinol 2012; 179:47-52. [PMID: 22885556 DOI: 10.1016/j.ygcen.2012.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/07/2012] [Revised: 07/19/2012] [Accepted: 07/26/2012] [Indexed: 11/22/2022]
Abstract
The Kit system, composed of Kit ligand (KL) and its tyrosine kinase receptor, cKit, has been well characterized in mammals. Studies have shown that it is involved in signaling between the oocyte and somatic cells during the process of follicle maturation. We characterized KL mRNA expression during follicle maturation in the domestic hen, examined regulation of KL and a possible function of the Kit system. KL mRNA expression was assessed using quantitative PCR (n=4 replicates) in follicles of various sizes (1, 3, 5, 6-12 mm, F1). Expression of KL mRNA decreased significantly (p<0.01) with follicle development and was highest in <1 mm follicles, which contained the theca as well as granulosa layers, with high levels also found in the granulosa layer of 3 mm follicles and ovarian stroma. To study regulation of KL mRNA, granulosa cells from 6-8 mm follicles (n=4 replicates) were plated in M199 plus 0.1% BSA in the presence of various treatments including: oocyte conditioned medium (OCM), Vitamin D(3), FSH, estradiol, progesterone and testosterone. OCM caused a dose-related increase (p<0.05) in expression of KL mRNA; Vitamin D(3) increased and FSH decreased expression of KL mRNA. cKit was detected (at the expected size) in the theca layer of 3-5 mm follicles and in a lysate of whole <1mm follicles. Culture of granulosa cells in the presence of OCM resulted in a decrease of P4 secretion, an effect blocked by pre-incubation of OCM with cKit antibody. Although OCM caused a dose-related increase in E2 secretion from theca, this was not blocked by cKit antibody.
Collapse
Affiliation(s)
- Mila C Kundu
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
26
|
Amorim CA, David A, Dolmans MM, Camboni A, Donnez J, Van Langendonckt A. Impact of freezing and thawing of human ovarian tissue on follicular growth after long-term xenotransplantation. J Assist Reprod Genet 2011; 28:1157-65. [PMID: 22105186 DOI: 10.1007/s10815-011-9672-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2011] [Accepted: 11/02/2011] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To assess follicular growth after xenografting in order to understand how freezing and/or grafting may affect follicular development. METHODS Human ovarian biopsies were used for fresh and frozen-thawed xenografting to SCID mice. After xenotransplantation, follicular morphology and proportion, oocyte and follicle diameter, and quantitative and qualitative parameters of antral follicles were analyzed. RESULTS The proportion of growing follicles was significantly higher in grafted than non-grafted ovarian tissue. Follicular growth to the antral stage was observed and there was no significant difference in oocyte or follicle diameter in fresh or frozen-thawed grafts. Although no significant difference was observed in antral area or zona pellucida thickness, the theca layer in antral follicles from frozen-thawed grafted tissue was found to be significantly thinner than in fresh grafts. CONCLUSION Antral follicles obtained after grafting of frozen-thawed human ovarian tissue showed a thinner theca cell layer compared to those from fresh grafts, which could affect follicular development and function. Further studies are nevertheless warranted to confirm the identity of theca cells and assess if they retain the ability to respond to luteinizing hormone and produce androgens.
Collapse
Affiliation(s)
- Christiani A Amorim
- Department of Gynecology, Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Brussels, 1200, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Parrish EM, Siletz A, Xu M, Woodruff TK, Shea LD. Gene expression in mouse ovarian follicle development in vivo versus an ex vivo alginate culture system. Reproduction 2011; 142:309-18. [PMID: 21610168 DOI: 10.1530/rep-10-0481] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
Ovarian follicle maturation results from a complex interplay of endocrine, paracrine, and direct cell-cell interactions. This study compared the dynamic expression of key developmental genes during folliculogenesis in vivo and during in vitro culture in a 3D alginate hydrogel system. Candidate gene expression profiles were measured within mouse two-layered secondary follicles, multi-layered secondary follicles, and cumulus-oocyte complexes (COCs). The expression of 20 genes involved in endocrine communication, growth signaling, and oocyte development was investigated by real-time PCR. Gene product levels were compared between i) follicles of similar stage and ii) COCs derived either in vivo or by in vitro culture. For follicles cultured for 4 days, the expression pattern and the expression level of 12 genes were the same in vivo and in vitro. Some endocrine (cytochrome P450, family 19, subfamily A, polypeptide 1 (Cyp19a1) and inhibin βA subunit (Inhba)) and growth-related genes (bone morphogenetic protein 15 (Bmp15), kit ligand (Kitl), and transforming growth factor β receptor 2 (Tgfbr2)) were downregulated relative to in vivo follicles. For COCs obtained from cultured follicles, endocrine-related genes (inhibin α-subunit (Inha) and Inhba) had increased expression relative to in vivo counterparts, whereas growth-related genes (Bmp15, growth differentiation factor 9, and kit oncogene (Kit)) and zona pellucida genes were decreased. However, most of the oocyte-specific genes (e.g. factor in the germline α (Figla), jagged 1 (Jag1), and Nlrp5 (Mater)) were expressed in vitro at the same level and with the same pattern as in vivo-derived follicles. These studies establish the similarities and differences between in vivo and in vitro cultured follicles, guiding the creation of environments that maximize follicle development and oocyte quality.
