1
|
Li Y, Yuan Q, He X, Zhang Y, You C, Wu C, Li J, Xu HE, Zhao LH. Molecular mechanism of prolactin-releasing peptide recognition and signaling via its G protein-coupled receptor. Cell Discov 2024; 10:91. [PMID: 39223120 PMCID: PMC11369081 DOI: 10.1038/s41421-024-00724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Prolactin-releasing peptide (PrRP) is an RF-amide neuropeptide that binds and activates its cognate G protein-coupled receptor, prolactin-releasing peptide receptor (PrRPR), also known as GPR10. PrRP and PrRPR are highly conserved across mammals and involved in regulating a range of physiological processes, including stress response, appetite regulation, pain modulation, cardiovascular function, and potentially reproductive functions. Here we present cryo-electron microscopy structures of PrRP-bound PrRPR coupled to Gq or Gi heterotrimer, unveiling distinct molecular determinants underlying the specific recognition of the ligand's C-terminal RF-amide motif. We identify a conserved polar pocket that accommodates the C-terminal amide shared by RF-amide peptides. Structural comparison with neuropeptide Y receptors reveals both similarities and differences in engaging the essential RF/RY-amide motifs. Our findings demonstrate the general mechanism governing RF-amide motif recognition by PrRPR and RF-amide peptide receptors, and provide a foundation for elucidating activation mechanisms and developing selective drugs targeting this important peptide-receptor system.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumu Zhang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chongzhao You
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Canrong Wu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingru Li
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Li-Hua Zhao
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Translational Center for Medicinal Structural Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Xia C, Qin X, Zhou L, Shi X, Cai T, Xie Y, Li W, Du R, OuYang Y, Yin Z, Hu G. Reproductive Regulation of PrRPs in Teleost: The Link Between Feeding and Reproduction. Front Endocrinol (Lausanne) 2021; 12:762826. [PMID: 34803923 PMCID: PMC8595397 DOI: 10.3389/fendo.2021.762826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Prolactin-releasing peptide (PrRP), a sort of vital hypothalamic neuropeptide, has been found to exert an enormous function on the food intake of mammals. However, little is known about the functional role of PrRP in teleost. In the present study, two PrRP isoforms and four PrRP receptors were isolated from grass carp. Ligand-receptor selectivity displayed that PrRP1 preferentially binds with PrRP-R1a and PrRP-R1b, while PrRP-R2a and PrRP-R2b were special receptors for PrRP2. Tissue distribution indicated that both PrRPs and PrRP-Rs were highly expressed in the hypothalamus-pituitary-gonad axis and intestine, suggesting a latent function on food intake and reproduction. Using grass carp as a model, we found that food intake could significantly induce hypothalamus PrRP mRNA expression, which suggested that PrRP should be also an anorexigenic peptide in teleost. Interestingly, intraperitoneal (IP) injection of PrRPs could significantly induce serum luteinizing hormone (LH) secretion and pituitary LHβ and GtHα mRNA expression in grass carp. Moreover, using primary culture grass carp pituitary cells as a model, we further found that PrRPs could directly induce pituitary LH secretion and synthesis mediated by AC/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK-II pathways. Finally, estrogen treatment of prepubertal fish elicited increases in PrRPs and PrPR receptors expression in primary cultured grass carp hypothalamus cells, which further confirmed that the PrRP/PrRPR system may participate in the neuroendocrine control of fish reproduction. These results, taken together, suggest that PrRPs might act as a coupling factor in feeding metabolism and reproductive activities in teleost.
