1
|
Pouladvand N, Azarnia M, Zeinali H, Fathi R, Tavana S. An overview of different methods to establish a murine premature ovarian failure model. Animal Model Exp Med 2024; 7:835-852. [PMID: 39219374 PMCID: PMC11680483 DOI: 10.1002/ame2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Collapse
Affiliation(s)
- Negar Pouladvand
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Hadis Zeinali
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| |
Collapse
|
2
|
Huo Z, Tu H, Ren J, Zhang X, Qi Y, Situ C, Li Y, Guo Y, Guo X, Zhu H. Lectin-Based SP3 Technology Enables N-Glycoproteomic Analysis of Mouse Oocytes. J Proteome Res 2024; 23:2137-2147. [PMID: 38787631 DOI: 10.1021/acs.jproteome.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
N-glycosylation is one of the most universal and complex protein post-translational modifications (PTMs), and it is involved in many physiological and pathological activities. Owing to the low abundance of N-glycoproteins, enrichment of N-glycopeptides for mass spectrometry analysis usually requires a large amount of peptides. Additionally, oocyte protein N-glycosylation has not been systemically characterized due to the limited sample amount. Here, we developed a glycosylation enrichment method based on lectin and a single-pot, solid-phase-enhanced sample preparation (SP3) technology, termed lectin-based SP3 technology (LectinSP3). LectinSP3 immobilized lectin on the SP3 beads for N-glycopeptide enrichment. It could identify over 1100 N-glycosylation sites and 600 N-glycoproteins from 10 μg of mouse testis peptides. Furthermore, using the LectinSP3 method, we characterized the N-glycoproteome of 1000 mouse oocytes in three replicates and identified a total of 363 N-glycosylation sites from 215 N-glycoproteins. Bioinformatics analysis revealed that these oocyte N-glycoproteins were mainly enriched in cell adhesion, fertilization, and sperm-egg recognition. Overall, the LectinSP3 method has all procedures performed in one tube, using magnetic beads. It is suitable for analysis of a low amount of samples and is expected to be easily adaptable for automation. In addition, our mouse oocyte protein N-glycosylation profiling could help further characterize the regulation of oocyte functions.
Collapse
Affiliation(s)
- Zian Huo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Haixia Tu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Jie Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
3
|
Chi P, Ou G, Qin D, Han Z, Li J, Xiao Q, Gao Z, Xu C, Qi Q, Liu Q, Liu S, Li J, Guo L, Lu Y, Chen J, Wang X, Shi H, Li L, Deng D. Structural basis of the subcortical maternal complex and its implications in reproductive disorders. Nat Struct Mol Biol 2024; 31:115-124. [PMID: 38177687 DOI: 10.1038/s41594-023-01153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/16/2023] [Indexed: 01/06/2024]
Abstract
The subcortical maternal complex (SCMC) plays a crucial role in early embryonic development. Malfunction of SCMC leads to reproductive diseases in women. However, the molecular function and assembly basis for SCMC remain elusive. Here we reconstituted mouse SCMC and solved the structure at atomic resolution using single-particle cryo-electron microscopy. The core complex of SCMC was formed by MATER, TLE6 and FLOPED, and MATER embraced TLE6 and FLOPED via its NACHT and LRR domains. Two core complexes further dimerize through interactions between two LRR domains of MATERs in vitro. FILIA integrates into SCMC by interacting with the carboxyl-terminal region of FLOPED. Zygotes from mice with Floped C-terminus truncation showed delayed development and resembled the phenotype of zygotes from Filia knockout mice. More importantly, the assembly of mouse SCMC was affected by corresponding clinical variants associated with female reproductive diseases and corresponded with a prediction based on the mouse SCMC structure. Our study paves the way for further investigations on SCMC functions during mammalian preimplantation embryonic development and reveals underlying causes of female reproductive diseases related to SCMC mutations, providing a new strategy for the diagnosis of female reproductive disorders.
Collapse
Affiliation(s)
- Pengliang Chi
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Guojin Ou
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- Clinical Laboratory, West China Second Hospital, Sichuan University, Chengdu, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Han
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jialu Li
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Qingjie Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qianqian Qi
- Clinical Laboratory, West China Second Hospital, Sichuan University, Chengdu, China
| | - Qingting Liu
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Sibei Liu
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jinhong Li
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Li Guo
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yuechao Lu
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- Department of Reproductive Medicine, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jing Chen
- Laboratory of Pediatric Surgery, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Hubing Shi
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Dai F, Wang R, Deng Z, Yang D, Wang L, Wu M, Hu W, Cheng Y. Comparison of the different animal modeling and therapy methods of premature ovarian failure in animal model. Stem Cell Res Ther 2023; 14:135. [PMID: 37202808 DOI: 10.1186/s13287-023-03333-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/06/2023] [Indexed: 05/20/2023] Open
Abstract
Incidence of premature ovarian failure (POF) is higher with the increase of the pace of life. The etiology of POF is very complex, which is closely related to genes, immune diseases, drugs, surgery, and psychological factors. Ideal animal models and evaluation indexes are essential for drug development and mechanism research. In our review, we firstly summarize the modeling methods of different POF animal models and compare their advantages and disadvantages. Recently, stem cells are widely studied for tumor treatment and tissue repair with low immunogenicity, high homing ability, high ability to divide and self-renew. Hence, we secondly reviewed recently published data on transplantation of stem cells in the POF animal model and analyzed the possible mechanism of their function. With the further insights of immunological and gene therapy, the combination of stem cells with other therapies should be actively explored to promote the treatment of POF in the future. Our article may provide guidance and insight for POF animal model selection and new drug development.
Collapse
Affiliation(s)
- Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Mali Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Hu
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
5
|
P450 Side-Chain Cleavage Enzyme (P450-SCC) Is an Ovarian Autoantigen in a Mouse Model for Autoimmune Oophoritis. Reprod Sci 2022; 29:2391-2400. [PMID: 35585293 DOI: 10.1007/s43032-022-00970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Steroid-producing cells contain key cytochrome P450 enzymes, such as side-chain cleavage (P450-SCC) and 17α-hydroxylase (17α-OH). They are required for steroid hormone synthesis and considered antigens associated with Addison's disease and autoimmune primary ovarian insufficiency (POI). We studied an animal model for human autoimmune POI in mice with autoimmune oophoritis induced by neonatal thymectomy performed at day 3 (TX3). We previously identified an oocyte-specific protein as a major antigen inciting autoimmune oophoritis in mice. In this study, we characterized ovarian steroid-producing cell antigens. Using indirect immunofluorescence staining, we tested immune reactions in mouse ovarian and adrenal tissue sections with sera from TX3 female mice. More than half of the TX3 mice (8 of 15) produced antibodies reacting with both ovarian and adrenal steroid-producing cells, including some that reacted to oocytes as well. We produced recombinant proteins for the three key steroidogenic enzymes 17α-OH, P450-SSC, and 3β-hydroxysteroid dehydrogenase (3β-HSD) and tested their immune reactions with individual mouse sera. By immunoblotting, all mouse sera that reacted with the steroid-producing cells (n = 8) were shown to react with the P450-SCC, but not with the 17α-OH or 3β-HSD recombinant proteins. The sham-operated mouse sera and TX3 mouse sera negative for steroid-producing cells did not react with the P450-SCC recombinant protein. Our findings indicate that the P450-SCC is a specific and unique major antigen within the ovarian steroid-producing cells. Given their similarity of predicted antigenicity, we assume that P450-SCC acts in human autoimmune POI as it does in mouse autoimmune oophoritis.
Collapse
|
6
|
Perniola R, Fierabracci A, Falorni A. Autoimmune Addison's Disease as Part of the Autoimmune Polyglandular Syndrome Type 1: Historical Overview and Current Evidence. Front Immunol 2021; 12:606860. [PMID: 33717087 PMCID: PMC7953157 DOI: 10.3389/fimmu.2021.606860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
The autoimmune polyglandular syndrome type 1 (APS1) is caused by pathogenic variants of the autoimmune regulator (AIRE) gene, located in the chromosomal region 21q22.3. The related protein, AIRE, enhances thymic self-representation and immune self-tolerance by localization to chromatin and anchorage to multimolecular complexes involved in the initiation and post-initiation events of tissue-specific antigen-encoding gene transcription. Once synthesized, the self-antigens are presented to, and cause deletion of, the self-reactive thymocyte clones. The clinical diagnosis of APS1 is based on the classic triad idiopathic hypoparathyroidism (HPT)—chronic mucocutaneous candidiasis—autoimmune Addison's disease (AAD), though new criteria based on early non-endocrine manifestations have been proposed. HPT is in most cases the first endocrine component of the syndrome; however, APS1-associated AAD has received the most accurate biochemical, clinical, and immunological characterization. Here is a comprehensive review of the studies on APS1-associated AAD from initial case reports to the most recent scientific findings.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics-Neonatal Intensive Care, V. Fazzi Hospital, ASL LE, Lecce, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alberto Falorni
- Section of Internal Medicine and Endocrinological and Metabolic Sciences, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Amoushahi M, Sunde L, Lykke-Hartmann K. The pivotal roles of the NOD-like receptors with a PYD domain, NLRPs, in oocytes and early embryo development†. Biol Reprod 2020; 101:284-296. [PMID: 31201414 DOI: 10.1093/biolre/ioz098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD), NLRPs, are pattern recognition receptors, well recognized for their important roles in innate immunity and apoptosis. However, several NLRPs have received attention for their new, specialized roles as maternally contributed genes important in reproduction and embryo development. Several NLRPs have been shown to be specifically expressed in oocytes and preimplantation embryos. Interestingly, and in line with divergent functions, NLRP genes reveal a complex evolutionary divergence. The most pronounced difference is the human-specific NLRP7 gene, not identified in rodents. However, mouse models have been extensively used to study maternally contributed NLRPs. The NLRP2 and NLRP5 proteins are components of the subcortical maternal complex (SCMC), which was recently identified as essential for mouse preimplantation development. The SCMC integrates multiple proteins, including KHDC3L, NLRP5, TLE6, OOEP, NLRP2, and PADI6. The NLRP5 (also known as MATER) has been extensively studied. In humans, inactivating variants in specific NLRP genes in the mother are associated with distinct phenotypes in the offspring, such as biparental hydatidiform moles (BiHMs) and preterm birth. Maternal-effect recessive mutations in KHDC3L and NLRP5 (and NLRP7) are associated with reduced reproductive outcomes, BiHM, and broad multilocus imprinting perturbations. The precise mechanisms of NLRPs are unknown, but research strongly indicates their pivotal roles in the establishment of genomic imprints and post-zygotic methylation maintenance, among other processes. Challenges for the future include translations of findings from the mouse model into human contexts and implementation in therapies and clinical fertility management.