Collapse
Affiliation(s)
- Elizabeth M Parrish
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
28
|
Guglielmo MC, Ricci G, Catizone A, Barberi M, Galdieri M, Stefanini M, Canipari R. The effect of hepatocyte growth factor on the initial stages of mouse follicle development. J Cell Physiol 2011; 226:520-9. [PMID: 20683913 DOI: 10.1002/jcp.22361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Abstract
Interactions between theca and granulosa cells of the follicle are critical for the coordination of ovarian follicle development. The cell-cell interactions are mediated through the local production and actions of a variety of factors. The current study is designed to investigate the expression of Hgf and its receptor, c-Met, in the mouse ovary during in vivo folliculogenesis. We found that Hgf and c-Met mRNAs were already expressed in 2-day-old ovaries, and that, while c-Met levels remained constant until 22-day-old, Hgf levels slightly but not significantly increased with age. The expression of Hgf mRNA in theca/interstitial cells was higher than in granulosa cells in 22-day-old ovaries. Immunohistochemistry analysis confirmed the expression pattern demonstrated by RT-PCR. We investigated the role of hepatocyte growth factor (HGF) at the beginning of mouse folliculogenesis and its possible interaction with kit ligand (KL). Interestingly, both KL and HGF were able to increase the expression of each other, creating a positive feedback loop. In the presence of HGF, we observed an increase of granulosa cell proliferation and an increase in the number of pre-antral and early antral follicles in ovary organ cultures. We also observed a significant increase in the diameters of follicles in individual follicle cultures. Moreover, HGF stimulated the expression of the FSH receptors, both in the whole ovary and in isolated pre-antral follicle cultures. Based on the data presented, we concluded that HGF exerts multiple levels of control over follicular cell functions, which collectively enable the progression of follicular development.
Collapse
Affiliation(s)
- M C Guglielmo
- Department of Histology and Medical Embryology, La Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Celestino JJH, Bruno JB, Lima-Verde IB, Matos MHT, Saraiva MVA, Chaves RN, Martins FS, Almeida AP, Cunha RMS, Lima LF, Name KPO, Campello CC, Silva JRV, Báo SN, Figueiredo JR. Steady-state level of kit ligand mRNA in goat ovaries and the role of kit ligand in preantral follicle survival and growth in vitro. Mol Reprod Dev 2010; 77:231-40. [PMID: 20014130 DOI: 10.1002/mrd.21138] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
The aims of this study were to investigate steady-state level of Kit Ligand (KL) mRNA and its effects on in vitro survival and growth of caprine preantral follicles. RT-PCR was used to analyze caprine steady-state level of KL mRNA in primordial, primary, and secondary follicles, and in small (1-3 mm) and large (3-6 mm) antral follicles. Furthermore, ovarian fragments were cultured for 1 or 7 days in Minimal Essential Medium (MEM(+)) supplemented with KL (0, 1, 10, 50, 100, or 200 ng/ml). Noncultured (control) and cultured fragments were processed for histology and transmission electron microscopy (TEM). RT-PCR demonstrated an increase in steady-state level of KL mRNA during the transition from primary to secondary follicles. Small antral follicles had higher steady-state levels of KL mRNA in granulosa and theca cells than large follicles. After 7 days, only 50 ng/ml of KL had maintained the percentage of normal follicles similar to control. After 1 day, all KL concentrations reduced the percentage of primordial follicles and increased the percentage of growing follicles. KL at 10, 50, 100, or 200 ng/ml increased primary follicles, compared to MEM(+) after 7 days. An increase in oocyte and follicular diameter was observed at 50 ng/ml of KL. TEM confirmed ultrastructural integrity of follicles after 7 days at 50 ng/ml of KL. In conclusion, the KL mRNAs were detected in all follicular categories. Furthermore, 50 ng/ml of KL maintained the integrity of caprine preantral follicle cultured for 7 days and stimulated primordial follicle activation and follicle growth.
Collapse
Affiliation(s)
- Juliana J H Celestino
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza, CE, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Koch D, Sakurai M, Hummitzsch K, Hermsdorf T, Erdmann S, Schwalbe S, Stolzenburg JU, Spanel-Borowski K, Ricken AM. KIT variants in bovine ovarian cells and corpus luteum. Growth Factors 2009; 27:100-13. [PMID: 19225962 DOI: 10.1080/08977190802707571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Abstract
We report the presence of KIT variants in granulosa and thecal cells of the follicle and endothelial and steroidogenic cells of the corpus luteum. Transcripts of both full-length splice variants, KIT and KITA, were ubiquitously detected in all cell types, in contrast to transcripts for truncated KIT. RT-PCR with exon-intron-specific primers suggested that KIT transcripts retained intron sequences. We used domain-specific KIT antibodies to identify truncated KIT proteins in cell conditioned media and lysates. These proteins represented soluble KIT and a so far disregarded intracellular KIT fragment, and were ubiquitously present. In contrast, glycosylated variants of full-length KIT were predominantly detected in thecal and endothelial cells. All KIT variants were encountered again in COS-7 cells transfected with a vector containing KITA. Phorbol 12-myristate-13-acetate treatment induced levels of truncated KITs, and this effect was repressed by the metalloproteinase inhibitor TAPI-1. Our findings show that ectodomain cleavage of full-length KIT generates an intracellular KIT. Our experiments suggest that replenishing full-length KIT differs among various ovarian cell types.
Collapse
Affiliation(s)
- Daniela Koch
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cho JH, Itoh T, Sendai Y, Hoshi H. Fibroblast growth factor 7 stimulates in vitro growth of oocytes originating from bovine early antral follicles. Mol Reprod Dev 2008; 75:1736-43. [DOI: 10.1002/mrd.20912] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
|
32
|
Skinner MK, Schmidt M, Savenkova MI, Sadler-Riggleman I, Nilsson EE. Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development. Mol Reprod Dev 2008; 75:1457-72. [PMID: 18288646 PMCID: PMC5749411 DOI: 10.1002/mrd.20883] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Coordinated interactions between ovarian granulosa and theca cells are required for female endocrine function and fertility. To elucidate these interactions the regulation of the granulosa and theca cell transcriptomes during bovine antral follicle development were investigated. Granulosa cells and theca cells were isolated from small (<5 mm), medium (5-10 mm), and large (>10 mm) antral bovine follicles. A microarray analysis of 24,000 bovine genes revealed that granulosa cells and theca cells each had gene sets specific to small, medium and large follicle cells. Transcripts regulated (i.e., minimally changed 1.5-fold) during antral follicle development for the granulosa cells involved 446 genes and for theca cells 248 genes. Only 28 regulated genes were common to both granulosa and theca cells. Regulated genes were functionally categorized with a focus on growth factors and cytokines expressed and regulated by the two cell types. Candidate regulatory growth factor proteins mediating both paracrine and autocrine cell-cell interactions include macrophage inflammatory protein (MIP1 beta), teratocarcinoma-derived growth factor 1 (TDGF1), stromal derived growth factor 1 (SDF1; i.e., CXCL12), growth differentiation factor 8 (GDF8), glia maturation factor gamma (GMFG), osteopontin (SPP1), angiopoietin 4 (ANGPT4), and chemokine ligands (CCL 2, 3, 5, and 8). The current study examined granulosa cell and theca cell regulated genes associated with bovine antral follicle development and identified candidate growth factors potentially involved in the regulation of cell-cell interactions required for ovarian function.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4231, USA.
