1
|
Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 2008; 29:898-938. [PMID: 18815314 PMCID: PMC2647704 DOI: 10.1210/er.2008-0019] [Citation(s) in RCA: 573] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/15/2008] [Indexed: 02/06/2023]
Abstract
The iodothyronine deiodinases initiate or terminate thyroid hormone action and therefore are critical for the biological effects mediated by thyroid hormone. Over the years, research has focused on their role in preserving serum levels of the biologically active molecule T(3) during iodine deficiency. More recently, a fascinating new role of these enzymes has been unveiled. The activating deiodinase (D2) and the inactivating deiodinase (D3) can locally increase or decrease thyroid hormone signaling in a tissue- and temporal-specific fashion, independent of changes in thyroid hormone serum concentrations. This mechanism is particularly relevant because deiodinase expression can be modulated by a wide variety of endogenous signaling molecules such as sonic hedgehog, nuclear factor-kappaB, growth factors, bile acids, hypoxia-inducible factor-1alpha, as well as a growing number of xenobiotic substances. In light of these findings, it seems clear that deiodinases play a much broader role than once thought, with great ramifications for the control of thyroid hormone signaling during vertebrate development and metamorphosis, as well as injury response, tissue repair, hypothalamic function, and energy homeostasis in adults.
Collapse
Affiliation(s)
- Balázs Gereben
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Simpson GIC, Leonard DM, Leonard JL. Identification of the key residues responsible for the assembly of selenodeiodinases. J Biol Chem 2006; 281:14615-21. [PMID: 16565517 DOI: 10.1074/jbc.m600783200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I deiodinase is the best characterized member of a small family of selenoenzymes catalyzing the bioactivation and disposal of thyroid hormone. This enzyme is an integral membrane protein composed of two 27-kDa subunits that assemble into a functional enzyme after translation using a highly conserved sequence of 16 amino acids in the C-terminal half of the polypeptide, (148)DFLXXYIXEAHXXDGW(163). In this study, we used alanine scanning mutagenesis to identify the key residues in this domain required for holoenzyme assembly. Overexpression of sequential alanine-substituted mutants of a dimerization domain-green fluorescent protein fusion showed that sequence (152)IYI(154) was required for type I enzyme assembly and that a catalytically active monomer was generated by a single I152A substitution. Overexpression of the sequential alanine-substituted dimerization domain mutants in type II selenodeiodinase-expressing cells showed that five residues ((153)FLIVY(157)) at the beginning and three residues ((164)SDG(166)) at the end of this region were required for the assembly of the type II enzyme. In vitro binding analysis revealed a free energy of association of -60 +/- 5 kJ/mol for the noncovalent interaction between dimerization domain monomers. These data identify and characterize the essential residues in the dimerization domain that are responsible for the post-translational assembly of selenodeiodinases.
Collapse
Affiliation(s)
- Gregory I C Simpson
- Department of Cell and Molecular Physiology, University of Massachusetts Medical School, 55 Lake Avenue N., Worcester, MA 01655, USA
| | | | | |
Collapse
|
3
|
Abstract
Recent identification of new selenocysteine-containing proteins has revealed relationships between the two trace elements selenium (Se) and iodine and the hormone network. Several selenoproteins participate in the protection of thyrocytes from damage by H(2)O(2) produced for thyroid hormone biosynthesis. Iodothyronine deiodinases are selenoproteins contributing to systemic or local thyroid hormone homeostasis. The Se content in endocrine tissues (thyroid, adrenals, pituitary, testes, ovary) is higher than in many other organs. Nutritional Se depletion results in retention, whereas Se repletion is followed by a rapid accumulation of Se in endocrine tissues, reproductive organs, and the brain. Selenoproteins such as thioredoxin reductases constitute the link between the Se metabolism and the regulation of transcription by redox sensitive ligand-modulated nuclear hormone receptors. Hormones and growth factors regulate the expression of selenoproteins and, conversely, Se supply modulates hormone actions. Selenoproteins are involved in bone metabolism as well as functions of the endocrine pancreas and adrenal glands. Furthermore, spermatogenesis depends on adequate Se supply, whereas Se excess may impair ovarian function. Comparative analysis of the genomes of several life forms reveals that higher mammals contain a limited number of identical genes encoding newly detected selenocysteine-containing proteins.