Collapse
Affiliation(s)
| | - Lone Sunde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Warren BD, Ahn SH, McGinnis LK, Grzesiak G, Su RW, Fazleabas AT, Christenson LK, Petroff BK, Petroff MG. Autoimmune Regulator is required in female mice for optimal embryonic development and implantation†. Biol Reprod 2019; 100:1492-1504. [PMID: 30770532 PMCID: PMC6561863 DOI: 10.1093/biolre/ioz023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/18/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Autoimmune Regulator (AIRE) regulates central immune tolerance by inducing expression of tissue-restricted antigens in thymic medullary epithelial cells, thereby ensuring elimination of autoreactive T cells. Aire mutations in humans and targeted Aire deletion in mice result in multiorgan autoimmune disease, known in humans as autoimmune polyglandular syndrome type 1 (APS-1). APS-1 is characterized by the presence of adrenal insufficiency, chronic mucosal candidiasis, and/or hypoparathyroidism. Additionally, females often present with gonadal insufficiency and infertility. Aire-deficiency (KO) in mice results in oophoritis and age-dependent depletion of follicular reserves. Here, we found that while the majority of young 6-week-old Aire-KO females had normal follicular reserves, mating behavior, and ovulation rates, 50% of females experienced embryonic loss between gestation day (GD) 5.5 and 7.5 that could not be attributed to insufficient progesterone production or decidualization. The quality of GD0.5 embryos recovered from Aire KO mice was reduced, and when cultured in vitro, embryos displayed limited developmental capacity in comparison to those recovered from wild-type (WT) mice. Further, embryos flushed from Aire KO dams at GD3.5 were developmentally delayed in comparison to WT controls and had reduced trophoblastic outgrowth in vitro. We conclude that AIRE does not play a direct role in uterine decidualization. Rather, reduced fertility of Aire-deficient females is likely due to multiple factors, including oophoritis, delayed preimplantation development, and compromised implantation. These effects may be explained by autoimmune targeting of the ovary, embryo, or both. Alternatively, altered embryonic development could be due to a direct role for AIRE in early embryogenesis.
Collapse
Affiliation(s)
- Bryce D Warren
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Soo H Ahn
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Lynda K McGinnis
- Department of Physiology and Integrative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Geoffrey Grzesiak
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Ren-Wei Su
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Lane K Christenson
- Department of Physiology and Integrative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Brian K Petroff
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Margaret G Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
- Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Mohammadi Yeganeh L, Moini A, Hemmat M, Salman Yazdi R, Bagheri Lankarani N, Khodabakhshi S, Behbahanian A. The association of different auto-antibodies against ovarian tissues and gonadotropins and poor ovarian response in intracytoplasmic sperm injection cycles. HUM FERTIL 2017; 20:126-131. [PMID: 28111995 DOI: 10.1080/14647273.2017.1278632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to assess the possible association between ovarian auto-antibodies and poor ovarian response to controlled ovarian hyperstimulation (COH) in patients undergoing intracytoplasmic sperm injection (ICSI) cycles. In total, 42 poor responders and 43 male factor subjects were enrolled in the study and underwent either a standard long gonadotropin-releasing hormone (GnRH) agonist or antagonist protocol. Anti-ovarian, anti-oocyte, anti-zona pellucida (anti-ZP) and anti-gonadotropin antibodies in their sera and follicular fluid (FF) were measured by an enzyme-linked immunosorbent assay technique (ELISA). The mean follicular fluid anti-oocyte antibody [ratio of optical density (OD) sample/OD Control] was significantly higher in poor responders compared to the normal group (2.40 ± 1.55 versus 1.72 ± 0.71, p = 0.012). The linear regression analysis showed an inverse correlation between FF anti-oocyte antibody concentrations and the number of: (i) retrieved oocytes (B = -1.212, r = -0.235, p = 0.030); (ii) mature oocytes (B = -1.042, r = -0.234, p = 0.031); (iii) embryos available (B = -0.713, r = -0.228, p = 0.036); and (iv) good quality embryos (B = -0.369, r = -0.229, p = 0.035). However, there were no significant differences between two groups in terms of FF and serum anti-ovarian, anti-gonadotropins and anti-ZP antibodies. The Pearson correlation analysis on 85 infertile patients showed a positive correlation between age and the levels of FF anti-oocyte antibody (r = 0.276, p = 0.010). This study demonstrated that FF anti-oocyte antibody could be associated with poor response to COH in ICSI cycles.
Collapse
Affiliation(s)
- Ladan Mohammadi Yeganeh
- a Department of Endocrinology and Female Infertility , Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine , Tehran , Iran
| | - Ashraf Moini
- a Department of Endocrinology and Female Infertility , Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine , Tehran , Iran.,b Department of Gynecology and Obstetrics , Roointan Arash Woman's Health Research and Educational Hospital, Tehran University of Medical Sciences , Tehran , Iran.,c Vali-e-Asr Reproductive Health Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Mandana Hemmat
- a Department of Endocrinology and Female Infertility , Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine , Tehran , Iran
| | - Reza Salman Yazdi
- d Department of Andrology , Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine , Tehran , Iran
| | - Narges Bagheri Lankarani
- e Department of Epidemiology and Reproductive Health , Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR , Tehran , Iran
| | - Shabnam Khodabakhshi
- a Department of Endocrinology and Female Infertility , Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine , Tehran , Iran
| | - Arash Behbahanian
- f Department of Embryology , Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine , Tehran , Iran
| |
Collapse
|
10
|
Krishan J, Agarwal S, Pathak J, Kaushik R, Parmar MS, Pandey S, Bharti MK, Chandra V, Jindal S, Kharche S, Rout P, Sharma GT. Influence of follicular fluid and gonadotropin supplementation on the expression of germ cell marker genes during in-vitro maturation of caprine (Capra hircus) oocytes. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Bebbere D, Masala L, Albertini DF, Ledda S. The subcortical maternal complex: multiple functions for one biological structure? J Assist Reprod Genet 2016; 33:1431-1438. [PMID: 27525657 DOI: 10.1007/s10815-016-0788-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The subcortical maternal complex (SCMC) is a multiprotein complex uniquely expressed in mammalian oocytes and early embryos, essential for zygote progression beyond the first embryonic cell divisions. Similiar to other factors encoded by maternal effect genes, the physiological role of SCMC remains unclear, although recent evidence has provided important molecular insights into different possible functions. Its potential involvement in human fertility is attracting increasing attention; however, the complete story is far from being told. The present mini review provides an overview of recent findings related to the SCMC and discusses its potential physiological role/s with the aim of inspiring new directions for future research.
Collapse
Affiliation(s)
- D Bebbere
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - L Masala
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| | - D F Albertini
- The Center for Human Reproduction, New York, NY, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - S Ledda
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
12
|
Yang M, Hall J, Fan Z, Regouski M, Meng Q, Rutigliano HM, Stott R, Rood KA, Panter KE, Polejaeva IA. Oocytes from small and large follicles exhibit similar development competence following goat cloning despite their differences in meiotic and cytoplasmic maturation. Theriogenology 2016; 86:2302-2311. [PMID: 27650944 DOI: 10.1016/j.theriogenology.2016.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 11/26/2022]
Abstract
Reduced developmental competence after IVF has been reported using oocyte derived from small follicles in several species including cattle, sheep, and goats. No information is currently available about the effect of follicle size of the cytoplast donor on in vivo development after somatic cell nuclear transfer (SCNT) in goats. Oocytes collected from large (≥3 mm) and small follicles (<3 mm) were examined for maturation and in vivo developmental competence after SCNT. Significantly greater maturation rate was observed in oocytes derived from large follicles compared with that of small follicles (51.6% and 33.7%, P < 0.05). Greater percent of large follicle oocytes exhibited a low glucose-6-phosphate dehydrogenase activity at germinal vesicle stage compared with small follicle oocytes (54.9% and 38.7%, P < 0.05). Relative mRNA expression analysis of 48 genes associated with embryonic and fetal development revealed that three genes (MATER, IGF2R, and GRB10) had higher level of expression in metaphase II oocytes from large follicles compared with oocytes from small follicles. Nevertheless, no difference was observed in pregnancy rates (33.3% vs. 47.1%) and birth rates (22.2% vs. 16.7%) after SCNT between the large and small follicle groups). These results indicate that metaphase II cytoplasts from small and large follicles have similar developmental competence when used in goat SCNT.
Collapse
Affiliation(s)
- Min Yang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Justin Hall
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Zhiqiang Fan
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Misha Regouski
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Qinggang Meng
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA; School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Rusty Stott
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA; School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Kerry A Rood
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA; School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Kip E Panter
- USDA ARS Poisonous Plant Research Laboratory, Logan, Utah, USA
| | - Irina A Polejaeva
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA.
| |
Collapse
|
13
|
Abstract
As age at pubertal onset declines and age at first pregnancy increases, the mechanisms that regulate female reproductive lifespan become increasingly relevant to population health. The timing of menarche and menopause can have profound effects not only on fertility but also on the risk of diseases such as type 2 diabetes mellitus, cardiovascular disease and breast cancer. Genetic studies have identified dozens of highly penetrant rare mutations associated with reproductive disorders, and also ∼175 common genetic variants associated with the timing of puberty or menopause. These findings, alongside other functional studies, have highlighted a diverse range of mechanisms involved in reproductive ageing, implicating core biological processes such as cell cycle regulation and energy homeostasis. The aim of this article is to review the contribution of such genetic findings to our understanding of the molecular regulation of reproductive timing, as well as the biological basis of the epidemiological links between reproductive ageing and disease risk.
Collapse
Affiliation(s)
- John R.B. Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, RILD Level 3, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW
| | - Felix R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW We provide an overview of new insights into the genetic causes of primary ovarian insufficiency (POI) and address the challenges faced by clinicians who care for adolescents with this condition. RECENT FINDINGS In most cases, the cause of POI remains a mystery after appropriate clinical testing has been completed. Large-scale genomic sequencing approaches are uncovering new mechanisms underlying the disorder. Gene variants that affect the normal processes of primordial germ-cell proliferation and migration, oocyte meiosis, and ovarian follicle formation/activation are plausible mechanisms. Whole exome sequencing has been used to associate many of these variants with human POI. POI is a serious chronic condition with no cure. It qualifies as a rare disease and as such presents special challenges to patients, parents, and clinicians. Although the diagnosis of POI is often delayed because of the assumption that irregular menses are common among adolescents, early detection is critical for the maintenance of bone and cardiovascular health. Treatment options have focused on hormonal therapy and fertility preservation. However, many studies prove the increasing need to incorporate mental health support and a family systems approach into the management plan. SUMMARY Large-scale genomic sequencing has recently identified new mechanisms of POI. However, at present this testing is not clinically indicated as routine. Practice will change as genomic medicine is integrated into standard care. Adolescents with POI are best served by an integrated personal care approach centered on the patient and provided by a primary care clinician who has support from a multidisciplinary team.