| | | | | | | | | |
Collapse
|
33
|
Dharma SJ, Modi DN, Nandedkar TD. Gene expression profiling during early folliculogenesis in the mouse ovary. Fertil Steril 2008; 91:2025-36. [PMID: 18504043 DOI: 10.1016/j.fertnstert.2008.02.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2007] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate genes involved in ovarian primordial-to-primary follicle transition. DESIGN Experimental animal study. SETTING Research institute. ANIMAL(S) Day-2 and day-4 female Swiss mice. INTERVENTION(S) We conducted a complementary DNA array study using ovarian messenger RNAs from day-2 and day-4 mice. MAIN OUTCOME MEASURE(S) The expression profiles of 1,176 genes in neonatal mouse ovaries on day 2 and day 4, which contain primordial and primary follicles, respectively, were compared. RESULT(S) Twenty-six percent of genes were differentially expressed between day-2 and day-4 ovaries, with 19% being up-regulated and 7% down-regulated in day 4. Analysis of differentially expressed genes revealed that the primordial-to-primary follicle stage transition is associated with induction in the expression of mainly growth factors, immune-related factors, hormone and hormone receptors, and signal transducers. The transition is also associated with proliferation of granulosa cells and absence of apoptosis. In addition, our studies demonstrated that the primary follicles express estrogen receptor beta and are responsive to estrogen actions in vitro in terms of increase in the number of primary follicles and granulosa cell proliferation. CONCLUSION(S) The transition of primordial to primary follicles is associated with the participation of multiple pathways in regulating gene expression.
Collapse
Affiliation(s)
- Shalmali J Dharma
- National Institute for Research in Reproductive Health, Parel, Mumbai, India
| | | | | |
Collapse
|
34
|
Abstract
The present study examines the use of buffalo preantral follicles as a source of oocytes for in vitro embryo production. Preantral follicles were isolated from abattoir-derived buffalo ovaries and were grown for 100 days in five different culture systems: (1) minimum essential medium (MEM); (2) coconut water; (3) MEM + ovarian mesenchymal cell (OMC) co-culture; (4) MEM + granulosa cell (GC) co-culture; or (5) MEM + cumulus cell (CC) co-culture. Low growth rates for the preantral follicles were observed when follicles were cultured in MEM or coconut water medium. Moderate growth rates were seen for OMC and GC co-cultures, and high rates of growth were observed when follicles were grown in CC co-culture. The survival of preantral follicles was low in the MEM culture (<25%), but was over 75% in the other culture systems. Oocytes were not recovered from the MEM group, while an oocyte recovery rate of 80-100% was observed when the follicles were cultured with coconut water/somatic cells. Transferable embryos could be produced only with the oocytes obtained from preantral follicles grown in the OMC and CC co-culture systems. This study demonstrates, for the first time, that it is possible to produce buffalo embryos by in vitro fertilization of oocytes derived from in vitro grown preantral follicles.
Collapse
|
35
|
Ramesh HS, Gupta PSP, Nandi S, Manjunatha BM, Kumar VG, Ravindra JP. Co-culture of buffalo preantral follicles with different somatic cells. Reprod Domest Anim 2008; 43:520-4. [PMID: 18298404 DOI: 10.1111/j.1439-0531.2007.00946.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
The effect of co-culture of buffalo preantral follicles (PFs) with different somatic cells, i.e, cumulus, granulosa, ovarian mesenchymal and oviductal epithelial cells was studied. Large PFs (250-450 microm) were isolated by microdissecting the trypsin (1%) digested ovarian cortical slices. Cumulus cells were isolated by repeated pipetting of oocytes, granulosa cells were isolated by aspirating from punctured PFs and ovarian mesenchymal cells were isolated from ovarian cortex by scraping the cortical slices and passing through 20 microm filter. Preantral follicles were cultured in standard culture medium without somatic cells or co-cultured with cumulus cells, granulosa cells, ovarian mesenchymal cells and oviductal epithelial cells for 80 days. The growth rate (microm/day) of the PFs was monitored by measuring follicular diameter on day 0, 30, 60 and 80 days of culture. The viability of PFs was evaluated by trypan blue staining. The results indicated that PFs co-cultured with cumulus, granulosa and ovarian mesenchymal cells had a better development and survivality compared with control and those co-culture with oviductal epithelial cells. Maximum growth and survivality of PFs were achieved when cultured with cumulus cells. It is concluded that inclusion of somatic cells in PF culture media had beneficial effect on the growth of PFs and cumulus cells supported maximum growth and survivality of PFs in vitro of all somatic cells tested.