Collapse
Affiliation(s)
- Chuanhui Xia
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Xiangfeng Qin
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Lingling Zhou
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Xuetao Shi
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Tianyi Cai
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Yunyi Xie
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Wei Li
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Ruixin Du
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Yu OuYang
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Zhan Yin, ; Guangfu Hu,
| | - Guangfu Hu
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Zhan Yin, ; Guangfu Hu,
| |
Collapse
|
3
|
Yu S, Wang G, Liao J, Tang M, Chen J. Identification of differentially expressed genes associated with egg production in black-boned chicken. Br Poult Sci 2020; 61:3-7. [PMID: 32134329 DOI: 10.1080/00071668.2020.1736268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. Muchuan black-bone chicken is well known in China for its meat quality and medicinal properties; however, its egg-laying performance is not ideal. To better understand the molecular mechanisms of black-boned chicken egg-laying, high-throughput RNA sequencing was performed to compare differences in the pituitary transcriptome between three high-rate (group H) and three low-rate (group L) egg production chickens. 2. In total, 171 differentially expressed genes (DEGs) were identified between the two groups, of which 113 were upregulated and 58 were downregulated in group L. Some of these genes are known to be related to hormone secretion or the regulation of reproductive processes; these include prolactin-releasing hormone (PRLH), distal-less homeobox 6 (DLX6), interferon regulatory factor 4 (IRF4), and cilia and flagella associated protein 69 (CFAP69). Notably, expression pattern analysis indicated that both PRLH and DLX6 may influence egg-laying performance. 3. The dataset provided a foundation for discovering important genes and pathways involved in the chicken egg-laying process, and may help to improve understanding of the molecular mechanisms of chicken reproduction.
Collapse
Affiliation(s)
- S Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - G Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - M Tang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| |
Collapse
|
4
|
McConn BR, Tachibana T, Gilbert ER, Cline MA. Prolactin-releasing peptide increases food intake and affects hypothalamic physiology in Japanese quail (Coturnix japonica). Domest Anim Endocrinol 2020; 72:106464. [PMID: 32279041 DOI: 10.1016/j.domaniend.2020.106464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/24/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Prolactin-releasing peptide (PrRP) increases food intake in birds, whereas it is a potent satiety factor in rodents and fish. The aim of this study was to determine the effects of central injection of PrRP on feeding behaviors and hypothalamic physiology in juvenile Japanese quail (Coturnix japonica). Intracerebroventricular injection of 1,692 pmol of PrRP increased food intake for the first 90 min after injection but did not affect water intake. Quail treated with PrRP displayed more food and drink pecks, less time standing but more perching, and decreased defecations. Prolactin-releasing peptide-injected quail had increased c-Fos immunoreactivity in the dorsomedial nucleus (DMN) and arcuate nucleus (ARC) of the hypothalamus. Hypothalamic neuropeptide Y receptor subtypes 2 and 5 and melanocortin receptor 4 mRNAs were greater in PrRP- than vehicle-injected quail. In the DMN, there was less corticotropin-releasing factor (CRF) mRNA and in the ARC, more CRF mRNA in PrRP- than vehicle-injected chicks. Thus, PrRP increases food intake in quail, which is associated with changes in hypothalamic CRF and neuropeptide Y receptor gene expression and c-Fos-immunolabeled cells in the ARC and DMN.
Collapse
Affiliation(s)
- B R McConn
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - T Tachibana
- Faculty of Agriculture, Ehime University, Ehime, Japan
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Liu Z, Yang N, Yan Y, Li G, Liu A, Wu G, Sun C. Genome-wide association analysis of egg production performance in chickens across the whole laying period. BMC Genet 2019; 20:67. [PMID: 31412760 PMCID: PMC6693279 DOI: 10.1186/s12863-019-0771-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Egg production is the most economically-important trait in layers as it directly influences benefits of the poultry industry. To better understand the genetic architecture of egg production, we measured traits including age at first egg (AFE), weekly egg number (EN) from onset of laying eggs to 80 weeks which was divided into five stage (EN1: from onset of laying eggs to 23 weeks, EN2: from 23 to 37 weeks, EN3: from 37 to 50 weeks, EN4: from 50 to 61 weeks, EN5: from 61 to 80 weeks) based on egg production curve and total egg number across the whole laying period (Total-EN). Then we performed genome-wide association studies (GWAS) in 1078 Rhode Island Red hens using a linear mixed model. RESULTS Estimates of pedigree and SNP-based genetic parameter showed that AFE and EN1 exhibited high heritability (0.51 ± 0.09, 0.53 ± 0.08), while the h2 for EN in other stages varied from low (0.07 ± 0.04) to moderate (0.24 ± 0.07) magnitude. Subsequently, seven univariate GWAS for AFE and ENs were carried out independently, from which a total of 161 candidate SNPs located on GGA1, GGA2, GGA5, GGA6, GGA9 and GGA24 were identified. Thirteen SNP located on GGA6 were associated with AFE and an interesting gene PRLHR that may affect AFE through regulating oxytocin secretion in chickens. Sixteen genome-wide significant SNPs associated with EN3 were in a strong linkage disequilibrium (LD) region spanning from 117.87 Mb to 118.36 Mb on GGA1 and the most significant SNP (rs315777735) accounted for 3.57% of phenotypic variance. Genes POLA1, PDK3, PRDX4 and APOO identified by annotating sixteen genome-wide significant SNPs can be considered as candidates associated with EN3. Unfortunately, our study did not find any candidate gene for the total egg number. CONCLUSIONS Findings in our study could provide promising genes and SNP markers to improve egg production performance based on marker-assisted breeding selection, while further functional validation is still needed in other populations.