Collapse
|
15
|
Benkhalifa M, Madkour A, Louanjli N, Bouamoud N, Saadani B, Kaarouch I, Chahine H, Sefrioui O, Merviel P, Copin H. From global proteome profiling to single targeted molecules of follicular fluid and oocyte: contribution to embryo development and IVF outcome. Expert Rev Proteomics 2015; 12:407-23. [DOI: 10.1586/14789450.2015.1056782] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Brozzetti A, Alimohammadi M, Morelli S, Minarelli V, Hallgren Å, Giordano R, De Bellis A, Perniola R, Kämpe O, Falorni A. Autoantibody response against NALP5/MATER in primary ovarian insufficiency and in autoimmune Addison's disease. J Clin Endocrinol Metab 2015; 100:1941-8. [PMID: 25734249 DOI: 10.1210/jc.2014-3571] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CONTEXT NACHT leucine-rich-repeat protein 5 (NALP5)/maternal antigen that embryo requires (MATER) is an autoantigen in hypoparathyroidism associated with autoimmune polyendocrine syndrome type 1 (APS1) but is also expressed in the ovary. Mater is an autoantigen in experimental autoimmune oophoritis. OBJECTIVES The objectives of the study were to determine the frequency of NALP5/MATER autoantibodies (NALP5/MATER-Ab) in women with premature ovarian insufficiency (POI) and in patients with autoimmune Addison's disease (AAD) and to evaluate whether inhibin chains are a target for autoantibodies in POI. METHODS Autoantibodies against NALP5/MATER and inhibin chains-α and -βA were determined by radiobinding assays in 172 patients with AAD without clinical signs of gonadal insufficiency, 41 women with both AAD and autoimmune POI [steroidogenic cell autoimmune POI (SCA-POI)], 119 women with idiopathic POI, 19 patients with APS1, and 211 healthy control subjects. RESULTS NALP5/MATER-Ab were detected in 11 of 19 (58%) sera from APS1 patients, 12 of 172 (7%) AAD sera, 5 of 41 (12%) SCA-POI sera, 0 of 119 idiopathic POI sera and 1 of 211 healthy control sera (P < .001). None of 160 POI sera, including 41 sera from women with SCA-POI and 119 women with idiopathic POI, and none of 211 healthy control sera were positive for inhibin chain-α/βA autoantibodies. CONCLUSIONS NALP5/MATER-Ab are associated with hypoparathyroidism in APS1 but are present also in patients with AAD and in women with SCA-POI without hypoparathyroidism. Inhibin chains do not appear to be likely candidate targets of autoantibodies in human POI.
Collapse
Affiliation(s)
- Annalisa Brozzetti
- Department of Internal Medicine (A.B., S.M., V.M., A.F.), University of Perugia, 06126 Perugia, Italy; Department of Medical Sciences (M.A., O.K.), Science for Life Laboratory, Uppsala University, 750 03 Uppsala, Sweden; Centre of Molecular Medicine (M.A., A.H., O.K.), Department of Medicine (Solna), Karolinska Institutet, 171 76 Stockholm, Sweden; Division of Endocrinology, Diabetology, and Metabolism (R.G.), Department of Medical Sciences, University of Turin, 10126 Turin, Italy; Department of Cardio-Thoracic and Respiratory Science (A.D.B.), Endocrinology Unit, Second University of Naples, 80132 Naples, Italy; and Department of Pediatrics-Neonatal Intensive Care (R.P.), V. Fazzi Regional Hospital, 73100 Lecce, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Urrego R, Herrera-Puerta E, Chavarria NA, Camargo O, Wrenzycki C, Rodriguez-Osorio N. Follicular progesterone concentrations and messenger RNA expression of MATER and OCT-4 in immature bovine oocytes as predictors of developmental competence. Theriogenology 2014; 83:1179-87. [PMID: 25662108 DOI: 10.1016/j.theriogenology.2014.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/11/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
The ability of bovine embryos to develop to the blastocyst stage and to implant and generate healthy offspring depends greatly on the competence of the oocyte. Oocyte competence is attributed to its close communication with the follicular environment and to its capacity to synthesize and store substantial amounts of messenger RNA. Higher developmental competence of bovine oocytes has been associated with both the expression of a cohort of developmental genes and the concentration of sex steroids in the follicular fluid. The aim of this study was to identify differences in the expression of FST in cumulus cells and OCT-4 and MATER in oocytes and the influence of the follicular progesterone and follicular estrogen concentration on the competence of bovine oocytes retrieved 30 minutes or 4 hours after slaughter. Cumulus-oocyte complexes (COCs) were left in postmortem ovaries for 30 minutes (group I) or 4 hours (group II) at 30 °C. Aspirated oocytes were then subjected to IVM, IVF, and IVC or were evaluated for MATER and OCT-4 messenger RNA abundance by quantitative real-time polymerase chain reaction. Total RNA was isolated from pools of 100 oocytes for each experimental replicate. Progesterone and estradiol concentration in follicular fluid was evaluated by immunoassay using an IMMULITE 2000 analyzer. Three repeats of in vitro embryo production were performed with a total of 455 (group I) and 470 (group II) COCs. There were no significant differences between the cleavage rates (72 hours postinsemination [hpi]) between both groups (63.5% vs. 69.1%). However, blastocyst (168 hpi) and hatching (216 hpi) rates were higher (P < 0.05) in group II compared with those of group I (21.3% vs. 30.7% and 27.6% vs. 51.5%, respectively). Group II oocytes exhibited the highest MATER and OCT-4 abundance (P < 0.05). Follicular estradiol concentration was not different between both the groups, whereas the progesterone concentration was lower (P ≤ 0.05) in group II follicles. These results indicate that retrieving COCs 4 hours after slaughter could increase bovine in vitro developmental competence, which is linked to higher levels of oocyte MATER and OCT-4 transcripts and lower follicular progesterone concentration. Moreover, the results of the present study contribute to the identification of factors involved in the developmental competence of immature oocytes.
Collapse
Affiliation(s)
- R Urrego
- Grupo CENTAURO, Universidad de Antioquia, Medellín, Colombia; Grupo INCA-CES, Facultad de Medicina Veterinaria y Zootecnia, Universidad CES, Medellín, Colombia.
| | - E Herrera-Puerta
- Grupo INCA-CES, Facultad de Medicina Veterinaria y Zootecnia, Universidad CES, Medellín, Colombia; Grupo Biología CES-EIA, Universidad CES, Medellín, Colombia
| | - N A Chavarria
- Grupo INCA-CES, Facultad de Medicina Veterinaria y Zootecnia, Universidad CES, Medellín, Colombia
| | - O Camargo
- Grupo Genes, Gametos y Embriones, Universidad Nacional de Colombia, Medellín, Colombia
| | - C Wrenzycki
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | | |
Collapse
|
18
|
Bebbere D, Ariu F, Bogliolo L, Masala L, Murrone O, Fattorini M, Falchi L, Ledda S. Expression of maternally derived KHDC3, NLRP5, OOEP and TLE6 is associated with oocyte developmental competence in the ovine species. BMC DEVELOPMENTAL BIOLOGY 2014; 14:40. [PMID: 25420964 PMCID: PMC4247878 DOI: 10.1186/s12861-014-0040-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 11/11/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND The sub-cortical maternal complex (SCMC), located in the subcortex of mouse oocytes and preimplantation embryos, is composed of at least four proteins encoded by maternal effect genes: OOEP, NLRP5/MATER, TLE6 and KHDC3/FILIA. The SCMC assembles during oocyte growth and was seen to be essential for murine zygote progression beyond the first embryonic cell divisions; although roles in chromatin reprogramming and embryonic genome activation were hypothesized, the full range of functions of the complex in preimplantation development remains largely unknown. RESULTS Here we report the expression of the SCMC genes in ovine oocytes and pre-implantation embryos, describing for the first time its expression in a large mammalian species. We report sheep-specific patterns of expression and a relationship with the oocyte developmental potential in terms of delayed degradation of maternal SCMC transcripts in pre-implantation embryos derived from developmentally incompetent oocytes. In addition, by determining OOEP full length cDNA by Rapid Amplification of cDNA Ends (RACE) we identified two different transcript variants (OOEP1 and OOEP2), both expressed in oocytes and early embryos, but with different somatic tissue distributions. In silico translation showed that 140 aminoacid peptide OOEP1 shares an identity with orthologous proteins ranging from 95% with the bovine to 45% with mouse. Conversely, OOEP2 contains a premature termination codon, thus representing an alternative noncoding transcript and supporting the existence of aberrant splicing during ovine oogenesis. CONCLUSIONS These findings confirm the existence of the SCMC in sheep and its key role for the oocyte developmental potential, deepening our understanding on the molecular differences underlying cytoplasmic vs nuclear maturation of the oocytes. Describing differences and overlaps in transcriptome composition between model organisms advance our comprehension of the diversity/uniformity between mammalian species during early embryonic development and provide information on genes that play important regulatory roles in fertility in nonmurine models, including the human.
Collapse
Affiliation(s)
- Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Laura Masala
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Ombretta Murrone
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Mauro Fattorini
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Laura Falchi
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| |
Collapse
|
19
|
Warren BD, Kinsey WK, McGinnis LK, Christenson LK, Jasti S, Stevens AM, Petroff BK, Petroff MG. Ovarian autoimmune disease: clinical concepts and animal models. Cell Mol Immunol 2014; 11:510-21. [PMID: 25327908 PMCID: PMC4220844 DOI: 10.1038/cmi.2014.97] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
The ovary is not an immunologically privileged organ, but a breakdown in tolerogenic mechanisms for ovary-specific antigens has disastrous consequences on fertility in women, and this is replicated in murine models of autoimmune disease. Isolated ovarian autoimmune disease is rare in women, likely due to the severity of the disease and the inability to transmit genetic information conferring the ovarian disease across generations. Nonetheless, autoimmune oophoritis is often observed in association with other autoimmune diseases, particularly autoimmune adrenal disease, and takes a toll on both society and individual health. Studies in mice have revealed at least two mechanisms that protect the ovary from autoimmune attack. These mechanisms include control of autoreactive T cells by thymus-derived regulatory T cells, as well as a role for the autoimmune regulator (AIRE), a transcriptional regulator that induces expression of tissue-restricted antigens in medullary thymic epithelial cells during development of T cells. Although the latter mechanism is incompletely defined, it is well established that failure of either results in autoimmune-mediated targeting and depletion of ovarian follicles. In this review, we will address the clinical features and consequences of autoimmune-mediated ovarian infertility in women, as well as the possible mechanisms of disease as revealed by animal models.