Collapse
Affiliation(s)
- H S Ramesh
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| | | | | | | | | | | |
Collapse
|
36
|
Wu J, Tian Q. Role of follicle stimulating hormone and epidermal growth factor in the development of porcine preantral follicle in vitro. ZYGOTE 2007; 15:233-40. [PMID: 17637104 DOI: 10.1017/s0967199407004194] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Abstract
SummaryThe aim of the present study was to assess the role of follicle stimulating hormone (FSH), epidermal growth factor (EGF) or a combination of EGF and FSH on the in vitro growth of porcine preantral follicles, estradiol secretion, antrum formation, oocyte maturation and subsequent embryonic development. Porcine preantral follicles were cultured for 3 days in the absence or in the presence of FSH or EGF. Oocytes from these follicles were then matured, fertilized in vitro and embryos were cultured. Estradiol secretion and histological analysis of cultured follicles were also carried out. The results showed that when FSH, or a combination of EGF and FSH, was added to the culture medium, most of preantral follicles grew to antral follicles with high estradiol secretion and the oocytes from these antral follicles could mature, fertilize and develop to the blastocyst stage. Without FSH, or a combination of EGF and FSH, preantral follicles were unable to develop to the antral stage. Histology demonstrated that the resulting follicles were nonantral, estradiol production was reduced and none of their oocytes matured after in vitro maturation. The results indicate the essential role of FSH in promoting in vitro growth of porcine preantral follicle, estradiol secretion, antrum formation, oocyte maturation and subsequent embryonic development. EGF with FSH treatment of porcine preantral follicles improves the quality of oocytes, shown by a higher frequency of embryonic development.
Collapse
Affiliation(s)
- Ji Wu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | |
Collapse
|
37
|
Wang Y, Li J, Ying Wang C, Yan Kwok AH, Leung FC. Epidermal growth factor (EGF) receptor ligands in the chicken ovary: I. Evidence for heparin-binding EGF-like growth factor (HB-EGF) as a potential oocyte-derived signal to control granulosa cell proliferation and HB-EGF and kit ligand expression. Endocrinology 2007; 148:3426-40. [PMID: 17395697 DOI: 10.1210/en.2006-1383] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
There is increasing evidence that epidermal growth factor (EGF) receptor (EGFR) ligand and Kit ligand (KL) play critical roles in controlling follicular development in mammals. Because little is known about their expressions in the ovary of nonmammalian vertebrate, our study aimed to examine the expression, hormonal regulation, and interaction of HB-EGF and KL in the chicken ovary. Using semiquantitative RT-PCR, we demonstrated that ovarian HB-EGF expression increased dramatically with the posthatching ovarian growth. In line with this finding, HB-EGF was shown to be produced primarily by the growing oocytes and capable of stimulating the proliferation of granulosa cells in prehierarchal (3 mm) and preovulatory follicles (F5 and F1). Although HB-EGF expression is mainly restricted to the oocytes, its expression in cultured granulosa cells could be transiently yet strongly induced by HB-EGF and other EGFR ligands including EGF and TGF-alpha. And the inducing effect of HB-EGF was completely abolished by AG1478 (10 microM) or PD98059 (100 microM), indicating that the action of HB-EGF is mediated by EGFR and intracellular MAPK/ERK signaling pathway. Unlike mammals, only KL-1, not the other three isoforms identified (KL-2, -3, and -4), was detected to be predominantly expressed in the chicken ovary. Interestingly, KL expression in undifferentiated and differentiated granulosa cells could be transiently down-regulated by HB-EGF, implying an intrafollicular communication between growing oocyte and surrounding granulosa cells through the interplay of EGFR ligand and KL. Collectively, our data suggest that HB-EGF is likely a paracrine signal from the oocyte to regulate granulosa cell proliferation and HB-EGF and KL expression during ovarian follicular development.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
38
|
Silva JRV, van den Hurk R, van Tol HTA, Roelen BAJ, Figueiredo JR. The Kit ligand/c-Kit receptor system in goat ovaries: gene expression and protein localization. ZYGOTE 2007; 14:317-28. [PMID: 17266790 DOI: 10.1017/s0967199406003832] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2006] [Accepted: 03/06/2006] [Indexed: 11/07/2022]
Abstract
Relatively little information is available on the local factors that regulate folliculogenesis in goats. To examine the possibility that the Kit ligand (KL) system is expressed throughout the folliculogenesis, we studied the presence and distribution of KL and its receptor, c-Kit, in goat ovaries. Ovaries of goats were collected and either fixed in paraformaldehyde for immunohistochemical localization of KL and c-Kit proteins, or used for the isolation of follicles, luteal cells, surface epithelium and medullary samples to study mRNA expression for KL and c-Kit, using the reverse transcriptase polymerase chain reaction (RT-PCR). KL protein and mRNA were found in follicles at all stages of development, i.e. primordial, primary, secondary, small and large antral follicles, as well as in corpora lutea, surface epithelium and medullary tissue. Antral follicles expressed both KL-1 and KL-2 mRNAs, while earlier staged follicles expressed KL-1 transcript only. KL protein was demonstrated in granulosa cells from the primordial follicle onward. Its mRNA could be detected in granulosa cells isolated from antral follicles and occasionally in their theca cells. c-Kit mRNA was expressed in all antral follicular compartments and at all stages of follicular development. c-Kit protein was predominantly found in oocytes from the primordial follicle stage onwards, in theca cells of antral follicles, as well as in corpora lutea, surface epithelium and medullary tissue, particularly in the wall of blood vessels, which may indicate these cells as the main sites of action of KL. It is concluded that the KL/c-Kit system, in goat ovaries, is widespread and that it may be involved in the regulation of various local processes, including folliculogenesis and luteal activity.
