1
|
McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantú syndrome. Am J Physiol Cell Physiol 2022; 323:C920-C935. [PMID: 35876283 PMCID: PMC9467476 DOI: 10.1152/ajpcell.00154.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
Kir6.1 and SUR2 are subunits of ATP-sensitive potassium (KATP) channels expressed in a wide range of tissues. Extensive study has implicated roles of these channel subunits in diverse physiological functions. Together they generate the predominant KATP conductance in vascular smooth muscle and are the target of vasodilatory drugs. Roles for Kir6.1/SUR2 dysfunction in disease have been suggested based on studies of animal models and human genetic discoveries. In recent years, it has become clear that gain-of-function (GoF) mutations in both genes result in Cantú syndrome (CS)-a complex, multisystem disorder. There is currently no targeted therapy for CS, but studies of mouse models of the disease reveal that pharmacological reversibility of cardiovascular and gastrointestinal pathologies can be achieved by administration of the KATP channel inhibitor, glibenclamide. Here we review the function, structure, and physiological and pathological roles of Kir6.1/SUR2B channels, with a focus on CS. Recent studies have led to much improved understanding of the underlying pathologies and the potential for treatment, but important questions remain: Can the study of genetically defined CS reveal new insights into Kir6.1/SUR2 function? Do these reveal new pathophysiological mechanisms that may be important in more common diseases? And is our pharmacological armory adequately stocked?
Collapse
Affiliation(s)
- Conor McClenaghan
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| |
Collapse
|
2
|
Abstract
Bone metabolism is regulated by the action of two skeletal cells: osteoblasts and osteoclasts. This process is controlled by many genetic, hormonal and lifestyle factors, but today more and more studies have allowed us to identify a neuronal regulation system termed 'bone-brain crosstalk', which highlights a direct relationship between bone tissue and the nervous system. The first documentation of an anatomic relationship between nerves and bone was made via a wood cut by Charles Estienne in Paris in 1545. His diagram demonstrated nerves entering and leaving the bones of a skeleton. Later, several studies were conducted on bone innervation and, as of today, many observations on the regulation of bone remodeling by neurons and neuropeptides that reside in the CNS have created a new research field, that is, neuroskeletal research.
Collapse
Affiliation(s)
- Alessia Metozzi
- a 1 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| | - Lorenzo Bonamassa
- a 1 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| | - Gemma Brandi
- b 2 Public Mental Health system 1-4 of Florence, Florence, Italy
| | - Maria Luisa Brandi
- c 3 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, AOUC Careggi, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| |
Collapse
|
3
|
Liu L, Wang H, Liu N, Yang Q, Luo E. Osteoporosis in the jawbones: a correlative factor of primary trigeminal neuralgia? Med Sci Monit 2014; 20:1481-5. [PMID: 25141822 PMCID: PMC4148358 DOI: 10.12659/msm.890935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Trigeminal neuralgia (TN), a neuropathic disorder of one or both of the trigeminal nerves, occurs most often in people over age 50. Extreme, sporadic, sudden burning or shock-like face pain in common activities greatly lowers quality of life. The precise cause of primary TN remains unknown, but it may be caused by vascular pressing on the trigeminal nerve in its root entry zone (REZ), demyelinization of trigeminal sensory fibers, or jawbone cavity. Accordingly, many treatments carry risks of adverse effects, recurrence, and complications. TN and osteoporosis have similar high-risk populations and a common influential factor – emotional stress – is also closed related to primary TN for calcitonin gene-related peptide and calcitonin. Jawbone cavity, which is a possible pathogenesis of TN, may be another form of jawbone osteoporosis. Therefore, we hypothesized that osteoporosis in jaws could be a correlative factor of primary TN. If this hypothesis is verified, it may suggest specific new ideas for the early preventive treatment of primary TN.