Collapse
Affiliation(s)
- Bryce D Warren
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - William K Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lynda K McGinnis
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Susmita Jasti
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anne M Stevens
- Research Center for Immunity and Immunotherapies, Children's Hospital and Regional Medical Center, and Division of Rheumatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brian K Petroff
- 1] Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA [2] Present address: Department of Pathobiology and Diagnostic Investigation, Michigan State University College of Veterinary Medicine, East Lansing, MI, USA
| | - Margaret G Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Van Gorp H, Kuchmiy A, Van Hauwermeiren F, Lamkanfi M. NOD-like receptors interfacing the immune and reproductive systems. FEBS J 2014; 281:4568-82. [PMID: 25154302 DOI: 10.1111/febs.13014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022]
Abstract
Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) are intracellular proteins that are chiefly known for their critical functions in inflammatory responses and host defense against microbial pathogens. Several NLRs have been demonstrated to assemble inflammasomes or to engage transcriptional signaling cascades that result in the production of pro-inflammatory cytokines and bactericidal factors. In recent years, NLRs have also emerged as key regulators of early mammalian embryogenesis and reproduction. A subset of phylogenetically related NLRs represents a new class of maternal effect genes that are highly expressed in maturing oocytes and pre-implantation embryos. Mutations in several of these NLRs have been linked to hereditary reproductive defects and imprinting diseases. In this review, we discuss the expression profiles, the emerging functions and molecular mode of action of these NLRs with newly recognized roles at the interfaces of the immune and reproductive systems. In addition, we provide an overview of coding mutations in NLRs that have been associated with human reproductive diseases, and outline crucial outstanding questions in this emerging research field.
Collapse
Affiliation(s)
- Hanne Van Gorp
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
21
|
Jacobo P, Guazzone VA, Pérez CV, Lustig L. CD4+ Foxp3+ regulatory T cells in autoimmune orchitis: phenotypic and functional characterization. Am J Reprod Immunol 2014; 73:109-25. [PMID: 25164316 DOI: 10.1111/aji.12312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022] Open
Abstract
PROBLEM The phenotype and function of regulatory T (Treg) cells in rats with experimental autoimmune orchitis (EAO) was evaluated. METHOD OF STUDY Distribution of Treg cells in draining lymph nodes from the testis (TLN) and from the site of immunization (ILN) was analysed by immunohistochemistry. The number, phenotype and proliferative response (5-bromo-2'-deoxyuridine incorporation) of Treg cells were evaluated by flow cytometry and Treg cell suppressive activity by in vitro experiments. TGF-β expression was evaluated by immunofluorescence. RESULTS Absolute numbers of Treg cells and BrdU+ Treg cells were increased in LN from experimental compared to normal and control rats. These cells displayed a CD45RC(-), CD62L(-), Helios(+) phenotype. CD4(+) CD25(bright) T cells from TLN of experimental rats were able to suppress T cell-proliferation more efficiently than those derived from normal and control rats. Cells isolated from TLN and ILN expressed TGF-β. CONCLUSION Our results suggest that Treg cells with a memory/activated phenotype proliferate extensively in the inflamed testis and LN of rats with EAO exhibiting an enhanced suppressive capacity. TGF-β may be involved in their suppressive mechanism.
Collapse
Affiliation(s)
- Patricia Jacobo
- Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
22
|
Kim KH, Lee KA. Maternal effect genes: Findings and effects on mouse embryo development. Clin Exp Reprod Med 2014; 41:47-61. [PMID: 25045628 PMCID: PMC4102690 DOI: 10.5653/cerm.2014.41.2.47] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 11/22/2022] Open
Abstract
Stored maternal factors in oocytes regulate oocyte differentiation into embryos during early embryonic development. Before zygotic gene activation (ZGA), these early embryos are mainly dependent on maternal factors for survival, such as macromolecules and subcellular organelles in oocytes. The genes encoding these essential maternal products are referred to as maternal effect genes (MEGs). MEGs accumulate maternal factors during oogenesis and enable ZGA, progression of early embryo development, and the initial establishment of embryonic cell lineages. Disruption of MEGs results in defective embryogenesis. Despite their important functions, only a few mammalian MEGs have been identified. In this review we summarize the roles of known MEGs in mouse fertility, with a particular emphasis on oocytes and early embryonic development. An increased knowledge of the working mechanism of MEGs could ultimately provide a means to regulate oocyte maturation and subsequent early embryonic development.
Collapse
Affiliation(s)
- Kyeoung-Hwa Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| |
Collapse
|
23
|
Peng H, Zhang W, Xiao T, Zhang Y. Nlrp4g is an oocyte-specific gene but is not required for oocyte maturation in the mouse. Reprod Fertil Dev 2014; 26:758-68. [DOI: 10.1071/rd12409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 05/02/2013] [Indexed: 12/15/2022] Open
Abstract
The Nlrp gene family contains 20 members and plays a pivotal role in the innate immune and reproductive systems in the mouse. The aim of the present study was to analyse the Nlrp4g gene expression pattern, protein distribution and function in mouse oocyte maturation. Quantitative real-time polymerase chain reaction and in situ hybridisation were performed on Nlrp4g mRNA. Western blotting, immunohistochemistry and immunofluorescence were used to assess expression at the protein level. Confocal and immunogold electron microscopy analyses and RNA interference approach were used to determine the location of the NLRP4G protein and inhibit Nlrp4g function specifically in mouse germinal vesicle oocytes, respectively. Nlrp4g transcripts and proteins (~85 kDa) are specifically expressed in mouse ovaries, restricted to the oocytes at various follicular stages and decline with oocyte aging. There is a marked decline in transcript levels in preimplantation embryos before zygotic genome activation, but the protein remains present through to the blastocyst stage. Confocal microscopy demonstrated that this protein is localised in the cytoplasm. Immunogold electron microscopy further confirmed that NLRP4G protein was present in the cytosol rather than in oocyte cytoplasmic organelles. Furthermore, knockdown of Nlrp4g in germinal vesicle oocytes did not affect oocyte maturation. These results provide the first evidence that Nlrp4g is an oocyte-specific gene but dispensable for oocyte maturation, suggesting that this gene may play roles in mouse oogenesis and/or preimplantation development.
Collapse
|
24
|
Abstract
An increasing body of evidence suggests that immune-mediated processes affect female reproductive success at multiple levels. Crosstalk between endocrine and immune systems regulates a large number of biological processes that affect target tissues, and this crosstalk involves gene expression, cytokine and/or lymphokine release and hormone action. In addition, endocrine-immune interactions have a major role in the implantation process of the fetal (paternally derived) semi-allograft, which requires a reprogramming process of the maternal immune system from rejection to temporary tolerance for the length of gestation. Usually, the female immune system is supportive of all of these processes and, therefore, facilitates reproductive success. Abnormalities of the female immune system, including autoimmunity, potentially interfere at multiple levels. The relevance of the immune system to female infertility is increasingly recognized by investigators, but clinically is often not adequately considered and is, therefore, underestimated. This Review summarizes the effect of individual autoimmune endocrine diseases on female fertility, and points towards selected developments expected in the near future.
Collapse
Affiliation(s)
- Aritro Sen
- The Center for Human Reproduction (CHR), 21 East 69th Street, New York, NY 10021, USA
| | - Vitaly A Kushnir
- The Center for Human Reproduction (CHR), 21 East 69th Street, New York, NY 10021, USA
| | - David H Barad
- The Center for Human Reproduction (CHR), 21 East 69th Street, New York, NY 10021, USA
| | - Norbert Gleicher
- The Center for Human Reproduction (CHR), 21 East 69th Street, New York, NY 10021, USA
| |
Collapse
|
25
|
Li L, Lu X, Dean J. The maternal to zygotic transition in mammals. Mol Aspects Med 2013; 34:919-38. [PMID: 23352575 DOI: 10.1016/j.mam.2013.01.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/15/2022]
Abstract
Prior to activation of the embryonic genome, the initiating events of mammalian development are under maternal control and include fertilization, the block to polyspermy and processing sperm DNA. Following gamete union, the transcriptionally inert sperm DNA is repackaged into the male pronucleus which fuses with the female pronucleus to form a 1-cell zygote. Embryonic transcription begins during the maternal to zygotic transfer of control in directing development. This transition occurs at species-specific times after one or several rounds of blastomere cleavage and is essential for normal development. However, even after activation of the embryonic genome, successful development relies on stored maternal components without which embryos fail to progress beyond initial cell divisions. Better understanding of the molecular basis of maternal to zygotic transition including fertilization, the activation of the embryonic genome and cleavage-stage development will provide insight into early human development that should translate into clinical applications for regenerative medicine and assisted reproductive technologies.
Collapse
Affiliation(s)
- Lei Li
- Division of Molecular Embryonic Development, State Key Laboratory of Reproductive Biology, Institute of Zoology/Chinese Academy of Sciences, Beijing 100101, PR China.
| | | | | |
Collapse
|
26
|
Nath A, Sharma V, Dubey PK, Pratheesh MD, Gade NE, Saikumar G, Sharma GT. Impact of gonadotropin supplementation on the expression of germ cell marker genes (MATER, ZAR1, GDF9, and BMP15) during in vitro maturation of buffalo (Bubalus bubalis) oocyte. In Vitro Cell Dev Biol Anim 2012; 49:34-41. [PMID: 23263936 DOI: 10.1007/s11626-012-9561-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/27/2012] [Indexed: 11/26/2022]
Abstract
The present study was designed to investigate whether gonadotropins [follicle-stimulating hormone (FSH) and luteinizing hormone (LH)] and buffalo follicular fluid (bFF) supplementation in maturation medium influences the transcript abundance of germ cell marker genes [maternal antigen that embryos require (MATER), Zygote arrest 1 (ZAR1), growth differentiation factor 9 (GDF9), and bone morphogenetic protein 15 (BMP15)] mRNA in buffalo (Bubalus bubalis) oocytes. Buffalo ovaries were collected from local abattoir, oocytes were aspirated from antral follicles (5-8 mm) and matured in vitro using two different maturation regimens, viz, group A: gonadotropin (FSH and LH) and group B: non-gonadotropin-supplemented maturation medium containing 20% buffalo follicular fluid (bFF). mRNA was isolated from immature (330) and in vitro matured oocytes from both the groups (A, 320; B, 340), and reverse transcribed using Moloney murine leukemia virus reverse transcriptase. Expression levels of MATER, ZAR1, GDF9, and BMP15 mRNA transcripts were analyzed in oocytes of both maturation groups as well as immature oocytes using real-time PCR. QPCR results showed that GDF9 and BMP15 transcripts were significantly (p<0.05) influenced with gonadotropins and bFF supplementation during in vitro maturation of buffalo oocyte; however, MATER and ZAR1 transcripts were not influenced with gonadotropins and bFF supplementation in vitro. These results indicated that the expression levels of MATER, ZAR1, GDF9, and BMP15 mRNA were varied differentially during in vitro maturation of buffalo oocyte and were found to be gonadotropins (FSH and LH) or bFF dependent for GDF9 and BMP15.