Collapse
Affiliation(s)
- J R V Silva
- Department of Farm Animal Health, Utrecht University, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Tajima K, Orisaka M, Yata H, Goto K, Hosokawa K, Kotsuji F. Role of granulosa and theca cell interactions in ovarian follicular maturation. Microsc Res Tech 2006; 69:450-8. [PMID: 16718667 DOI: 10.1002/jemt.20304] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
We developed a culture system in which two types of ovarian follicular cells were allowed to attach to opposite sides of a collagen membrane. Using this in vitro cell culture system, we studied the effects of granulosa- and theca-cell interaction on the morphology, structure, and function of bovine ovarian follicular cells. In the first part of the study, we explored how the interaction between theca and granulosa cells affects the morphology and structure of the cells. This study was done using follicular cells collected from bovine ovarian follicles at the early developmental stage. Granulosa cells cultured alone were flattened, and formed a monolayer sheet. By contrast, granulosa cells cultured with theca cells were convex, and formed multilayer sheets. Theca cells cultured alone were thin, flat, and spindle-shaped. Theca cells cultured with granulosa cells were also spindle-shaped; however, they appeared convex and more densely packed when compared with theca cells cultured alone. In the second part of the study, the possible role of the cellular interaction in the control of differentiation and growth of granulosa and theca cells was investigated. When follicular cells were isolated from the early stage of follicular development, theca cells reduced progesterone and inhibin production by granulosa cells and augmented the growth of granulosa cells. When the cells were isolated from the late stage of follicular development, by contrast, theca cells augmented hormonal production by granulosa cells, and did not affect the growth of granulosa cells. The growth and androstenedione production by theca cells were increased by the presence of granulosa cells, irrespective of the origin of follicular cells. These results demonstrated that communication between two types of follicular cells results in reciprocal modulation of their morphology, structure, growth, and function. Cellular interactions seem to be one of the major factors controlling the differentiation and growth of the follicular cells during the follicular maturation process. In contrast to granulosa and theca cells cultured alone, cells in the coculture seemed to possess morphological and functional characteristics more similar to those of cells in the growing follicular wall in vivo. Thus, we speculate that the interaction between these two types of follicular cells is essential for the maintenance of original structure and function of the bovine follicular wall.
Collapse
Affiliation(s)
- Kimihisa Tajima
- Department of Obstetrics and Gynecology, Fukui Medical University, Yoshida-gun, Fukui 910-1193, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Hui ES, Udofa EA, Soto J, Vanderhoof VH, Zachman K, Tong ZB, Nelson LM. Investigation of the human stem cell factor KIT ligand gene, KITLG, in women with 46,XX spontaneous premature ovarian failure. Fertil Steril 2006; 85:1502-7. [PMID: 16647379 DOI: 10.1016/j.fertnstert.2005.10.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate mutations in the human KIT ligand gene (KITLG) gene as a mechanism of 46,XX spontaneous premature ovarian failure. The human KIT ligand gene, known also as human stem cell factor, is the ligand of the c-kit transmembrane tyrosine kinase receptor (KIT). This ligand-receptor interaction is known to play important roles in mouse germ cell migration and proliferation. DESIGN Cross-sectional study. SETTING Clinical research center. PATIENT(S) Forty women with 46,XX spontaneous premature ovarian failure. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Single-stranded conformational polymorphism analysis and DNA sequencing. RESULT(S) We found one nucleotide change of the KITLG coding region (811G-->T) that led to an alteration of the amino acid composition of the KITLG protein in one Caucasian patient (Asp210Tyr). However, we found the same alteration in two normal control Caucasian samples. Three nucleotide substitutions were found in the noncoding exon of KITLG (exon 10). We also identified two intronic polymorphisms. Thus, we did not identify a single significant mutation in the coding region of the KITLG gene in any of 40 patients (upper 95% confidence limit is 7.2%). CONCLUSION(S) Mutations in the coding regions of the KITLG gene appear not to be a common cause of 46,XX spontaneous premature ovarian failure in North American women.
Collapse
Affiliation(s)
- Emily S Hui
- Section on Women's Health Research, Developmental Endocrinology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Hutt KJ, McLaughlin EA, Holland MK. Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. ACTA ACUST UNITED AC 2006; 12:61-9. [PMID: 16481408 DOI: 10.1093/molehr/gal010] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022]
Abstract
Paracrine signalling between the oocyte and its surrounding somatic cells is fundamental to the processes of oogenesis and folliculogenesis in mammals. The study of animal models has revealed that the interaction of granulosa cell-derived kit ligand (KL) with oocyte and theca cell-derived c-Kit is important for multiple aspects of oocyte and follicle development, including the establishment of primordial germ cells within the ovary, primordial follicle activation, oocyte survival and growth, granulosa cell proliferation, theca cell recruitment and the maintenance of meiotic arrest. Though little is known about the specific roles of KL and c-Kit during human oogenesis, the expression profiles for KL and c-Kit within the human ovary suggest that they are also functionally relevant to female fertility. This review details our current understanding of the roles of KL and c-Kit within the mammalian ovary, with a particular focus on the functional diversity of this receptor-ligand interaction at different stages of oocyte and follicle development.
Collapse
Affiliation(s)
- K J Hutt
- Kansas University Medical Centre, Kansas City, USA
| | | | | |
Collapse
|
42
|
Kezele PR, Ague JM, Nilsson E, Skinner MK. Alterations in the Ovarian Transcriptome During Primordial Follicle Assembly and Development1. Biol Reprod 2005; 72:241-55. [PMID: 15371273 DOI: 10.1095/biolreprod.104.032060] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/01/2022] Open
Abstract
The assembly of the developmentally arrested primordial follicle and subsequent transition to the primary follicle are poorly understood processes critical to ovarian biology. Abnormal primordial follicle development can lead to pathologies such as premature ovarian failure. The current study used a genome-wide expression profile to investigate primordial follicle assembly and development. Rat ovaries with predominantly unassembled, primordial, or primary follicles were obtained. RNA from these ovaries was hybridized to rat microarray gene chips, and the gene expression (i.e., ovarian transcriptome) was compared between the developmental stages. Analysis of the ovarian transcriptome demonstrated 148 genes up-regulated and 50 genes down-regulated between the unassembled and primordial follicle stages. Observations demonstrate 80 genes up-regulated and 44 genes down-regulated between the primordial and primary follicle stages. The analysis demonstrated 2332 genes common among the three developmental stages, 146 genes specific for the unassembled follicles, 94 genes specific for the primordial follicles, and 151 genes specific for the primary follicles. Steroidogenic genes are up-regulated between unassembled and primordial follicles, and then many are again down-regulated between primordial and primary follicles. The hormones inhibin and Mullerian inhibitory substance (MIS) display a similar pattern of expression with the highest levels of mRNA in the primordial follicles. Several novel unknown genes that had dramatic changes in expression during primordial follicle development were also identified. Gene families/clusters identified that were up-regulated from unassembled to primordial follicles include growth factors and signal transduction gene clusters, whereas a down-regulated gene family was the synaptonemal complex genes associated with meiosis. Gene families/clusters that were up-regulated between primordial and primary follicles included immune response genes, metabolic enzymes, and proteases, whereas down-regulated gene families include the globulin genes and some steroidogenic genes. The expression of several growth factors changed during primordial follicle development, including vascular endothelial growth factor and insulin-like growth factor II. Elucidation of how these changes in gene expression coordinate primordial follicle assembly and the primordial to primary follicle transition provides a better understanding of these critical biological processes and allows selection of candidate regulatory factors for further investigation.