Collapse
Affiliation(s)
- Zhuang Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yiyuan Yan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Aiqiao Liu
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China.
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Wang G, Tachibana T, Gilbert ER, Cline MA. Exogenous prolactin-releasing peptide's orexigenic effect is associated with hypothalamic neuropeptide Y in chicks. Neuropeptides 2015; 54:79-83. [PMID: 26349952 DOI: 10.1016/j.npep.2015.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/19/2022]
Abstract
Exogenous administration of prolactin-releasing peptide (PrRP) exerts anorexigenic effects in rats while causing orexigenic effects in chicks. While the central mechanism mediating PrRP's effect on food intake in rodents is somewhat understood, in chicks information is lacking. Therefore, this study was designed to elucidate the hypothalamic mechanism of PrRP induction of hunger perception in chicks. Chicks that received intracerebroventricular (ICV) injections of PrRP dose-dependently increased their food intake with no effect on water intake or whole blood glucose concentration. The threshold of food intake stimulation was as low as 3pmol, thus as compared to other neuropeptides PrRP is exceptionally potent. The mRNA abundance of several appetite-associated neuropeptide genes was quantified and hypothalamic neuropeptide Y (NPY) mRNA was increased in PrRP-injected chicks. Therefore, the orexigenic effects of PrRP may be associated with increased NPY-ergic tone. These results provide insight into the evolutionary aspects of appetite regulation during the course of divergent evolution of mammals and birds.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
7
|
Tachibana T, Sakamoto T. Functions of two distinct "prolactin-releasing peptides" evolved from a common ancestral gene. Front Endocrinol (Lausanne) 2014; 5:170. [PMID: 25426099 PMCID: PMC4226156 DOI: 10.3389/fendo.2014.00170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) is one of the RF-amide peptides and was originally identified in the bovine hypothalamus as a stimulator of prolactin (PRL) release. Independently, another RF-amide peptide was found in Japanese crucian carp and named Carassius-RFa (C-RFa), which shows high homology to PrRP and stimulates PRL secretion in teleost fish. Therefore, C-RFa has been recognized as fish PrRP. However, recent work has revealed that PrRP and C-RFa in non-mammalian vertebrates are encoded by separate genes originated through duplication of an ancestral gene. Indeed, both PrRP and C-RFa are suggested to exist in teleost, amphibian, reptile, and avian species. Therefore, we propose that non-mammalian PrRP (C-RFa) be renamed PrRP2. Despite a common evolutionary origin, PrRP2 appears to be a physiological regulator of PRL, whereas this is not a consistent role for PrRP itself. Further work revealed that the biological functions of PrRP and PrRP2 are not limited solely to PRL release, because they are also neuromodulators of several hypothalamus-pituitary axes and are involved in some brain circuits related to the regulation of food intake, stress, and cardiovascular functions. However, these actions appear to be different among vertebrates. For example, central injection of PrRP inhibits feeding behavior in rodents and teleosts, while it stimulates it in chicks. Therefore, both PrRP and PrRP2 have acquired diverse actions through evolution. In this review, we integrate the burgeoning information of structures, expression profiles, and multiple biological actions of PrRP in higher vertebrates, as well as those of PrRP2 in non-mammals.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- *Correspondence: Tetsuya Tachibana, Laboratory of Animal Production, Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan e-mail:
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Japan
| |