Collapse
Affiliation(s)
- Amar Nath
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | | | | | | | | | | | | |
Collapse
|
27
|
Stolk L, Perry JRB, Chasman DI, He C, Mangino M, Sulem P, Barbalic M, Broer L, Byrne EM, Ernst F, Esko T, Franceschini N, Gudbjartsson DF, Hottenga JJ, Kraft P, McArdle PF, Porcu E, Shin SY, Smith AV, van Wingerden S, Zhai G, Zhuang WV, Albrecht E, Alizadeh BZ, Aspelund T, Bandinelli S, Lauc LB, Beckmann JS, Boban M, Boerwinkle E, Broekmans FJ, Burri A, Campbell H, Chanock SJ, Chen C, Cornelis MC, Corre T, Coviello AD, d’Adamo P, Davies G, de Faire U, de Geus EJC, Deary IJ, Dedoussis GVZ, Deloukas P, Ebrahim S, Eiriksdottir G, Emilsson V, Eriksson JG, Fauser BCJM, Ferreli L, Ferrucci L, Fischer K, Folsom AR, Garcia ME, Gasparini P, Gieger C, Glazer N, Grobbee DE, Hall P, Haller T, Hankinson SE, Hass M, Hayward C, Heath AC, Hofman A, Ingelsson E, Janssens ACJW, Johnson AD, Karasik D, Kardia SLR, Keyzer J, Kiel DP, Kolcic I, Kutalik Z, Lahti J, Lai S, Laisk T, Laven JSE, Lawlor DA, Liu J, Lopez LM, Louwers YV, Magnusson PKE, Marongiu M, Martin NG, Klaric IM, Masciullo C, McKnight B, Medland SE, Melzer D, Mooser V, Navarro P, Newman AB, Nyholt DR, Onland-Moret NC, Palotie A, Paré G, Parker AN, Pedersen NL, Peeters PHM, Pistis G, Plump AS, Polasek O, Pop VJM, Psaty BM, Räikkönen K, Rehnberg E, Rotter JI, Rudan I, Sala C, Salumets A, Scuteri A, Singleton A, Smith JA, Snieder H, Soranzo N, Stacey SN, Starr JM, Stathopoulou MG, Stirrups K, Stolk RP, Styrkarsdottir U, Sun YV, Tenesa A, Thorand B, Toniolo D, Tryggvadottir L, Tsui K, Ulivi S, van Dam RM, van der Schouw YT, van Gils CH, van Nierop P, Vink JM, Visscher PM, Voorhuis M, Waeber G, Wallaschofski H, Wichmann HE, Widen E, Gent CJMWV, Willemsen G, Wilson JF, Wolffenbuttel BHR, Wright AF, Yerges-Armstrong LM, Zemunik T, Zgaga L, Zillikens MC, Zygmunt M, Arnold AM, Boomsma DI, Buring JE, Crisponi L, Demerath EW, Gudnason V, Harris TB, Hu FB, Hunter DJ, Launer LJ, Metspalu A, Montgomery GW, Oostra BA, Ridker PM, Sanna S, Schlessinger D, Spector TD, Stefansson K, Streeten EA, Thorsteinsdottir U, Uda M, Uitterlinden AG, van Duijn CM, Völzke H, Murray A, Murabito JM, Visser JA, Lunetta KL. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat Genet 2012; 44:260-8. [PMID: 22267201 PMCID: PMC3288642 DOI: 10.1038/ng.1051] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/02/2011] [Indexed: 12/13/2022]
Abstract
To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at P < 5 × 10(-8)). Candidate genes located at these newly associated loci include genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG and PRIM1) and immune function (IL11, NLRP11 and PRRC2A (also known as BAT2)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF-κB signaling and mitochondrial dysfunction as biological processes related to timing of menopause.
Collapse
Affiliation(s)
- Lisette Stolk
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Netherlands Consortium of Healthy Aging, Rotterdam, the Netherlands
| | - John RB Perry
- Peninsula Medical School, University of Exeter, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston USA
- Harvard Medical School, Boston, USA
| | - Chunyan He
- Department of Public Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | | | - Maja Barbalic
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Linda Broer
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Enda M Byrne
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Florian Ernst
- Interfakultäres Institut für Genomforschung, Universität Greifswald, Germany
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Estonian Biocenter, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Jouke-Jan Hottenga
- Dept Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, USA
| | - Patick F McArdle
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eleonora Porcu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - So-Youn Shin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Guangju Zhai
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Wei V Zhuang
- Department of Biostatistics, Boston University School of Public Health, Boston Massachusetts, USA
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Thor Aspelund
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | - Jacques S Beckmann
- Department of Medical Genetics, University of Lausanne, Switzerland
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois (CHUV), University Hospital, Lausanne, Switzerland
| | - Mladen Boban
- Faculty of Medicine, University of Split, Split, Croatia
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Frank J Broekmans
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andrea Burri
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Constance Chen
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Marilyn C Cornelis
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Tanguy Corre
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea D Coviello
- Sections of General Internal Medicine, Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Pio d’Adamo
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo” Trieste, Italy
- University of Trieste, Trieste, Italy
| | - Gail Davies
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Ulf de Faire
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eco JC de Geus
- Dept Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
- EMGO+ Institute, VU Medical Centre, Amsterdam, The Netherlands
| | - Ian J Deary
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | | | | | - Shah Ebrahim
- Department of Epidemiology & Population Healths, London School of Hygiene & Tropical Medicine, UK
| | | | | | - Johan G Eriksson
- National Institute for Health and Welfare, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
- Folkhalsan Research Centre, Helsinki, Finland
- Vasa Central Hospital, Vasa, Finland
| | - Bart CJM Fauser
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Liana Ferreli
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Luigi Ferrucci
- Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, USA
| | - Krista Fischer
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Aaron R Folsom
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa E Garcia
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Paolo Gasparini
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo” Trieste, Italy
- University of Trieste, Trieste, Italy
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Nicole Glazer
- Sections of General Internal Medicine, Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston MA, USA
| | - Diederick E Grobbee
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Susan E Hankinson
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Channing Laboratory, Department of Medicine, Brigham and Women.s Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Merli Hass
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Caroline Hayward
- MRC Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | - Albert Hofman
- Netherlands Consortium of Healthy Aging, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik Ingelsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - David Karasik
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts, USA
| | - Sharon LR Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Jules Keyzer
- Diagnostic GP laboratory Eindhoven, Eindhoven, the Netherlands
| | - Douglas P Kiel
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts, USA
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Split, Croatia
| | - Zoltán Kutalik
- Department of Medical Genetics, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Switzerland
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Sandra Lai
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Triin Laisk
- Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
| | - Joop SE Laven
- Division of Reproductive Medicine, Department of Obstetrics & Gynaecology, Erasmus MC, Rotterdam, the Netherlands
| | - Debbie A Lawlor
- MRC Centre for Causal Analysis in Translational Epidemiology, School of Social & Community Medicine, University of Bristol, UK
| | - Jianjun Liu
- Human genetic, Genome Institute of Singapore, Singapore
| | - Lorna M Lopez
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - Yvonne V Louwers
- Division of Reproductive Medicine, Department of Obstetrics & Gynaecology, Erasmus MC, Rotterdam, the Netherlands
| | - Patrik KE Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mara Marongiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | | | | | - Corrado Masciullo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sarah E Medland
- Queensland Institute of Medical Research, Brisbane, Australia
| | - David Melzer
- Peninsula Medical School, University of Exeter, UK
| | - Vincent Mooser
- Genetics Division, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Pau Navarro
- MRC Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Anne B Newman
- Departments of Epidemiology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dale R Nyholt
- Queensland Institute of Medical Research, Brisbane, Australia
| | - N. Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Aarno Palotie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
| | - Guillaume Paré
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston USA
- Harvard Medical School, Boston, USA
- Genetic and Molecular Epidemiology Laboratory, McMaster University, Hamilton, ON Canada
| | - Alex N Parker
- Amgen, Cambridge, MA USA
- Foundation Medicine, Inc., Cambridge MA USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Petra HM Peeters
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Giorgio Pistis
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Andrew S Plump
- Cardiovascular Disease, Merck Research Laboratory, Rahway, NJ, USA
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Victor JM Pop
- Department of Clinical Health Psychology, University of Tilburg, Tilburg, the Netherlands
| | - Bruce M Psaty
- Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA USA
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Emil Rehnberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jerome I Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Igor Rudan
- Faculty of Medicine, University of Split, Split, Croatia
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Andres Salumets
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
| | | | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute of Ageing, Bethesda, MD, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, the Netherlands
- LifeLines Cohort Study & Biobank, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Nicole Soranzo
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Geriatric Medicine Unit, University of Edinburgh, Edinburgh, UK
| | - Maria G Stathopoulou
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
- Cardiovascular Genetics Research Unit, EA4373, Université Henri Poincaré - Nancy 1, Nancy, France
| | - Kathleen Stirrups
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Ronald P Stolk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, the Netherlands
- LifeLines Cohort Study & Biobank, University Medical Center Groningen, University of Groningen, the Netherlands
| | | | - Yan V Sun
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | - Albert Tenesa
- MRC Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Barbara Thorand
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- Institute of Molecular Genetics-CNR, Pavia, Italy
| | - Laufey Tryggvadottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Cancer Registry, Reykjavik, Iceland
| | | | - Sheila Ulivi
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo” Trieste, Italy
| | - Rob M van Dam
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
- Saw Swee Hock School of Public Health and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carla H van Gils
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter van Nierop
- Municipal Health Service Brabant-Zuidoost, Helmond, the Netherlands
| | - Jacqueline M Vink
- Dept Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Peter M Visscher
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
| | - Marlies Voorhuis
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Utrecht, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gérard Waeber
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University Hospital, Lausanne, Switzerland
| | - Henri Wallaschofski
- Institute for Clinical Chemistry and Laboratory Medicine, University of Greifswald
| | - H Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- Klinikum Grosshadern, Munich, Germany
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | | | - Gonneke Willemsen
- Dept Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - James F Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Bruce HR Wolffenbuttel
- LifeLines Cohort Study & Biobank, University Medical Center Groningen, University of Groningen, the Netherlands
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Alan F Wright
- MRC Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Laura M Yerges-Armstrong
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Lina Zgaga
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
- Andrija Stampar School of Public Health, Medical School, University of Zagreb, Zagreb, Croatia
| | | | - Marek Zygmunt
- Klinik für Gynäkologie und Geburtshilfe, Universität Greifswald, Germany
| | - The LifeLines Cohort Study
- LifeLines Cohort Study & Biobank, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Alice M Arnold
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Dorret I Boomsma
- Dept Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
- EMGO+ Institute, VU Medical Centre, Amsterdam, The Netherlands
| | - Julie E. Buring
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston USA
- Harvard Medical School, Boston, USA
- Harvard School of Public Health, Boston, MA USA
| | - Laura Crisponi
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
- Channing Laboratory, Department of Medicine, Brigham and Women.s Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - David J Hunter
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, USA
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
- Channing Laboratory, Department of Medicine, Brigham and Women.s Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Estonian Biocenter, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
| | | | - Ben A Oostra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston USA
- Harvard Medical School, Boston, USA
- Harvard School of Public Health, Boston, MA USA
- Division of Cardiology, Brigham and Women’s Hospital, Boston, MA USA
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - David Schlessinger
- National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Kari Stefansson
- deCODE Genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Elizabeth A Streeten
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Manuela Uda
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Netherlands Consortium of Healthy Aging, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Henry Völzke
- Institut für Community Medicine, Universität Greifswald, Germany
| | - Anna Murray
- Peninsula Medical School, University of Exeter, UK
| | - Joanne M Murabito
- Sections of General Internal Medicine, Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston Massachusetts, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| |
Collapse
|
28
|
Wang J, Xu M, Zhu K, Li L, Liu X. The N-terminus of FILIA forms an atypical KH domain with a unique extension involved in interaction with RNA. PLoS One 2012; 7:e30209. [PMID: 22276159 PMCID: PMC3261892 DOI: 10.1371/journal.pone.0030209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/12/2011] [Indexed: 01/07/2023] Open
Abstract
FILIA is a member of the recently identified oocyte/embryo expressed gene family in eutherian mammals, which is characterized by containing an N-terminal atypical KH domain. Here we report the structure of the N-terminal fragment of FILIA (FILIA-N), which represents the first reported three-dimensional structure of a KH domain in the oocyte/embryo expressed gene family of proteins. The structure of FILIA-N revealed a unique N-terminal extension beyond the canonical KH region, which plays important roles in interaction with RNA. By co-incubation with the lysates of mice ovaries, FILIA and FILIA-N could sequester specific RNA components, supporting the critical roles of FILIA in regulation of RNA transcripts during mouse oogenesis and early embryogenesis.