Collapse
Affiliation(s)
- Li Liu
- Department of Oral Radiology, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China (mainland)
| | - Hu Wang
- Department of Oral Radiology, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China (mainland)
| | - Na Liu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China (mainland)
| | - Qianmei Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China (mainland)
| | - En Luo
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China (mainland)
| |
Collapse
|
4
|
Elefteriou F. Regulation of bone remodeling by the central and peripheral nervous system. Arch Biochem Biophys 2008; 473:231-6. [PMID: 18410742 DOI: 10.1016/j.abb.2008.03.016] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/11/2008] [Accepted: 03/14/2008] [Indexed: 12/26/2022]
Abstract
The homeostatic nature of bone remodeling has become a notion further supported lately by the demonstration that neuropeptides and their receptors regulate osteoblast and osteoclast function in vivo. Following initial studies reporting the presence of nerves and nerve-derived products within the bone microenvironment and the expression of receptors for these neuropeptides in bone cells, new experimental and mechanistic evidence based on in vivo murine genetic and pharmacologic models recently demonstrated that inputs from the central and peripheral nervous system feed into the already complex regulatory machinery controlling bone remodeling. The function of a number of "osteo-neuromediators" has been characterized, including norepinephrine and the beta2-adrenergic receptor, Neuropeptide Y and the Y1 and Y2 receptors, endocannabinoids and the CB1 and CB2 receptors, as well as dopamine, serotonin and their receptors and transporters, Calcitonin gene-related peptide, and neuronal NOS. This new body of evidence suggests that neurons in the central nervous system integrate clues from the internal and external milieux, such as energy homeostasis, glycemia or reproductive signals, with the regulation of bone remodeling. The next major tasks in this new area of bone biology will be to understand, at the molecular level, the mechanisms by which common central neural systems regulate and integrate these major physiological functions, the relative importance of the central and peripheral actions of neuropeptides present in both compartments and their relationship, and how bone cells signal back to central centers, because the definition of a homeostatic function implies the existence of feedback signals. Together, these findings shed a new light on the complexity of the mechanisms regulating bone remodeling and uncovered new potential therapeutic strategies for the design of bone anabolic treatments. This review summarizes the latest advances in this area, focusing on investigations based on in vivo animal studies.
Collapse
Affiliation(s)
- Florent Elefteriou
- Vanderbilt University, Medicine, 2215 Garland Avenue, Medical Research Building IV Room, Nashville, TN 37232-0575, USA.
| |
Collapse
|
5
|
Villa I, Mrak E, Rubinacci A, Ravasi F, Guidobono F. CGRP inhibits osteoprotegerin production in human osteoblast-like cells via cAMP/PKA-dependent pathway. Am J Physiol Cell Physiol 2006; 291:C529-37. [PMID: 16611736 DOI: 10.1152/ajpcell.00354.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL)/receptor activator of nuclear factor-kappaB (RANK) system was evaluated as a potential target of CGRP anabolic activity on bone. Primary cultures of human osteoblast-like cells (hOB) express calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1, and, because CGRP stimulates cAMP (one of the modulators of OPG production in osteoblasts), it was investigated whether it affects OPG secretion and expression in hOB. CGRP treatment of hOB (10(-11) M-10(-7) M) dose-dependently inhibited OPG secretion with an EC(50) of 1.08 x 10(-10) M, and also decreased its expression. This action was blocked by the antagonist CGRP(8-37). Forskolin, a stimulator of cAMP production, and dibutyryl cAMP also reduced the production of OPG. CGRP (10(-8) M) enhanced protein kinase A (PKA) activity in hOB, and hOB exposure to the PKA inhibitor, H89 (2 x 10(-6) M), abolished the inhibitory effect of CGRP on OPG secretion. Conditioned media from CGRP-treated hOB increased the number of multinucleated tartrate-resistant acid phosphatase-positive cells and the secretion of cathepsin K in human peripheral blood mononuclear cells compared with the conditioned media of untreated hOB. These results show that the cAMP/PKA pathway is involved in the CGRP inhibition of OPG mRNA and protein secretion in hOB and that this effect favors osteoclastogenesis. CGRP could thus modulate the balance between osteoblast and osteoclast activity, participating in the fine tuning of all of the bone remodeling phases necessary for the subsequent anabolic effect.