Collapse
|
8
|
Dodd GT, Luckman SM. Physiological Roles of GPR10 and PrRP Signaling. Front Endocrinol (Lausanne) 2013; 4:20. [PMID: 23467899 PMCID: PMC3587801 DOI: 10.3389/fendo.2013.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/19/2013] [Indexed: 12/28/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) was first isolated from bovine hypothalamus, and was found to act as an endogenous ligand at the G-protein-coupled receptor 10 (GPR10 or hGR3). Although originally named as it can affect the secretion of prolactin from anterior pituitary cells, the potential functions for this peptide have been greatly expanded over the past decade. Anatomical, pharmacological, and physiological studies indicate that PrRP, signaling via the GPR10 receptor, may have a wide range of roles in neuroendocrinology; such as in energy homeostasis, stress responses, cardiovascular regulation, and circadian function. This review will provide the current knowledge of the PrRP and GPR10 signaling system, its putative functions, implications for therapy, and future perspectives.
Collapse
Affiliation(s)
- Garron T. Dodd
- Faculty of Life Sciences, AV Hill Building, University of ManchesterManchester, UK
| | - Simon M. Luckman
- Faculty of Life Sciences, AV Hill Building, University of ManchesterManchester, UK
- *Correspondence: Simon M. Luckman, Faculty of Life Sciences, AV Hill Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK. e-mail:
| |
Collapse
|
9
|
Qaiser F, Wahab F, Wiqar MA, Hashim R, Leprince J, Vaudry H, Tena-Sempere M, Shahab M. Study of the role of novel RF-amide neuropeptides in affecting growth hormone secretion in a representative non-human primate (Macaca mulatta). Endocrine 2012; 42:658-63. [PMID: 22527890 DOI: 10.1007/s12020-012-9672-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
RF amide peptide family with distinctive terminal -Arg-Phe-NH(2) signature is evolutionarily conserved from invertebrates to mammals. These neuropeptides have been shown to affect diverse functions in invertebrates and vertebrates including influencing pituitary hormone secretion. More recently, two members of this family 26-amino acid and 43-amino acid RF amide peptide (26RFa and 43RFa, respectively) originally isolated from frog have been cloned in rats and humans. Actions of these peptides on hormone secretion have not been studied in primates. In the present study, effect of iv administration of three different doses of human 26RFa and 43RFa on GH secretion was studied in a representative higher primate, the rhesus monkey. As control against these two peptides, normal saline and a scrambled sequence of 26RFa was administered. A set of four intact adult male monkeys received the administration in a random order. Peripheral blood samples were obtained from the chairrestrained but fully conscious animals for a period of 30 min before and 240 min after the administration at 15-min intervals. For quantitative measurement of GH concentration, a human GH chemiluminescent immunometric assay was used. Peripheral administration of 38 and 76 nmol doses of 26RFa significantly (P < 0.05) stimulated GH AUC during a 0-120 min period after injection of 26RFa. In contrast to 26RFa, administration of 43RFa appeared to suppress GH levels during the later stages of the sampling i.e. from 120 to 240 min period. Mean AUC during the period was significantly (P < 0.05) reduced by 76 nmol dose of 43RFa, while 38 nmol dose of 43RFa also had similar effect but lacked full statistical significance (P = 0.058). To our knowledge present study reports for the first time-specific stimulatory effect of 26RFa on the GH secretion and a novel inhibitory and delayed effect of 43RFa on the GH secretion in higher primates. In conclusion, present findings extend evidence for endocrine actions of RF amides in primates and suggest differential effect of these peptides on GH secretion in primates.