Collapse
Affiliation(s)
- Juke Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mengyuan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kai Zhu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (LL); (XL)
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail: (LL); (XL)
| |
Collapse
|
29
|
Markholt S, Grøndahl M, Ernst E, Andersen CY, Ernst E, Lykke-Hartmann K. Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction. ACTA ACUST UNITED AC 2012; 18:96-110. [DOI: 10.1093/molehr/gar083] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Cheng MH, Nelson LM. Mechanisms and models of immune tolerance breakdown in the ovary. Semin Reprod Med 2011; 29:308-16. [PMID: 21969265 DOI: 10.1055/s-0031-1280916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ovarian autoimmunity is increasingly implicated in the etiology of primary ovarian insufficiency (POI), previously termed PREMATURE OVARIAN FAILURE or PREMATURE MENOPAUSE. Links to autoimmunity in human POI have long been noted due to the close association of POI with several autoimmune diseases and syndromes such as Addison's disease and Autoimmune polyglandular syndrome 1. However, diagnosis of autoimmune-mediated POI (aPOI) remains challenging because of the lack of sensitive or specific markers of disease. Autoimmunity can arise from the breakdown of immunological tolerance in several ways. How then may we discern what constitutes a relevant target and what represents a downstream phenomenon? The answer lies in the study of pathogenic mechanisms in translational models of disease. From examples in humans and mice, we see that ovarian autoimmunity likely arises from a limited number of antigens targeted in the ovary that are organ specific. These antigens may be conserved but not limited to those seen in animal models of autoimmune ovarian disease. Recent advances in these areas have begun to define the relevant antigens and mechanisms of immune tolerance breakdown in the ovary. Work in translational models continues to provide insight into mechanisms of disease pathogenesis that will allow more accurate diagnosis and, ultimately, improved interventions for women with aPOI.
Collapse
Affiliation(s)
- Mickie H Cheng
- Division of Endocrinology, Department of Medicine, UCSF Diabetes Center, 513 Parnassus Ave, HSW 1102 Box 0540, San Francisco, CA 94143, USA.
| | | |
Collapse
|
31
|
Otsuka N, Tong ZB, Vanevski K, Tu W, Cheng MH, Nelson LM. Autoimmune oophoritis with multiple molecular targets mitigated by transgenic expression of mater. Endocrinology 2011; 152:2465-73. [PMID: 21447630 PMCID: PMC3100611 DOI: 10.1210/en.2011-0022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/09/2011] [Indexed: 11/19/2022]
Abstract
Primary ovarian insufficiency (POI) resulting from ovarian autoimmunity is a poorly understood clinical condition lacking in effective treatments. Understanding the targets of the autoimmune response and induction of ovarian-specific tolerance would allow development of focused therapies to preserve fertility in an at-risk population. MATER (maternal antigen that embryos require) is a known ovarian autoantigen targeted in autoimmune syndromes of POI. We attempt to induce ovarian-specific tolerance via transgenic expression of the MATER antigen on potentially tolerogenic antigen-presenting cells (APC), which typically present antigen via the major histocompatibility complex (MHC) class II molecule. We hypothesize that expression of MATER in a MHC class II-dependent manner on APC can mediate induction of ovarian tolerance. We utilized a well-characterized murine model of ovarian autoimmunity, whereby oophoritis develops after d 3 neonatal thymectomy (NTx). Wild-type and transgenic mice, carrying an MHC Class II-driven Mater gene (IE-Mater), were subjected to NTx and assessed for evidence of autoimmune oophoritis. After disease induction by NTx, female mice carrying the IE-Mater transgene had significant reductions in histological oophoritis (56%) and circulating ovarian autoantibodies (28%) compared with wild-type females (94% and 82%, respectively). Incidence of other autoimmunity was unaffected as assessed by antinuclear autoantibodies. Transgenic expression of MATER in APC can induce antigen-specific tolerance with a significant reduction in ovarian autoimmunity. Lack of complete disease protection suggests that other antigens may also play a role in autoimmune oophoritis. As a known autoantigen in the human APS1 (autoimmune polyglandular syndrome type 1), which is associated with POI, MATER may represent a relevant target for future diagnostic and therapeutic clinical interventions.
Collapse
Affiliation(s)
- Noriyuki Otsuka
- University of California San Francisco Diabetes Center, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
32
|
Subcellular localization of cytoplasmic lattice-associated proteins is dependent upon fixation and processing procedures. PLoS One 2011; 6:e17226. [PMID: 21359190 PMCID: PMC3040232 DOI: 10.1371/journal.pone.0017226] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/26/2011] [Indexed: 01/18/2023] Open
Abstract
We and others have recently demonstrated by immuno-EM and mutation analysis that two oocyte-restricted maternal effect genes, PADI6 and MATER, localize, in part, to the oocyte cytoplasmic lattices (CPLs). During these ongoing studies, however, we found that the localization of these factors by confocal immunofluorescence (IF) analysis can vary dramatically depending upon how the oocytes and embryos are processed, with the localization pattern sometimes appearing more uniformly cytoplasmic while at other times appearing to be primarily cortical. We set out to better understand this differential staining pattern by testing a range of IF protocol parameters, changing mainly time and temperature conditions of the primary antibody solution incubation, as well as fixation methods. We found by confocal IF whole mount analysis that PADI6 and MATER localization in germinal vesicle stage oocytes is mainly cytoplasmic when the oocytes are fixed and then incubated with primary antibodies at room temperature for 1 hour, while the localization of these factors is largely limited to the cortex when the oocytes are fixed and incubated in primary antibody at 4°C overnight. We then probed sections of fixed/embedded ovaries and isolated two-cell embryos with specific antibodies and found that, under these conditions, PADI6 and MATER were again primarily cytoplasmically localized, although the staining for these factors is slightly more cortical at the two-cell stage. Taken together, our results suggest that the localization of CPL-associated proteins by confocal IF is particularly affected by processing conditions. Further, based on our current observations, it appears that PADI6 and MATER are primarily distributed throughout the cytoplasm as opposed to the oocyte subcortex.
Collapse
|
33
|
Kim B, Kan R, Anguish L, Nelson LM, Coonrod SA. Potential role for MATER in cytoplasmic lattice formation in murine oocytes. PLoS One 2010; 5:e12587. [PMID: 20830304 PMCID: PMC2935378 DOI: 10.1371/journal.pone.0012587] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/30/2010] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Mater and Padi6 are maternal effect genes that are first expressed during oocyte growth and are required for embryonic development beyond the two-cell stage in the mouse. We have recently found that PADI6 localizes to, and is required for the formation of, abundant fibrillar Triton X-100 (Triton) insoluble structures termed the oocyte cytoplasmic lattices (CPLs). Given their similar expression profiles and mutant mouse phenotypes, we have been testing the hypothesis that MATER also plays a role in CPL formation and/or function. METHODOLOGY/FINDINGS Herein, we show that PADI6 and MATER co-localize throughout the oocyte cytoplasm following Triton extraction, suggesting that MATER co-localizes with PADI6 at the CPLs. Additionally, the solubility of PADI6 was dramatically increased in Mater(tm/tm) oocytes following Triton extraction, suggesting that MATER is involved in CPL nucleation. This prediction is supported by transmission electron microscopic analysis of Mater(+/+) and Mater(tm/tm) germinal vesicle stage oocytes which illustrated that volume fraction of CPLs was reduced by 90% in Mater(tm/tm) oocytes compared to Mater(+/+) oocytes. CONCLUSIONS Taken together, these results suggest that, similar to PADI6, MATER is also required for CPL formation. Given that PADI6 and MATER are essential for female fertility, these results not only strengthen the hypothesis that the lattices play a critical role in mediating events during the oocyte-to-embryo transition but also increase our understanding of the molecular nature of the CPLs.