Collapse
Affiliation(s)
- J Köhrle
- Institut für Experimentelle Endokrinologie, Charité, Humboldt Universität zu Berlin, Schumannstrasse 20/21, D-10098 Berlin, Germany.
| | | | | | | |
Collapse
|
4
|
Leonard JL, Simpson G, Leonard DM. Characterization of the protein dimerization domain responsible for assembly of functional selenodeiodinases. J Biol Chem 2005; 280:11093-100. [PMID: 15659403 DOI: 10.1074/jbc.m500011200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thyroid hormone metabolism is catalyzed by a small family of selenoenzymes. Type I deiodinase (D1) is the best characterized family member and is an integral membrane protein composed of two 27-kDa subunits that assemble to a functional holoenzyme after translation. To characterize the protein domain(s) responsible for this post-translational assembly event, we used deletion/truncation analysis coupled with immune depletion assays to map the dimerization domain of D1. The results of our studies show that a highly conserved sequence of 16 amino acids in the C-terminal half of the D1 subunit, -D148FL-YI-EAH-DGW163-, serves as the dimerization domain. Based on the high conservation of this domain, we synthesized a novel bait peptide-green fluorescent protein fusion probe (DDD(GFP)) to examine holoenzyme assembly of other family members. Overexpression of either the DDD(GFP) or an inert D1 subunit (M4) into SeD2 (accession number U53505)-expressing C6 cells specifically led to the loss of >90% of the catalytic activity. Catalytically inactive D2 heterodimers composed of SeD2: DDD(GFP) subunits were rescued by specific immune precipitation with anti-SeD2 IgG, suggesting that SeD2 requires two functional subunits to assemble a catalytically active holoenzyme. These findings identify and characterize the essential dimerization domain responsible for post-translational assembly of selenodeiodinases and show that family members can intermingle through this highly conserved protein domain.
Collapse
Affiliation(s)
- Jack L Leonard
- Molecular Endocrinology Laboratory, Department of Cell and Molecular Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
5
|
Diano S, Leonard JL, Meli R, Esposito E, Schiavo L. Hypothalamic type II iodothyronine deiodinase: a light and electron microscopic study. Brain Res 2003; 976:130-4. [PMID: 12763631 DOI: 10.1016/s0006-8993(03)02692-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the central nervous system, the active form of thyroid hormone, T3, derives from the cellular uptake and intracellular 5'-monodeiodination of T4 by type II 5'-monodeiodinase (DII). Here, we report that using an antiserum raised against the C-terminus of the full-length SeDII, immunolabeled cells were found in the rat hypothalamus in agreement with the DII mRNA distribution. Light and electron microscopy shows that DII is localized in astrocytes and tanycytes, supporting the hypothesis that these cells play an important role in the mediation peripheral signals, such as thyroid hormones, on hypothalamic functions.
Collapse
Affiliation(s)
- Sabrina Diano
- Department Obstetrics and Gynecology, Yale University School of Medicine, 333 Cedar St. FMB 338A New Haven, CT 06520, USA.
| | | | | | | | | |
Collapse
|
6
|
Curcio-Morelli C, Gereben B, Zavacki AM, Kim BW, Huang S, Harney JW, Larsen PR, Bianco AC. In vivo dimerization of types 1, 2, and 3 iodothyronine selenodeiodinases. Endocrinology 2003; 144:937-46. [PMID: 12586771 DOI: 10.1210/en.2002-220960] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The goal of the present investigation was to test the hypothesis that types 1, 2, and 3 iodothyronine selenodeiodinases (D1, D2, and D3) can form homodimers. The strategy included transient coexpression of wild-type (wt) deiodinases (target), and FLAG-tagged alanine or cysteine mutants (bait) in human embryonic kidney epithelial cells. SDS-PAGE of the immunoprecipitation pellet of (75)Se-labeled cell lysates using anti-FLAG antibody revealed bands of the correct sizes for the respective wt enzymes, which corresponded to approximately 2-5% of the total deiodinase protein in the cell lysate. Western blot analysis with anti-FLAG antibody of lysates of cells transiently expressing individual FLAG-tagged-cysteine deiodinases revealed specific monomeric bands for each deiodinase and additional minor bands of relative molecular mass (M(r)) of 55,000 for D1, M(r) 62,000 for D2, and M(r) 65,000 for D3, which were eliminated by 100 mM dithiothreitol at 100 C. Anti-FLAG antibody immunodepleted 10% of D1 and 38% of D2 activity from lysates of cells coexpressing inactive FLAG-tagged Ala mutants and the respective wt enzymes (D1 or D2) but failed to immunodeplete wtD3 activity. D1 or D2 activities were present in these respective pellets. We conclude 1) that overexpressed selenodeiodinases can homodimerize probably through disulfide bridges; and 2) at least for D1 and D2, monomeric forms are catalytically active, demonstrating that only one wt monomer partner is required for catalytic activity of these two deiodinases.