Collapse
Affiliation(s)
- Fatima Qaiser
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang Y, Wang CY, Wu Y, Huang G, Li J, Leung FC. Identification of the receptors for prolactin-releasing peptide (PrRP) and Carassius RFamide peptide (C-RFa) in chickens. Endocrinology 2012; 153:1861-74. [PMID: 22355069 DOI: 10.1210/en.2011-1719] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prolactin-releasing peptide (PrRP) and its structurally related peptide, Carassius Arg-Phe-amide peptide (C-RFa), have been reported to play similar roles in regulating food intake and pituitary functions in vertebrates. However, the identity, functionality, and expression of the receptor(s) for PrRP and C-RFa remain largely unknown in nonmammalian vertebrates, including birds. In this study, three receptors homologous to mammalian PrRP receptor (PrRPR), named cPrRPR1, cPrRPR2, and cC-RFaR, respectively, were cloned from chicken brain by RT-PCR. Using a pGL3-NFAT-RE-luciferase reporter system, we demonstrated that cPrRPR1 and cPrRPR2 expressed in Chinese hamster ovarian cells could be activated by cPrRP₂₀ and cC-RFa₂₀ potently, whereas cC-RFaR could only be activated effectively by cC-RFa₂₀ (EC₅₀, 0.11 nM), indicating that cPrRPR1 and cPrRPR2 can function as common receptors for PrRP and C-RFa, whereas cC-RFaR is a receptor specific to C-RFa. Using a pGL3-CRE-luciferase reporter system, cPrRPR1, cPrRPR2, and cC-RFaR expressed in Chinese hamster ovarian cells were also shown to activate intracellular protein kinase A signaling pathway upon cC-RFa₂₀ treatment (100 nM). Moreover, RT-PCR assay revealed that cPrRPR1, cPrRPR2, and cC-RFaR were widely expressed in most adult chicken tissues examined, including various regions of brain. These findings, together with evidence of PrRP and C-RFa encoded by separate genes in chicken, Xenopus, and zebrafish, and the differential expression of PrRP and C-RFa genes in chicken tissues, strongly suggest that PrRP and C-RFa may play similar yet distinctive roles in nonmammalian vertebrates, including chicken, and their actions are mediated by common receptor(s) or a specific C-RFa receptor.
Collapse
Affiliation(s)
- Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, School of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
11
|
Tachibana T, Moriyama S, Takahashi A, Tsukada A, Oda A, Takeuchi S, Sakamoto T. Isolation and characterisation of prolactin-releasing peptide in chicks and its effect on prolactin release and feeding behaviour. J Neuroendocrinol 2011; 23:74-81. [PMID: 21083629 DOI: 10.1111/j.1365-2826.2010.02078.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prolactin (PRL)-releasing peptides (PrRP) have been identified in mammals, amphibians and fishes, and these animals have several PrRPs that consist of different numbers of amino acids such as 20, 31 and 37. In the present study, we identified the cDNA encoding chicken prepro-PrRP, which can generate putative PrRPs, and cloned and sequenced it. Sequences for the coding region suggested the occurrence of putative PrRPs of 20, 31 and 32 amino acid residues. The amino acid sequence of chicken PrRP20 showed 100%, 95% and 70% identity with those of PrRP20s from teleosts, Xenopus laevis and mammals, respectively. On the other hand, chicken PrRP31 showed approximately 90% and 52-55% homology to PrRP31s of X. laevis and mammals, respectively. Native chicken PrRPs were purified from an acid extract of chick brain by a Sep-Pak C18 cartridge (Waters Corp., Milford, MA, USA), affinity chromatography using anti-salmon PrRP serum, and reverse phase high-performance liquid chromatography (HPLC) on an ODS-120T column (TOSOH, Tokyo, Japan). The existence of chicken PrRP20 and PrRP31 in the brain was demonstrated by comparing them with the synthetic peptides using HPLC and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Chicken PrRP31 increased plasma PRL concentration when administered peripherally, whereas central administration decreased the concentration, suggesting that chicken PrRP31 has a distinct effect on PRL secretion between tissues in chicks. On the other hand, plasma growth hormone concentration decreased with both peripheral and central administrations of chicken PrRP31. Furthermore, central administration of chicken PrRP31 increased food intake in chicks compared to those observed in mammals and fishes. Taken together with the results indicating that chicken PrRP20 did not show endocrine and behavioural effects, we showed that chicken PrRP has a similar amino acid sequence to teleosts, Xenopus laevis and mammals, although the actions were variable among vertebrates.