Collapse
Affiliation(s)
- Boram Kim
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Rui Kan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Lynne Anguish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Lawrence M. Nelson
- Intramural Research Program on Reproductive and Adult Endocrinology, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Scott A. Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
34
|
Wang J, Zhang TC, Liu X. Preliminary crystallographic analysis of the N-terminal domain of FILIA, a protein essential for embryogenesis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1111-4. [PMID: 20823540 PMCID: PMC2935241 DOI: 10.1107/s1744309110031994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/09/2010] [Indexed: 11/10/2022]
Abstract
FILIA is a component of the subcortical maternal complex that is essential for early stage embryogenesis. Its 6xHis-tagged N-terminal domain was expressed in Escherichia coli and purified to homogeneity. Two types of crystals formed under different crystallization conditions during screening. Orthorhombic crystals appeared in a solution containing 1.4 M ammonium sulfate, 0.1 M Tris pH 8.2 and 12% glycerol, while tetragonal crystals were obtained using 15% PEG 4000 mixed with 0.1 M HEPES pH 7.5 and 15% 2-propanol. High-quality diffraction data were collected from the two crystal forms to resolutions of 1.8 and 2.2 A, respectively, using synchrotron radiation. The Matthews coefficients indicated that the P2(1)2(1)2(1) and P4(1)2(1)2 crystals contained two molecules and one molecule per asymmetric unit, respectively. A selenomethionine-substituted sample failed to crystallize under the native conditions, but another orthorhombic crystal form was obtained under different conditions and anomalous diffraction data were collected.
Collapse
Affiliation(s)
- Juke Wang
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, People’s Republic of China
| | - Tong-Cun Zhang
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, People’s Republic of China
| | - Xinqi Liu
- College of Life Science, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
35
|
Multiplicity of molecular and cellular targets in human ovarian autoimmunity: an update. J Assist Reprod Genet 2010; 27:519-24. [PMID: 20521094 DOI: 10.1007/s10815-010-9440-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022] Open
Abstract
PURPOSE To provide an update of putative auto-antigens identified and proposed to be involved in human ovarian autoimmunity. METHODS Review of literature pertaining to ovarian auto-antigens / proteins identified with various immunological tools using sera of infertile women as a probe for investigation. RESULTS An overview of autoimmune targets known till date in the study of human ovarian autoimmunity. CONCLUSIONS Anti-ovarian antibodies (AOA) to multiple components and compartments of the ovary are present in the sera of infertile women. Researchers propose that these AOA may be responsible for ovarian failures and therefore render women to be infertile. Evaluation of AOA can be effective as a prognostic factor in the treatment of infertile patients and for the IVF-ET program.
Collapse
|
36
|
Abstract
The hiatus between oocyte and embryonic gene transcription dictates a role for stored maternal factors in early mammalian development. Encoded by maternal-effect genes, these factors accumulate during oogenesis and enable the activation of the embryonic genome, the subsequent cleavage stages of embryogenesis and the initial establishment of embryonic cell lineages. Recent studies in mice have yielded new findings on the role of maternally provided proteins and multi-component complexes in preimplantation development. Nevertheless, significant gaps remain in our mechanistic understanding of the networks that regulate early mammalian embryogenesis, which provide an impetus and opportunities for future investigations.
Collapse
Affiliation(s)
- Lei Li
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
37
|
Wheeler KM, Samy ET, Tung KSK. Cutting edge: normal regional lymph node enrichment of antigen-specific regulatory T cells with autoimmune disease-suppressive capacity. THE JOURNAL OF IMMUNOLOGY 2010; 183:7635-8. [PMID: 19923458 DOI: 10.4049/jimmunol.0804251] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) effectively prevent autoimmune disease development, but their role in maintaining physiological tolerance against self-Ag of internal organs is not yet defined. In this study, we quantified disease-specific Treg (DS-Treg) as Treg that preferentially suppress one autoimmune disease over another in day 3 thymectomized recipients. A striking difference was found among individual lymph nodes (LN) of normal mice; Treg from draining LN were 15-50 times more efficient than those of nondraining LN at suppressing autoimmune diseases of ovary, prostate, and lacrimal glands. The difference disappeared upon auto-Ag ablation and returned upon auto-Ag re-expression. In contrast, the CD4(+)CD25(-) effector T cells from different individual LN induced multiorgan inflammation with comparable organ distribution. We propose that peripheral tolerance for internal organs relies on the control of autoreactive effector T cells by strategic enrichment of Ag-specific Treg in the regional LN.
Collapse
Affiliation(s)
- Karen M Wheeler
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
38
|
|
39
|
Pisani LF, Ramelli P, Lazzari B, Braglia S, Ceciliani F, Mariani P. Characterization of maternal antigen that embryos require (MATER/NLRP5) gene and protein in pig somatic tissues and germ cells. J Reprod Dev 2009; 56:41-8. [PMID: 19815987 DOI: 10.1262/jrd.09-098a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maternal effect genes produce mRNA or proteins that accumulate in the egg during oogenesis and control the developmental program until embryonic genome activation takes place. NLRP5 (NLR family, Pyrin domain containing 5), also called MATER (Maternal Antigen That Embryos Require) is one of the genes required for normal early embryonic development, although its precise function remains to be elucidated. The aim of the present study was to analyze the NLRP5 gene expression pattern and protein distribution in somatic tissues and germ cells in the pig. Reverse transcription was performed on mRNA from germinal vescicle (GV) oocytes and total RNA from spermatozoa and tissues from different organs. The transcript for NLRP5 gene was identified only in ovaries and oocytes. The presence of NLRP5 protein was detected only in ovaries by western blot analysis and immunohistochemistry.
Collapse
|
40
|
A block in the road to fertility: autoantibodies to heat-shock protein 90-β in human ovarian autoimmunity. Fertil Steril 2009; 92:1395-1409. [DOI: 10.1016/j.fertnstert.2008.08.068] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 11/23/2022]
|
41
|
Fowler PA, Flannigan S, Mathers A, Gillanders K, Lea RG, Wood MJ, Maheshwari A, Bhattacharya S, Collie-Duguid ESR, Baker PJ, Monteiro A, O'Shaughnessy PJ. Gene expression analysis of human fetal ovarian primordial follicle formation. J Clin Endocrinol Metab 2009; 94:1427-35. [PMID: 19258411 DOI: 10.1210/jc.2008-2619] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Primordial follicle formation dictates the maximal potential female reproductive capacity and establishes the ovarian reserve. Currently, little is known about this process in the human. OBJECTIVE The aim of the study was to identify genes associated with the onset of human fetal primordial follicle formation in morphologically normal human fetuses. DESIGN We conducted an observational study of the female fetal gonad, comparing gene expression before and during primordial follicle formation. SETTING The study was conducted at the Universities of Aberdeen, Glasgow, and Nottingham. PATIENTS/PARTICIPANTS Ovaries were collected from 51 morphologically normal human female fetuses of women undergoing elective termination of normal second trimester pregnancies. MAIN OUTCOME MEASURES We performed fetal ovarian transcript expression by Affymetrix array and quantitative RT-PCR and gene product expression and localization by Western blot and immunohistochemistry. RESULTS Five transcripts were down-regulated and 61 were up-regulated in ovaries from older fetuses (18-20 wk) in which primordial follicle formation had started compared with younger (15-16 wk) fetuses in which no primordial follicles were observed. The altered genes contribute to major functions, including gene expression, tissue morphology, and apoptosis, that are essential for ovarian development. NALP5, the most highly regulated transcript, is an oocyte-specific maternal effect gene that is regulated downstream of FIGLA. CONCLUSIONS NALP5 probably plays a key role in the onset of human primordial follicle formation and thus the establishment of ovarian reserve in women.
Collapse
Affiliation(s)
- Paul A Fowler
- Division of Applied Medicine, Centre for Reproductive Endocrinology and Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bettegowda A, Lee KB, Smith GW. Cytoplasmic and nuclear determinants of the maternal-to-embryonic transition. Reprod Fertil Dev 2008; 20:45-53. [PMID: 18154697 DOI: 10.1071/rd07156] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although improvements in culture systems have greatly enhanced in vitro embryo production, success rates under the best conditions are still far from ideal. The reasons for developmental arrest of the majority of in vitro produced embryos are unclear, but likely attributable, in part, to intrinsic and extrinsic influences on the cytoplasmic and/or nuclear environment of an oocyte and/or early embryo that impede normal progression through the maternal-to-embryonic transition. The maternal-to-embryonic transition is the time period during embryonic development spanning from fertilisation until when control of early embryogenesis changes from regulation by oocyte-derived factors to regulation by products of the embryonic genome. The products of numerous maternal effect genes transcribed and stored during oogenesis mediate this transition. Marked epigenetic changes to chromatin during this window of development significantly modulate embryonic gene expression. Depletion of maternal mRNA pools is also an obligatory event during the maternal-to-embryonic transition critical to subsequent development. An increased knowledge of the fundamental mechanisms and mediators of the maternal-to-embryonic transition is foundational to understanding the regulation of oocyte quality and future breakthroughs relevant to embryo production.
Collapse
Affiliation(s)
- Anilkumar Bettegowda
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
43
|
Ohsugi M, Zheng P, Baibakov B, Li L, Dean J. Maternally derived FILIA-MATER complex localizes asymmetrically in cleavage-stage mouse embryos. Development 2008; 135:259-69. [PMID: 18057100 DOI: 10.1242/dev.011445] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Initial cell lineages that presage the inner cell mass and extra-embryonic trophectoderm are established when eight blastomeres compact to form polarized morulae in preimplantation mouse development. FILIA has been identified as a binding partner to MATER (maternal antigen that embryos require; also known as NLRP5), which is encoded by a maternal effect gene. Products of each gene are detected in growing oocytes and, although transcripts are degraded before fertilization, the cognate proteins persist in early blastocysts. The two proteins co-localize to the cytocortex of ovulated eggs, where the stability of FILIA is dependent on the presence of MATER. After fertilization,FILIA-MATER complexes become asymmetrically restricted in the apical cytocortex of two-cell embryos due to their absence in regions of cell-cell contact. This asymmetry is reversible upon disaggregation of blastomeres of the two- and four-cell embryo. Each protein persists in cells of the preimplantation embryo, but the continuous cell-cell contact of `inner' cells of the morulae seemingly precludes formation of the subcortical FILIA-MATER complex and results in cell populations that are marked by its presence(`outer') or absence (`inner'). Thus, the FILIA-MATER complex provides a molecular marker of embryonic cell lineages, but it remains to be determined if the molecular asymmetry established after the first cell division plays a role in cell fate determinations in the early mouse embryo. If so, the plasticity of the FILIA-MATER complex localization may reflect the regulative nature of preimplantation mouse development.