Collapse
Affiliation(s)
- Phillip R Kezele
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4231, USA
| | | | | | | |
Collapse
|
43
|
Lenie S, Cortvrindt R, Adriaenssens T, Smitz J. A Reproducible Two-Step Culture System for Isolated Primary Mouse Ovarian Follicles as Single Functional Units1. Biol Reprod 2004; 71:1730-8. [PMID: 15240420 DOI: 10.1095/biolreprod.104.028415] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/01/2022] Open
Abstract
A reproducible two-step culture system for isolated mouse ovarian follicles smaller than 100 microm (type 3a follicles) was designed. First, isolated follicles were grown in single droplets of alpha-minimal essential medium (MEM) without (deoxy)ribonucleosides at a lower concentration of fetal bovine serum (FBS; 1%) for 6 days with mechanical prohibition of thecal cell attachment. Growing follicles reaching at least 100 microm were transferred to alpha-MEM medium enriched with a higher concentration (5%) of FBS to allow attachment and were cultured subsequently for an additional 12 days. Overall, more than 85% of the follicles survived the first culture step, and oocyte growth and granulosa cell proliferation had increased by 25% (P < 0.05). Follicle survival at Day 18 was related to initial follicle diameters at isolation. Average meiotic maturation rates and estrogen secretion were lower compared to those of cultures starting with early preantral follicles of 100-130 microm. Although reverse transcription-polymerase chain reaction analysis revealed the presence of LH-receptor mRNA in thecal cells, an exogenous androstenedione replacement resulted in an increase of estrogen production, suggesting substrate insufficiency. The time needed to grow from early preantral stages to in vitro ovulation is strongly dependent on the initial follicle diameter at isolation. Morphological characteristics of cultured follicles were suggestive for combined transforming growth factor beta deficiencies during in vitro culture.
Collapse
Affiliation(s)
- Sandy Lenie
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
44
|
Brankin V, Hunter MG, Horan TL, Armstrong DG, Webb R. The expression patterns of mRNA-encoding stem cell factor, internal stem cell factor and c-kit in the prepubertal and adult porcine ovary. J Anat 2004; 205:393-403. [PMID: 15575888 PMCID: PMC1571353 DOI: 10.1111/j.0021-8782.2004.00339.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 08/23/2004] [Indexed: 11/30/2022] Open
Abstract
The receptor, c-kit, and its ligand, stem cell factor (SCF), are important regulators of ovarian follicle growth and development. The aim of this study was to identify the sites of expression of mRNA for c-kit and SCF in prepubertal and mature (pregnant and non-pregnant) animals. Ovaries were recovered from prepubertal animals, non-pregnant sows and five sows at approximately 3 months of gestation. Ovine SCF and c-kit DNA were cloned into plasmid vectors to produce RNA probes. Expression of mRNA encoding SCF and c-kit were detected via in situ hybridization. Both mRNA were detected throughout ovaries from all animals. This study provides evidence that the growth-factor complex is required throughout follicle development, and also for continued maintenance of the corpus luteum (CL) in the mature animal. SCF mRNA was localized to the granulosa cell layer and was also extensively expressed in endothelial tissue and throughout the CL. c-kit mRNA was detected in the theca layer, oocytes and also in CL. In conclusion, expression of SCF and c-kit mRNA in granulosa and theca cells, respectively, indicate an important interaction between somatic cells throughout follicle development and that in the mature animal, SCF and c-kit potentially have a role in maintaining progesterone secretion by the CL. The observations of continued expression of SCF and c-kit throughout development suggest that there may be differences in the role of this receptor-ligand complex between large mono- vs. poly ovulatory species, such as the pig.
Collapse
Affiliation(s)
- V Brankin
- School of Biosciences, University of Nottingham, Leicestershire, UK.
| | | | | | | | | |
Collapse
|
45
|
Wang J, Roy SK. Growth Differentiation Factor-9 and Stem Cell Factor Promote Primordial Follicle Formation in the Hamster: Modulation by Follicle-Stimulating Hormone1. Biol Reprod 2004; 70:577-85. [PMID: 14585807 DOI: 10.1095/biolreprod.103.023234] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/01/2022] Open
Abstract
Growth differentiation factor-9 (GDF-9) and stem cell factor (SCF) influence follicle formation beyond the primary stage; however, factors influencing the formation of primordial follicles remain elusive. To determine whether GDF-9 and SCF promoted primordial follicle formation during ovarian morphogenesis in the hamster, and whether FSH had any modulatory influence, fetal ovaries were collected on Gestation Day 15 from pregnant hamsters treated with or without an FSH antiserum on Gestation Day 12 and cultured in vitro up to Day 9 with SCF, GDF-9, or FSH. The percentages and diameters of primordial, primary, and secondary follicles and their oocytes were determined by morphometric evaluation, and the expression of GDF-9 was detected by immunolocalization. SCF, GDF-9, and FSH promoted primordial and primary follicle formation, but GDF-9 was more efficient. The diameters of the follicles developed under GDF-9 or FSH, but not SCF, compared well with those developed in vivo. FSH- and GDF-9-induced folliculogenesis was attenuated by the SCF antibody. Similarly, in vitro formation of primordial follicles decreased markedly in ovaries exposed to the FSH antiserum in utero, which was reversed by SCF, GDF-9, or FSH; however, GDF-9 had a profound effect on follicular development. GDF-9 protein appeared exclusively in the oocytes on Postnatal Day 4; however, it appeared in vitro by 48 h, and the expression was upregulated by FSH. These results suggest that although SCF-induced primordial follicle formation constitutes primarily somatic cell development, GDF-9 influences both the oocyte and its companion somatic cells. FSH plays an important role in primordial folliculogenesis in the hamster via GDF-9 and SCF.