Collapse
Affiliation(s)
- T Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan.
School of Marine Biosciences, Kitasato University, Ofunato, Iwate, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Watanabe S, Kaneko T. Prolactin-releasing peptide receptor expressed in the pituitary in Mozambique tilapia Oreochromis mossambicus: an aspect of prolactin regulatory mechanisms. Gen Comp Endocrinol 2010; 167:27-34. [PMID: 20226787 DOI: 10.1016/j.ygcen.2010.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/19/2010] [Accepted: 03/08/2010] [Indexed: 11/17/2022]
Abstract
Prolactin (PRL)-releasing peptide (PrRP) has been reported as a strong candidate for a stimulating factor of both PRL secretion and expression in teleost species; however, there is no information available on its receptor. Here we report cDNA cloning and characterization of PrRP receptor expressed in the pituitary of Mozambique tilapia Oreochromis mossambicus. The deduced amino acid sequence of cDNA for tilapia PrRP receptor shared 50-83% homology with other vertebrate homologs. Intracellular calcium mobilization assay revealed that PrRP receptor responded to as low as 1nM order of tilapia PrRP, indicating its high affinity to PrRP. The expression of PrRP receptor was detected in the brain, pituitary, heart, spleen, kidney and rectum of freshwater (FW)- and seawater (SW)-adapted fish. There was no significant difference between FW and SW fish in transcription levels of PrRP receptor in the rostral pars distalis (RPD) of the pituitary. Similarly, the PrRP expression level in the whole brain was not changed by environmental salinity. Immunohistochemistry with a specific antibody showed that PrRP receptor was mainly localized in the cells of the RPD and neurohypophysis in the pituitary of both FW and SW tilapia. We also examined the effects of PrRP on PRL expression in primary-incubated PRL cells of FW tilapia; PrRP failed to stimulate PRL expression in PRL cells in vitro. These results suggest that in vivo stimulatory effects of PrRP on PRL gene expression reported in teleosts are presumably mediated by an unknown regulator secreted from the neurohypophysis expressing PrRP receptor.
Collapse
Affiliation(s)
- Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| | | |
Collapse
|
13
|
A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): Biosynthesis, mode of action and functional significance. Prog Neurobiol 2009; 88:76-88. [PMID: 19428963 DOI: 10.1016/j.pneurobio.2009.02.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/22/2008] [Accepted: 02/12/2009] [Indexed: 11/23/2022]
Abstract
Identification of novel neurohormones that play important roles in the regulation of pituitary function is essential for the progress of neurobiology. The decapeptide gonadotropin-releasing hormone (GnRH) is the primary factor responsible for the hypothalamic control of gonadotropin secretion. Gonadal sex steroids and inhibin inhibit gonadotropin secretion via feedback from the gonads, but a neuropeptide inhibitor of gonadotropin secretion was, until recently, unknown in vertebrates. In 2000, a novel hypothalamic dodecapeptide that inhibits gonadotropin release was identified in quail and termed gonadotropin-inhibitory hormone (GnIH). This was the first demonstration of a hypothalamic neuropeptide inhibiting gonadotropin release in any vertebrate. GnIH acts on the pituitary and GnRH neurons in the hypothalamus via a novel G protein-coupled receptor for GnIH to inhibit gonadal development and maintenance by decreasing gonadotropin release and synthesis. GnIH neurons express the melatonin receptor and melatonin stimulates the expression of GnIH. Because GnIH exists and functions in several avian species, GnIH is considered to be a new key neurohormone controlling avian reproduction. From a broader perspective, subsequently the presence of GnIH homologous peptides has been demonstrated in other vertebrates. Mammalian GnIH homologous peptides also act to inhibit reproduction by decreasing gonadotropin release in several mammalian species. Thus, the discovery of GnIH has opened the door to a new research field in reproductive neurobiology. This review summarizes the advances made in our understanding of the biosynthesis, mode of action and functional significance of GnIH, a newly discovered key neurohormone, and its homologous peptides.