Collapse
Affiliation(s)
- Mami Ohsugi
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ping Zheng
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Boris Baibakov
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lei Li
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Bebbere D, Bogliolo L, Ariu F, Fois S, Leoni GG, Tore S, Succu S, Berlinguer F, Naitana S, Ledda S. Expression pattern of zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) genes in ovine oocytes and in vitro-produced preimplantation embryos. Reprod Fertil Dev 2008; 20:908-15. [DOI: 10.1071/rd08095] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 07/25/2008] [Indexed: 12/24/2022] Open
Abstract
The expression patterns of four maternal effect genes (MEG), namely zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), were determined in ovine oocytes and in vitro-produced preimplantation embryos. The existence of ZAR1 and MATER in ovine species has not been reported previously. Reverse transcription–polymerase chain reaction was performed on germinal vesicle and IVM MII oocytes, as well as in in vitro fertilised and cultured two-, four-, eight- and 12/16-cell embryos, morulae and blastocysts. Quantification of gene expression by real-time polymerase chain reaction showed the highest abundance of all transcripts analysed in the immature oocyte. During the following stages of preimplantation development, the mRNAs examined exhibited different patterns of expression, but often significant decreases were observed during maturation and maternal–embryonic transition. The transcription of the four genes did not resume with activation of the genome.
Collapse
|
45
|
Brevini TAL, Cillo F, Antonini S, Tosetti V, Gandolfi F. Temporal and spatial control of gene expression in early embryos of farm animals. Reprod Fertil Dev 2007; 19:35-42. [PMID: 17389133 DOI: 10.1071/rd06119] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A gradual transition from oocyte-derived mRNA and proteins to full embryonic transcription characterises early embryonic development. Messenger RNAs and proteins of maternal origin are accumulated into the oocyte throughout its growth inthe ovary. Upon fertilisation, sev eral mechanisms ar e activated that controlthe appropriate use of such material and prepare for the synthesis of new products. The present review will describe some of the mechanisms active in early embryos of domestic species. Data will be presented on the control of gene expression by the 3' untranslated regions and their interaction with specialised sequences at the 5' cap end. The process of RNA sorting and localisation, initially described in different cell types and in oocytes of lower species, will also be discussed, particularly in relation to its possible role in regulating early pig development. Finally, specific genes involved in the activation of cattle embryonic transcription will be described. This brief overview will provide some suggestions on how these different mechanisms may be integrated and cooperate to ensure the correct initiation of embryonic development.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Department of Anatomy of Domestic Animals, School of Veterinary Medicine, University of Milan, Italy.
| | | | | | | | | |
Collapse
|
46
|
Abstract
The diagnosis of premature ovarian failure is based on the finding of amenorrhoea before age 40 associated with follicle-stimulating hormone levels in the menopausal range. Screening for associated autoimmune disorders and karyotyping, particularly in early onset disease, constitute part of the diagnostic work up. There is no role for ovarian biopsy or ultrasound in making the diagnosis. Management essentially involves hormone replacement and infertility treatment, the most successful being assisted conception with donated oocytes. Embryo cryopreservation, ovarian tissue or oocyte cryopreservation and in vitro maturation of oocytes hold promise in cases where ovarian failure is foreseeable as in women undergoing cancer treatments.
Collapse
Affiliation(s)
- Deepti Goswami
- Department of Obstetrics and Gynaecology, Maulana Azad Medical College, New Delhi, India
| | | |
Collapse
|
47
|
Northup J, Griffis K, Hawkins J, Lockhart L, Velagaleti G. Unusual pseudo dicentric, psu dic (1;19)(q10;q13.42), in a female with premature ovarian failure. Fertil Steril 2007; 87:697.e5-8. [PMID: 17140574 DOI: 10.1016/j.fertnstert.2006.05.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/18/2006] [Accepted: 05/18/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To provide a hypothesis regarding the cause of premature ovarian failure (POF) observed in a 27-year-old with a mosaic dicentric chromosome. DESIGN Case report. SETTING Cytogenetics/molecular cytogenetics laboratory in a university hospital. PATIENT(S) A 27-year-old female with POF. INTERVENTION(S) Karyotype and fluorescence in situ hybridization. MAIN OUTCOME MEASURE(S) Metaphases were studied by standard G- and C-banding methods; fluorescence in situ hybridization method was used to characterize the abnormality. RESULT(S) Chromosome analysis detected a mosaic dicentric chromosome, psu dic (1;19)(q10;q13.42), in about 10% of metaphases from the cultured peripheral blood lymphocytes. The remaining 90% of metaphases showed normal karyotype. A repeat analysis showed the same results. Chromosome analysis from cultured skin fibroblasts showed only normal karyotype. CONCLUSION(S) We propose two hypotheses to explain the POF seen in our patient: [1] Dicentric chromosomes, as seen in our patient, are known to cause segregation errors resulting in the breakdown/arrest of meiosis. Such a breakdown/arrest of meiosis could lead to oligomenorrhea seen in our patient. [2] The recently identified gene MATER, which is mapped at 19q13.4, could be the causative gene. MATER is a maternal effect gene that is required for early embryonic development. The gene and its protein serve as an autoantigen in a mouse model of autoimmune POF that is strikingly similar to human POF.
Collapse
Affiliation(s)
- Jill Northup
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0359, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Studies on oocyte-specific genes are important in understanding the genetic pathways essential for folliculogenesis, oogenesis and early embryogenesis. Although the molecular mechanisms regulating oocyte growth and embryo development in mammals have partially been unraveled by gene knockout studies, many aspects concerning reproduction remain to be determined. Development of mammalian embryos starts with the fusion of sperm and egg. After fertilization, the first major developmental transition, maternal to zygotic transition, occurs at the specific stages of preimplantation development in each mammal. The transition is called zygotic gene activation (ZGA) or embryonic genome activation. The ZGA is one of the most important events that occur during preimplantation development; however, the mechanism of the event remains unknown. Because the development until the transition is maintained by maternally inherited proteins and transcripts stored in the oocytes, it is highly likely that these products play an important role in the initiation of ZGA. Several maternal-effects genes that are specifically expressed in oocytes have been identified and their involvement in preimplantation development has been revealed. Therefore, to study oocyte-specific gene regulation would help not only to understand the precise mechanisms of mammalian development, but also to show the mechanisms of reproductive disorders, such as premature ovarian failure and infertility. (Reprod Med Biol 2006; 5: 175-182).
Collapse
Affiliation(s)
- Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Satoshi Tsukamoto
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
49
|
Pennetier S, Perreau C, Uzbekova S, Thélie A, Delaleu B, Mermillod P, Dalbiès-Tran R. MATER protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine. BMC DEVELOPMENTAL BIOLOGY 2006; 6:26. [PMID: 16753072 PMCID: PMC1513552 DOI: 10.1186/1471-213x-6-26] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 06/06/2006] [Indexed: 01/11/2023]
Abstract
Background Mater (Maternal Antigen that Embryos Require), also known as Nalp5 (NACHT, leucine rich repeat and PYD containing 5), is an oocyte-specific maternal effect gene required for early embryonic development beyond the two-cell stage in mouse. We previously characterized the bovine orthologue MATER as an oocyte marker gene in cattle, and this gene was recently assigned to a QTL region for reproductive traits. Results Here we have analyzed gene expression during folliculogenesis and preimplantation embryo development. In situ hybridization and immunohistochemistry on bovine ovarian section revealed that both the transcript and protein are restricted to the oocyte from primary follicles onwards, and accumulate in the oocyte cytoplasm during follicle growth. In immature oocytes, cytoplasmic, and more precisely cytosolic localization of MATER was confirmed by immunohistochemistry coupled with confocal microscopy and immunogold electron microscopy. By real-time PCR, MATER messenger RNA was observed to decrease strongly during maturation, and progressively during the embryo cleavage stages; it was hardly detected in morulae and blastocysts. The protein persisted after fertilization up until the blastocyst stage, and was mostly degraded after hatching. A similar predominantly cytoplasmic localization was observed in blastomeres from embryos up to 8-cells, with an apparent concentration near the nuclear membrane. Conclusion Altogether, these expression patterns are consistent with bovine MATER protein being an oocyte specific maternal effect factor as in mouse.
Collapse
Affiliation(s)
- Sophie Pennetier
- Physiologie de la Reproduction et des Comportements, UMR 6175 Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université François Rabelais de Tours/Haras Nationaux, F-37380 Nouzilly, France
| | - Christine Perreau
- Physiologie de la Reproduction et des Comportements, UMR 6175 Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université François Rabelais de Tours/Haras Nationaux, F-37380 Nouzilly, France
| | - Svetlana Uzbekova
- Physiologie de la Reproduction et des Comportements, UMR 6175 Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université François Rabelais de Tours/Haras Nationaux, F-37380 Nouzilly, France
| | - Aurore Thélie
- Physiologie de la Reproduction et des Comportements, UMR 6175 Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université François Rabelais de Tours/Haras Nationaux, F-37380 Nouzilly, France
| | - Bernadette Delaleu
- Physiologie de la Reproduction et des Comportements, UMR 6175 Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université François Rabelais de Tours/Haras Nationaux, F-37380 Nouzilly, France
| | - Pascal Mermillod
- Physiologie de la Reproduction et des Comportements, UMR 6175 Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université François Rabelais de Tours/Haras Nationaux, F-37380 Nouzilly, France
| | - Rozenn Dalbiès-Tran
- Physiologie de la Reproduction et des Comportements, UMR 6175 Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université François Rabelais de Tours/Haras Nationaux, F-37380 Nouzilly, France
| |
Collapse
|
50
|
Setiady YY, Ohno K, Samy ET, Bagavant H, Qiao H, Sharp C, She JX, Tung KSK. Physiologic self antigens rapidly capacitate autoimmune disease-specific polyclonal CD4+ CD25+ regulatory T cells. Blood 2005; 107:1056-62. [PMID: 16223778 PMCID: PMC1895904 DOI: 10.1182/blood-2005-08-3088] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on CD4+ CD25+ regulatory T cells (Tregs) with transgenic T-cell receptors indicate that Tregs may receive continuous antigen (Ag) stimulation in the periphery. However, the consequence of this Ag encounter and its relevance to physiologic polyclonal Treg function are not established. In autoimmune prostatitis (EAP) of the day-3 thymectomized (d3tx) mice, male Tregs suppressed EAP 3 times better than Tregs from female mice or male mice without prostates. Importantly, the superior EAP-suppressing function was acquired after a 6-day exposure to prostate Ag in the periphery, unaffected by sex hormones. Thus, a brief exposure of physiologic prostate Ag capacitates peripheral polyclonal Tregs to suppress EAP. In striking contrast, autoimmune ovarian disease (AOD) was suppressed equally by male and female Tregs. We now provide evidence that the ovarian Ag develops at birth, 14 days earlier than prostate Ag, and that male Tregs respond to neonatal ovarian Ag in the Treg recipients to gain AOD-suppressing capacity. When d3tx female recipients were deprived of ovarian Ag in the neonatal period, AOD was suppressed by female but not by male Tregs, whereas dacryoadenitis was suppressed by both. We conclude that the physiologic autoAg quickly and continuously enhances disease-specific polyclonal Treg function to maintain self-tolerance.
Collapse
Affiliation(s)
- Yulius Y Setiady
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|