Collapse
Affiliation(s)
- Cyntia Curcio-Morelli
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Montero-Pedrazuela A, Bernal J, Guadaño-Ferraz A. Divergent expression of type 2 deiodinase and the putative thyroxine-binding protein p29, in rat brain, suggests that they are functionally unrelated proteins. Endocrinology 2003; 144:1045-52. [PMID: 12586781 DOI: 10.1210/en.2002-220823] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deiodinases (D1, D2, and D3) are selenoproteins involved in thyroid hormone metabolism. Generation of the active hormone T(3), from T(4), is carried out by D1 and D2, whereas D3 degrades both hormones. The identity of the cloned D2 as a selenoprotein is well supported by biochemical and physiological data. However, an alternative view has proposed that type 2 deiodinase is a nonselenoprotein complex containing a putative T(4) binding subunit called p29, with an almost identity in sequence with the Dickkopf protein Dkk3. To explore a possible functional relationship between p29 and D2, we have compared their mRNA expression patterns in the rat brain. In brain, parenchyma p29 was expressed in neurons. High expression levels were found in all the regions of the blood-cerebrospinal fluid (CSF) barrier. p29 was present in different types of cells than D2, with the exception of the tanycytes. Our data do not support that p29 has a functional relationship with D2. On the other hand, expression of p29 in the blood-CSF barrier suggests that it might be involved in T(4) transport to and from the CSF, but further studies are needed to substantiate this hypothesis.
Collapse
Affiliation(s)
- Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | |
Collapse
|
8
|
Abstract
Selenium is an integral component of the enzymes glutathione peroxidase (GPx) and iodothyronine deiodinases. Although selenium nutrition could conceivably affect thyroid function in infants, children and adolescents, available data suggest that the effect of selenium deficiency on thyroid function is relatively modest. In patients with isolated selenium deficiency (such as patients with phenylketonuria receiving a low-protein diet), peripheral thyroid hormone metabolism is impaired but there are no changes in thyrotropin (TSH) or clinical signs of hypothyroidism, suggesting that these patients are euthyroid. Selenium supplementation may be advisable to optimize tissue GPx activity and prevent potential oxidative stress damage. In areas where combined selenium and iodine deficiencies are present (such as endemic goiter areas in Central Africa), selenium deficiency may be responsible for the destruction of the thyroid gland in myxoedematous cretins but may also play a protective role by mitigating fetal hypothyroidism. In these areas, selenium supplementation should only be advocated at the same time or after iodine supplementation. In patients with absent or decreased production of thyroid hormones and who rely solely on deiodination of exogenous L-thyroxine for generation of the active triiodothyronine (such as patients with congenital hypothyroidism), selenium supplementation may optimize thyroid hormone feedback at the pituitary level and decrease stimulation of the residual thyroid tissue.
Collapse
Affiliation(s)
- Jean-Pierre Chanoine
- Department of Pediatrics, Endocrinology and Diabetes Unit, University of British Columbia, Vancouver V6H 3V4, BC, Canada.
| |
Collapse
|
9
|
Abstract
The biochemistry of selenium-containing natural products, including selenoproteins, is reviewed up to May 2002. Particular emphasis is placed on the assimilation of selenium from inorganic and organic selenium sources for selenoprotein synthesis, the catalytic role of selenium in enzymes, and medical implications of an unbalanced selenium supply. The review contains 393 references on key discoveries and recent progress.