Collapse
Affiliation(s)
- I Villa
- Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | | | | | | | |
Collapse
|
6
|
Burns DM, Stehno-Bittel L, Kawase T. Calcitonin gene-related peptide elevates calcium and polarizes membrane potential in MG-63 cells by both cAMP-independent and -dependent mechanisms. Am J Physiol Cell Physiol 2004; 287:C457-67. [PMID: 15238361 DOI: 10.1152/ajpcell.00274.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Published data suggest that the neuropeptide calcitonin gene-related peptide (CGRP) can stimulate osteoblastic bone formation; however, interest has focused on activation of cAMP-dependent signaling pathways in osteogenic cells without full consideration of the importance of cAMP-independent signaling. We have now examined the effects of CGRP on intracellular Ca(2+) concentration ([Ca(2+)](int)) and membrane potential (E(m)) in preosteoblastic human MG-63 cells by single-cell fluorescent confocal analysis using fluo 4-AM-fura red-AM and bis(1,3-dibarbituric acid)-trimethine oxanol [DiBAC(4)(3)] bis-oxonol assays. CGRP produced a two-stage change in [Ca(2+)](int): a rapid transient peak and a secondary sustained increase. Both responses were dose dependent with an EC(50) of approximately 0.30 nM, and the maximal effect (initially approximately 3-fold over basal levels) was observed at 20 nM. The initial phase was sensitive to inhibition of Ca(2+) mobilization with thapsigargin, whereas the secondary phase was eliminated only by blocking transmembrane Ca(2+) influx with verapamil or inhibiting cAMP-dependent signaling with the Rp isomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS). These data suggest that CGRP initially stimulates Ca(2+) discharge from intracellular stores by a cAMP-independent mechanism and subsequently stimulates Ca(2+) influx through L-type voltage-dependent Ca(2+) channels by a cAMP-dependent mechanism. In addition, CGRP dose-dependently polarized cellular E(m), with maximal effect at 20 nM and an EC(50) of 0.30 nM. This effect was attenuated with charybdotoxin (-20%) or glyburide (glibenclamide; -80%), suggesting that E(m) hyperpolarization is induced by both Ca(2+)-activated and ATP-sensitive K(+) channels. Thus CGRP signals strongly by both cAMP-dependent and cAMP-independent signaling pathways in preosteoblastic human MG-63 cells.
Collapse
Affiliation(s)
- Douglas M Burns
- Medical Research Service (151), Kansas City Dept. of Veterans Affairs Medical Center, 4801 E. Linwood Blvd., Kansas City, MO 64128, USA.
| | | | | |
Collapse
|
7
|
Dong YL, Vegiraju S, Chauhan M, Gangula PRR, Hankins GDV, Goodrum L, Yallampalli C. Involvement of calcitonin gene-related peptide in control of human fetoplacental vascular tone. Am J Physiol Heart Circ Physiol 2004; 286:H230-9. [PMID: 14684361 DOI: 10.1152/ajpheart.00140.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcitonin gene-related peptide (CGRP), one of the most potent endogenous vasodilators known, has been implicated in vascular adaptations and placental functions during pregnancy. The present study was designed to examine the existence of CGRP-A receptor components, the calcitonin receptor-like receptor (CRLR) and receptor activity-modifying protein 1 (RAMP1), in the human placenta and the vasoactivity of CGRP in the fetoplacental circulation. Immunofluorescent staining of the human placenta in term labor using polyclonal anti-CRLR and RAMP1 antibodies revealed that labeling specifically concentrated in the vascular endothelium and the underlying smooth muscle cells in the umbilical artery/vein, chorionic artery/vein, and stem villous vessels as well as in the trophoblast layer of the placental villi. In vitro isometric force measurement showed that CGRP dose dependently relaxes the umbilical artery/vein, chorionic artery/vein, and stem villous vessels. Furthermore, CGRP-induced relaxation of placental vessels are inhibited by a CGRP receptor antagonist (CGRP8–37), ATP-sensitive potassium (KATP) channel blocker (glybenclamide), and cAMP-dependent protein kinase A inhibitor (Rp-cAMPS) and partially inhibited by a nitric oxide inhibitor ( Nω-nitro-l-arginine methyl ester). We propose that CGRP may play a role in the control of human fetoplacental vascular tone, and the vascular dilations in response to CGRP may involve activation of KATP channels, cAMP, and a nitric oxide pathway.