Collapse
|
14
|
Moriyama S, Kasahara M, Amiya N, Takahashi A, Amano M, Sower SA, Yamamori K, Kawauchi H. RFamide peptides inhibit the expression of melanotropin and growth hormone genes in the pituitary of an Agnathan, the sea lamprey, Petromyzon marinus. Endocrinology 2007; 148:3740-9. [PMID: 17494999 DOI: 10.1210/en.2007-0356] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptides with the Arg-Phe-amide motif at their C termini (RFamide peptides) were identified in the brains of several vertebrates, and shown to have important physiological roles in neuroendocrine, behavioral, sensory, and autonomic functions. The present study identified RFamide peptides, which are teleost prolactin-releasing peptide (PrRP) homologs, in the sea lamprey, Petromyzon marinus and characterized their effect on the release of pituitary hormones in vitro. Two RFamide peptides (RFa-A and RFa-B) were isolated from an acid extract of sea lamprey brain, including hypothalamus by Sep-Pak C18 cartridge, affinity chromatography using anti-salmon PrRP serum, and reverse-phase HPLC on an ODS-120T column. Amino acid (aa) sequences and mass spectrometric analyses revealed that RFa-A and RFa-B consist of 25 and 20 aa, respectively, and have 75% sequence identity within the C-terminal 20 aa. The RFa-B cDNA encoding a preprohormone of 142 aa was cloned from the lamprey brain, and the deduced aa sequence from positions 48-67 was identical to the sequence of RFa-B. However, the preprohormone does not include an aa sequence similar to the RFa-A sequence. Cell bodies, which were immunoreactive to anti-salmon PrRP serum, were located in the periventricular arcuate nucleus, ventral part of the hypothalamus, and immunoreactive fibers were abundant from the hypothalamus to the brain. A small number of immunoreactive fibers were detected in the dorsal half of the rostral pars distalis of the pituitary, close to the GH-producing cells. In addition, anti-salmon PrRP immunoreactivities were observed in the pars intermedia, corresponding to melanotropin cells. Likewise, signal of RFa-B mRNA was detected not only in the brain but also in the pars intermedia. The synthetic RFa-A and -B inhibited GH mRNA expression in a dose-dependent fashion in vitro, which is comparable to the inhibitory effect of teleost PrRP on GH release. Both RFa-A and -B also inhibited the expression of proopiomelanotropin mRNA, but no effects were observed in the expression of proopiocortin and gonadotropin beta mRNAs. The results indicate that RFamide peptides, which are teleost PrRP homologs, are present in the hypothalamus and pituitary of sea lamprey, and may be physiologically involved in the inhibition of GH and melanotropin release in the sea lamprey pituitary.
Collapse
Affiliation(s)
- Shunsuke Moriyama
- School of Fisheries Sciences, Kitasato University, Sanriku, Iwate 022-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Spuch C, Diz-Chaves Y, Pérez-Tilve D, Alvarez-Crespo M, Mallo F. Prolactin-releasing Peptide (PrRP) increases prolactin responses to TRH in vitro and in vivo. Endocrine 2007; 31:119-24. [PMID: 17873321 DOI: 10.1007/s12020-007-0031-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 05/17/2007] [Accepted: 05/17/2007] [Indexed: 11/25/2022]
Abstract
The Prolactin-releasing Peptide (PrRP) is a 31-aminoacid peptide produced and secreted from the hypothalamus, and postulated to promote the prolactin release from the pituitary. However, the action of PrRP remain controversial, since it was described to have potency comparable enough to TRH, although there are many evidences that PrRP is less potent than TRH. Here we have studied the effects of PrRP alone or in combination with TRH in the prolactin levels of rat pituitary primary cell cultures in vitro and also in vivo prolactin responses in randomly cycling and estrogens-treated female rats. PrRP itself increased prolactin levels in vitro and in vivo, although in a magnitude several times lower than TRH. In vivo PrRP promotes an atypical non-peaking progressive and maintained prolactin increase. On the other hand, PrRP markedly increased the prolactin responses to TRH in vitro (10-30 fold increase) and in vivo (up to three-fold increase). In addition, FGF-2 and EGF, two important growth factors present in the pituitary, reduced the PrRP-induced prolactin increase in vitro. Taken together our results suggest that PrRP released from the hypothalamus may be relevant to modulate the circulating prolactin levels in the rat.