Collapse
Affiliation(s)
- Marc Birringer
- Dept. of Vitamins and Atherosclerosis, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, D-14558 Bergholz-Rehbrücke, Germany
| | | | | |
Collapse
|
10
|
Kuiper GGJM, Klootwijk W, Visser TJ. Substitution of cysteine for a conserved alanine residue in the catalytic center of type II iodothyronine deiodinase alters interaction with reducing cofactor. Endocrinology 2002; 143:1190-8. [PMID: 11897672 DOI: 10.1210/endo.143.4.8738] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
UNLABELLED Human type II iodothyronine deiodinase (D2) catalyzes the activation of T(4) to T(3). The D2 enzyme, like the type I (D1) and type III (D3) deiodinases, contains a selenocysteine (SeC) residue (residue 133 in D2) in the highly conserved catalytic center. Remarkably, all of the D2 proteins cloned so far have an alanine two residue-amino terminal to the SeC, whereas all D1 and D3 proteins contain a cysteine at this position. A cysteine residue in the catalytic center could assist in enzymatic action by providing a nucleophilic sulfide or by participating in redox reactions with a cofactor or enzyme residues. We have investigated whether D2 mutants with a cysteine (A131C) or serine (A131S) two-residue amino terminal to the SeC are enzymatically active and have characterized these mutants with regard to substrate affinity, reducing cofactor interaction and inhibitor profile. COS cells were transfected with expression vectors encoding wild-type (wt) D2, D2 A131C, or D2 A131S proteins. Kinetic analysis was performed on homogenates with dithiothreitol (DTT) as reducing cofactor. The D2 A131C and A131S mutants displayed similar Michaelis-Menten constant values for T(4) (5 nM) and reverse T(3) (9 nM) as the wt D2 enzyme. The limiting Michaelis-Menten constant for DTT of the D2 A131C enzyme was 3-fold lower than that of the wt D2 enzyme. The wt and mutant D2 enzymes are essentially insensitive to propylthiouracil [concentration inhibiting 50% of activity (IC(50)) > 2 mM] in the presence of 20 mM DTT, but when tested in the presence of 0.2 mM DTT the IC(50) value for propylthiouracil is reduced to about 0.1 mM. During incubations of intact COS cells expressing wt D2, D2 A131C, or D2 A131S, addition of increasing amounts of unlabeled T(4) resulted in the saturation of [(125)I]T(4) deiodination, as reflected in a decrease of [(125)I]T(3) release into the medium. Saturation first appeared at medium T(4) concentrations between 1 and 10 nM. IN CONCLUSION substitution of cysteine for a conserved alanine residue in the catalytic center of the D2 protein does not inactivate the enzyme in vitro and in situ, but rather improves the interaction with the reducing cofactor DTT in vitro.
Collapse
Affiliation(s)
- George G J M Kuiper
- Department of Internal Medicine, Erasmus University Medical Center, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
11
|
Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 2002; 23:38-89. [PMID: 11844744 DOI: 10.1210/edrv.23.1.0455] [Citation(s) in RCA: 1015] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The goal of this review is to place the exciting advances that have occurred in our understanding of the molecular biology of the types 1, 2, and 3 (D1, D2, and D3, respectively) iodothyronine deiodinases into a biochemical and physiological context. We review new data regarding the mechanism of selenoprotein synthesis, the molecular and cellular biological properties of the individual deiodinases, including gene structure, mRNA and protein characteristics, tissue distribution, subcellular localization and topology, enzymatic properties, structure-activity relationships, and regulation of synthesis, inactivation, and degradation. These provide the background for a discussion of their role in thyroid physiology in humans and other vertebrates, including evidence that D2 plays a significant role in human plasma T(3) production. We discuss the pathological role of D3 overexpression causing "consumptive hypothyroidism" as well as our current understanding of the pathophysiology of iodothyronine deiodination during illness and amiodarone therapy. Finally, we review the new insights from analysis of mice with targeted disruption of the Dio2 gene and overexpression of D2 in the myocardium.
Collapse
Affiliation(s)
- Antonio C Bianco
- Thyroid Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Josef Köhrle
- Division of Molecular Internal Medicine, Medizinische Poliklinik, University of Wuerzburg, D-97070 Wuerzburg, Germany
| |
Collapse
|
13
|
Curcio C, Baqui MM, Salvatore D, Rihn BH, Mohr S, Harney JW, Larsen PR, Bianco AC. The human type 2 iodothyronine deiodinase is a selenoprotein highly expressed in a mesothelioma cell line. J Biol Chem 2001; 276:30183-7. [PMID: 11425850 DOI: 10.1074/jbc.c100325200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Types 1 and 3 iodothyronine deiodinases are known to be selenocysteine-containing enzymes. Although a putative human type 2 iodothyronine deiodinase (D2) gene (hDio2) encoding a similar selenoprotein has been identified, basal D2 activity is not selenium (Se)-dependent nor has D2 been labeled with (75)Se. A human mesothelioma cell line (MSTO-211H) has recently been shown to have approximately 40-fold higher levels of hDio2 mRNA than mesothelial cells. Mesothelioma cell lysates activate thyroxine (T(4)) to 3,5,3'-triiodothyronine with typical characteristics of D2 such as low K(m) (T(4)), 1.3 nm, resistance to propylthiouracil, and a short half-life ( approximately 30 min). D2 activity is approximately 30-fold higher in Se-supplemented than in Se-depleted medium. An antiserum prepared against a peptide deduced from the Dio2 mRNA sequence precipitates a (75)Se protein of the predicted 31-kDa size from (75)Se-labeled mesothelioma cells. Bromoadenosine 3'5' cyclic monophosphate increases D2 activity and (75)Se-p31 approximately 2.5-fold whereas substrate (T(4)) reduces both D2 activity and (75)Se-p31 approximately 2-3-fold. MG132 or lactacystin (10 microm), inhibitors of the proteasome pathway by which D2 is degraded, increase both D2 activity and (75)Se-p31 3-4-fold and prevent the loss of D2 activity during cycloheximide or substrate (T(4)) exposure. Immunocytochemical studies with affinity-purified anti-hD2 antibody show a Se-dependent increase in immunofluorescence. Thus, human D2 is encoded by hDio2 and is a member of the selenodeiodinase family accounting for its highly catalytic efficiency in T(4) activation.