Collapse
Affiliation(s)
- Yuan-Lin Dong
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 Univ. Blvd., Medical Research Bldg., Rm. 11.138, Galveston, TX 77555-1062, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Kawase T, Okuda K, Burns DM. Immature human osteoblastic MG63 cells predominantly express a subtype 1-like CGRP receptor that inactivates extracellular signal response kinase by a cAMP-dependent mechanism. Eur J Pharmacol 2003; 470:125-37. [PMID: 12798950 DOI: 10.1016/s0014-2999(03)01763-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although accumulated data suggest that calcitonin gene-related peptide (CGRP) produces anabolic effects in skeletal tissue by directly acting on osteogenic cells, neither the distribution of CGRP receptor subtypes nor the associated cellular signaling pathways are well understood. In this study, we have pharmacologically and biochemically characterized CGRP-binding sites in immature human osteoblastic MG63 cells. In a [125I]CGRP whole-cell-binding assay, nonlinear regression curve-fitting analysis demonstrated a single binding site (K(D)=405+/-29 pM; 13,100+/-223 sites per cell). Immunocytochemical and Western blot analyses demonstrated that 48-, 52-, and 120-kDa forms of the calcitonin receptor-like receptor (CRLR) and a 15-kDa form of the receptor-activity-modifying protein-1 (RAMP-1) was expressed on the plasma membrane. CGRP strongly stimulated cellular cAMP production and this effect was antagonized not only by an antagonist of the subtype-1 CGRP (CGRP(1)) receptor, CGRP-(8-37), but by an agonist of the putative subtype-2 CGRP (CGRP(2)) receptor, [Cys(Acm)(2,7)]-CGRP, that also itself acted as a weak agonist. In contrast to published data, CGRP dose- and time-dependently dephosphorylated and inactivated extracellular signal response kinase (ERK). This action was blocked by CGRP-(8-37), by an inhibitor of cAMP-dependent protein kinase (H-89), or by an inhibitor of protein phosphatases (vanadate). Prolonged CGRP treatments significantly suppressed DNA synthesis at 27 h, but up-regulated type I collagen. Both these actions were blocked by CGRP-(8-37) and mimicked by a specific inhibitor of ERK (PD98059). In summary, our data suggest that the CGRP receptors in MG63 cells meet many, but not all, of the classical criteria used to define CGRP(1) receptors. These receptors that functioned in a pharmacologically distinct manner could inhibit cell proliferation, and were substantially more sensitive to a CGRP(2) receptor agonist than are typical CGRP(1) receptors. These receptor proteins were not exactly matched with the known components of a CGRP(1) receptor that have been reported. Therefore, it is possible that the CGRP receptors expressed in immature osteoblastic human MG63 cells represent a variation of the known CGRP(1) receptor.
Collapse
Affiliation(s)
- Tomoyuki Kawase
- Department of Signal Transduction Research, Division of Cellular Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, 951-8514, Niigata, Japan.
| | | | | |
Collapse
|
9
|
Irie K, Hara-Irie F, Ozawa H, Yajima T. Calcitonin gene-related peptide (CGRP)-containing nerve fibers in bone tissue and their involvement in bone remodeling. Microsc Res Tech 2002; 58:85-90. [PMID: 12203707 DOI: 10.1002/jemt.10122] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bone remodeling is a process of bone renewal accomplished by osteoclastic bone resorption and osteoblastic bone formation. These two activities are regulated by systemic hormones and by local cytokines and growth factors. Moreover, the nervous system and certain neuropeptides seem to be involved in regulation of bone remodeling. In this paper, we focus on the distribution of CGRP-containing nerve fibers and their dynamics, and discuss the role of these fibers as a possible mechanism for nervous system involvement in regulation of bone remodeling. CGRP-immunoreactive nerve fibers are widely distributed in bone tissue, such as periosteum and bone marrow, and show apparent regional distribution with different densities. They are often associated with blood vessels and show a beaded appearance. The wide distribution of CGRP-immunoreactive nerve fibers in bone tissue and the changes in distribution during bone development and regeneration suggest the involvement of these fibers in bone remodeling. The effect of CGRP on bone remodeling could partly be through its action on blood vessels, thereby regulating local blood flow. Moreover, in vitro biochemical data and the localization of CGRP-immunoreactive nerve fibers in the vicinity of bone cells suggest that they are directly involved in local regulation of bone remodeling by elevating the concentration of CGRP in the microenvironment around bone cells, especially during bone growth or repair.
Collapse
Affiliation(s)
- Kazuharu Irie
- Department of Oral Anatomy, Health Sciences University of Hokkaido School of Dentistry, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| | | | | | | |
Collapse
|