Collapse
Affiliation(s)
- Jinrong Wang
- Departments of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, 68198-4515, USA
| | | |
Collapse
|
46
|
Jin X, Han CS, Yu FQ, Wei P, Hu ZY, Liu YX. Anti-apoptotic action of stem cell factor on oocytes in primordial follicles and its signal transduction. Mol Reprod Dev 2004; 70:82-90. [PMID: 15515061 DOI: 10.1002/mrd.20142] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
Stem cell factor (SCF) is essential for the development of primordial follicles. One of its functions is to prevent oocytes from apoptosis. However, the underlying mechanism remains largely unknown. By using cultured ovaries that are rich in primordial follicles, the anti-apoptotic action of SCF and the potential signal transduction pathways were investigated. The apoptosis was evaluated by means of in situ 3'-end labeling. The expressions of proteins were analyzed with immunohistochemistry and Western blot. The data showed that SCF significantly prevented oocytes from apoptosis in the cultured organs. Addition of a specific pharmacological inhibitor of PI3K abolished the anti-apoptotic action of SCF while that of a MEK inhibitor did not. The phosphorylation of two mitogen activated protein kinases (MAPKs) (p42 and p44) and AKT, the respective substrates of MEK and PI3K, were enhanced by SCF treatment. Not surprisingly, the MAPK activation occurred only in theca cells. The expressions of apoptosis-related gene products, the Bcl-2 family proteins, in response to SCF treatment were also investigated. While SCF up-regulated the expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL, it did the opposite to the pro-apoptotic factor Bax. The PI3K inhibitor reversed the regulation of SCF on Bcl-xL and Bax but not on Bcl-2. Therefore, it seemed that SCF initiated an anti-apoptotic signal starting from its membrane receptor c-kit to Bcl-2 family members through PI3K/AKT and other signaling cascades in the oocytes of primordial follicles.
Collapse
Affiliation(s)
- Xuan Jin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
47
|
Kang JS, Lee CJ, Lee JM, Rha JY, Song KW, Park MH. Follicular expression of c-Kit/SCF and inhibin-alpha in mouse ovary during development. J Histochem Cytochem 2003; 51:1447-58. [PMID: 14566017 PMCID: PMC3957554 DOI: 10.1177/002215540305101105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
The mechanism of development of the ovarian follicles has been largely unknown. We performed an immunohistochemical (IHC) study to determine the follicular expressions of c-kit, SCF, and inhibin-alpha at different developmental stages in mouse ovary. Ovaries were obtained from 14 and 16 days post coitum and 2, 7, and 21 days post partum (dpp) mice. IHC for c-kit, SCF, and inhibin-alpha was carried out. c-Kit and SCF were expressed on oogonia regardless of the developmental stage. Immunoreactive c-kit and SCF antigens were expressed on oocytes of primordial and primary follicles of neonate mouse ovaries. In 21 dpp mouse ovary, the expression of c-kit/SCF in oocytes gradually decreased as the follicles developed. c-Kit/SCF was expressed strongly in oocytes of preantral follicles and weakly in granulosa and thecal cells. Inhibin-alpha was mainly expressed on granulosa cells of preantral and early antral follicles of the 21 dpp mouse ovaries. These findings suggest that the IHC expression of c-kit/SCF proteins is specific in all developmental stages of ovarian follicles and is decreased after the follicle starts to grow. The expression of inhibin-alpha is negatively correlated with the expression of c-kit/SCF in the ovarian follicles in mice.
Collapse
Affiliation(s)
- Jae Seong Kang
- Department of Obstetrics and Gynecology, Korea University Hospital (JSK,CJL,JYR), Seoul, Korea
| | - Chang Joo Lee
- Department of Obstetrics and Gynecology, Korea University Hospital (JSK,CJL,JYR), Seoul, Korea
| | - Jong Min Lee
- Department of Obstetrics and Gynecology, Gachon Medical School (JML), Seoul, Korea
| | - Joong Yeol Rha
- Department of Obstetrics and Gynecology, Korea University Hospital (JSK,CJL,JYR), Seoul, Korea
| | - Kang Won Song
- Department of Pathology, College of Medicine, Hanyang University, (KWS,MHP), Seoul, Korea
| | - Moon Hyang Park
- Department of Pathology, College of Medicine, Hanyang University, (KWS,MHP), Seoul, Korea
- Correspondence to: Moon Hyang Park, Dept. of Pathology, College of Medicine, Hanyang University, 17, Haengdang-dong, Seongdong-gu, Seoul, Republic of Korea. E-mail:
| |
Collapse
|
48
|
Nilsson EE, Skinner MK. Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod 2003; 69:1265-72. [PMID: 12801979 DOI: 10.1095/biolreprod.103.018671] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/01/2022] Open
Abstract
The growth and development of follicles within the ovary are highly dependent on autocrine and paracrine signaling involving growth factors from granulosa cells, theca cells, stromal interstitial cells, and the oocytes. The growth factor bone morphogenetic protein-4 (BMP-4) and its receptor (BMPR-IB) have been detected in ovaries, and a mutation in BMPR-IB has been associated with abnormal ovulation rate. The objective of the current study was to examine the role that BMP-4 plays in the early stages of primordial follicle development. Ovaries from 4-day-old rats were placed into a whole-ovary organ culture system for 2 wk to investigate the effect that treatment with exogenous BMP-4 has on early follicle development. BMP-4-treated ovaries had a significantly higher proportion of developing primary follicles and fewer arrested primordial follicles than did untreated controls. This indicates that BMP-4 promotes primordial follicle development and the primordial-to-primary follicle transition. Ovaries were also treated with neutralizing antibody against BMP-4 to determine effects of removing endogenously produced BMP-4. Interestingly, ovaries treated with BMP-4 antibody were markedly smaller than controls. This was associated with a progressive loss of oocytes and primordial follicles, a progressive increase in cellular apoptosis, and an accompanying loss of normal ovarian tissue morphology over time. Immunocytochemistry localized BMP-4 protein to isolated stromal cell populations, selected stromal cells (i.e., pretheca cells) associated with developing primordial follicles, and the basement membrane of follicles. Ovaries were treated with BMP-4 and RNA collected after organ culture to determine whether BMP-4 signaling affects expression of other growth factors. Kit ligand and basic fibroblast growth factor expression was unchanged, but TGFalpha expression was decreased in whole ovaries. Taken together, these data suggest that BMP-4 plays an important role in promoting the survival and development of primordial follicles in the neonatal ovary.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4231, USA