Collapse
Affiliation(s)
- C Curcio
- Department of Medicine, Thyroid Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Vacanti MP, Leonard JL, Dore B, Bonassar LJ, Cao Y, Stachelek SJ, Vacanti JP, O'Connell F, Yu CS, Farwell AP, Vacanti CA. Tissue-engineered spinal cord. Transplant Proc 2001; 33:592-8. [PMID: 11266974 DOI: 10.1016/s0041-1345(00)02158-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M P Vacanti
- Center for Tissue Engineering, Department of Anesthesiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Leonard DM, Stachelek SJ, Safran M, Farwell AP, Kowalik TF, Leonard JL. Cloning, expression, and functional characterization of the substrate binding subunit of rat type II iodothyronine 5'-deiodinase. J Biol Chem 2000; 275:25194-201. [PMID: 10829019 DOI: 10.1074/jbc.m002036200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type II iodothyronine 5'-deiodinase catalyzes the bioactivation of thyroid hormone in the brain. In astrocytes, this approximately 200-kDa, membrane-bound enzyme is composed of at least one p29 subunit, an approximately 60-kDa, cAMP-induced activation protein, and one or more unidentified catalytic subunit(s). Recently, an artificial type II-like selenodeiodinase was engineered by fusing two independent cDNAs together; however, no native type II selenodeiodinase polypeptide is translated in the brain or brown adipose tissue of rats. These data suggest that the native type II 5'-deiodinase in rat brain is unrelated to this artificial selenoprotein. In this report, we describe the cloning of the 29-kDa subunit (p29) of type II 5'-deiodinase from a lambdazapII cDNA library prepared from cAMP-induced astrocytes. The 3.3-kilobase (kb) cDNA encodes an approximately 30-kDa, 277-amino acid long, hydrophobic protein lacking selenocysteine. Northern blot analysis showed that a 3.5-kb p29 mRNA was present in tissues showing type II 5'-deiodinase activity such as brain and cAMP-stimulated astrocytes. Domain-specific, anti-p29 antibodies specifically immunoprecipitated enzyme activity. Overexpression of exogenous p29 or a green fluorescence protein (GFP)-tagged p29 fusion protein led to a >100-fold increase in deiodinating activity in cAMP-stimulated astrocytes, and the increased activity was specifically immunoprecipitated by anti-GFP antibodies. Steady-state reaction kinetics of the enzyme in GFP-tagged p29-expressing astrocytes are identical to those of the native enzyme in brain. Direct injection of replication-deficient Ad5-p29(GFP) virus particles into the cerebral cortex of neonatal rats leads to a approximately 2-fold increase in brain type II 5'-deiodinating activity. These data show 1) that the 3.3-kb p29 cDNA encodes an essential subunit of rat type II iodothyronine 5'-deiodinase and 2) identify the first non-selenocysteine containing subunit of the deiodinase family of enzymes.
Collapse
Affiliation(s)
- D M Leonard
- Molecular Endocrinology Laboratories, Department of Cellular and Molecular Physiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | |
Collapse
|
16
|
Köhrle J. The selenoenzyme family of deiodinase isozymes controls local thyroid hormone availability. Rev Endocr Metab Disord 2000; 1:49-58. [PMID: 11704992 DOI: 10.1023/a:1010012419869] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- J Köhrle
- Abteilung für Molekulare Innere Medizin & Klinische Forschergruppe der Medizinischen Poliklinik, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany.
| |
Collapse
|