| | | |
Collapse
|
49
|
Brankin V, Mitchell MRP, Webb B, Hunter MG. Paracrine effects of oocyte secreted factors and stem cell factor on porcine granulosa and theca cells in vitro. Reprod Biol Endocrinol 2003; 1:55. [PMID: 12941156 PMCID: PMC184512 DOI: 10.1186/1477-7827-1-55] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/28/2003] [Accepted: 08/12/2003] [Indexed: 11/10/2022] Open
Abstract
Oocyte control of granulosa and theca cell function may be mediated by several growth factors via a local feedback loop(s) between these cell types. This study examined both the role of oocyte-secreted factors on granulosa and thecal cells, cultured independently and in co-culture, and the effect of stem cell factor (SCF); a granulosa cell derived peptide that appears to have multiple roles in follicle development. Granulosa and theca cells were isolated from 2-6 mm healthy follicles of mature porcine ovaries and cultured under serum-free conditions, supplemented with: 100 ng/ml LR3 IGF-1, 10 ng/ml insulin, 100 ng/ml testosterone, 0-10 ng/ml SCF, 1 ng/ml FSH (granulosa), 0.01 ng/ml LH (theca) or 1 ng/ml FSH and 0.01 ng/ml LH (co-culture) and with/without oocyte conditioned medium (OCM) or 5 oocytes. Cells were cultured in 96 well plates for 144 h, after which viable cell numbers were determined. Medium was replaced every 48 h and spent medium analysed for steroids. Oocyte secreted factors were shown to stimulate both granulosa cell proliferation (P < 0.001) and oestradiol production (P < 0.001) by granulosa cells throughout culture. In contrast, oocyte secreted factors suppressed granulosa cell progesterone production after both 48 and 144 hours (P < 0.001). Thecal cell numbers were increased by oocyte secreted factors (P = 0.02), together with a suppression in progesterone and androstenedione synthesis after 48 hours (P < 0.001) and after 144 hours (P = 0.02), respectively. Oocyte secreted factors also increased viable cell numbers (P < 0.001) in co-cultures together with suppression of progesterone (P < 0.001) and oestradiol (P < 0.001). In granulosa cell only cultures, SCF increased progesterone production in a dose dependent manner (P < 0.001), whereas progesterone synthesis by theca cells was reduced in a dose dependent manner (P = 0.002). Co-cultured cells demonstrated an increase in progesterone production with increasing SCF dose (P < 0.001) and an increase in oestradiol synthesis at the highest dose of SCF (100 ng/ml). In summary, these findings demonstrate the presence of a co-ordinated paracrine interaction between somatic cells and germ cells, whereby oocyte derived signals interact locally to mediate granulosa and theca cell function. SCF has a role in modulating this local interaction. In conclusion, the oocyte is an effective modulator of granulosa-theca interactions, one role being the inhibition of luteinization.
Collapse
Affiliation(s)
- Victoria Brankin
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire. LE12 5RD. UK
| | - Marcus RP Mitchell
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire. LE12 5RD. UK
| | - Bob Webb
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire. LE12 5RD. UK
| | - Morag G Hunter
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire. LE12 5RD. UK
| |
Collapse
|
50
|
Yoshimura Y. Insulin-like growth factors and their binding proteins: Potential relevance to reproductive physiology. Reprod Med Biol 2003; 2:1-24. [PMID: 29699162 DOI: 10.1046/j.1445-5781.2003.00016.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic ovarian follicular development is a complex process that involves proliferation, differentiation, and death of follicle cells. Gonadotropins produced by the pituitary gland have a central role in the regulation of these processes. In addition, a wide range of paracrine and autocrine factors produced in the reproductive organs have been proposed as regulators of reproductive functions. Components of the insulin-like growth factors (IGF) system are widely expressed in the female reproductive tract. The IGFs and their binding proteins play a significant role in several processes of reproductive physiology, including ovarian follicular development, oogenesis and oocyte maturation, ovulation, luteal function, follicular atresia, and testicular function. The majority of these physiological actions of the IGFs are believed to occur via activation of the IGF-I receptor, although the IGF-I effects are modulated by IGF binding proteins (IGFBPs). As much of the data obtained to date have been in the rodent reproductive organs, it may not be possible to directly extrapolate the results to the primate organs. There is a distinct species-difference in the gene expression and functional roles of the IGF-IGFBP system in reproductive organs. However, the disturbance of the IGF-IGFBP system in human reproductive physiology may lead to anovulation, disorders of androgen excess, infertility associated with implantation failure, and male infertility. Further research is needed in domestic animals to determine if manipulation of the IGF-IGFBP system may result in improved reproductive efficiency. As our understanding of the IGF-IGFBP system increases, the uses of human recombinant IGF peptides and IGFBPs as clinical therapy for disease states is becoming a reality. (Reprod Med Biol 2003; 2: 1-24).
Collapse
Affiliation(s)
- Yasunori Yoshimura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|