Collapse
Affiliation(s)
- Carlos Spuch
- Department of Functional Biology and Health Sciences, Laboratory of Endocrinology, Faculty of Sciences, Campus of Vigo, University of Vigo, Vigo, 36310, Spain.
| | | | | | | | | |
Collapse
|
16
|
Montefusco-Siegmund RA, Romero A, Kausel G, Muller M, Fujimoto M, Figueroa J. Cloning of the prepro C-RFa gene and brain localization of the active peptide in Salmo salar. Cell Tissue Res 2006; 325:277-85. [PMID: 16557384 DOI: 10.1007/s00441-006-0168-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
In all vertebrates, the synthesis and release of prolactin (Prl) from pituitary lactotroph cells is tightly controlled by hypothalamic factors. We have cloned and characterized a hypothalamic cDNA from Atlantic salmon (Salmo salar) encoding C-RFa, a peptide structurally related to mammalian Prl-releasing peptide (PrRP). The deduced preprohormone precursor is composed of 155 amino acid residues presenting a 87.1% similarity to chum salmon C-RFa and a 100% similarity to all fish C-RFa in the bioactive precursor motifs. C-RFa-immunoreactive perikarya and fibres were located in the brain of S. salar, especially in the hypothalamus, olfactory tract, optic tectum and cerebellum. In contrast, immunolabelled fibres were not observed in the pituitary stalk or in the hypophysis. However, interestingly, we detected immunolabelled cells in the rostral pars distalis of the pituitary in the basolateral region in which Prl is synthesized. These results were confirmed by obtaining a strong signal by using reverse transcription/polymerase chain reaction (RT-PCR) on mRNA from both hypothalamus and pituitary. These data show, for the first time, by immunohistochemistry and RT-PCR, that C-RFa is produced in pituitary cells. Finally, based on these results, a possible function for C-RFa as a locally produced PrRP in this teleost is discussed.
Collapse
Affiliation(s)
- R A Montefusco-Siegmund
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | | | | | | | | | | |
Collapse
|
17
|
Ukena K, Tsutsui K. A new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides: structure, localization, and function. MASS SPECTROMETRY REVIEWS 2005; 24:469-486. [PMID: 15389843 DOI: 10.1002/mas.20031] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recently, we identified a novel hypothalamic neuropeptide with a C-terminal LPLRF-amide sequence in the quail brain. This avian neuropeptide was shown to inhibit gonadotropin release from the cultured anterior pituitary. This peptide is the first hypothalamic peptide that inhibited gonadotropin release reported in vertebrates. We, therefore, termed it gonadotropin-inhibitory hormone (GnIH). After this finding, we found that GnIH-related peptides were present in the brains of other vertebrates, such as mammals, amphibians, and fish. These GnIH-related peptides possessed a LPXRF-amide (X=L or Q) motif at their C-termini in all investigated animals. Mass spectrometric analyses combined with immunoaffinity chromatography were powerful techniques for the identification of mature endogenous LPXRF-amide peptides. The identified LPXRF-amide peptides were found to be localized in the hypothalamus and brainstem areas, and to regulate pituitary hormone release. Subsequently, cDNAs that encode LPXRF-amide peptides were characterized in vertebrate brains. In this review, we summarize the identification, localization, and function of a new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides in vertebrates. Recent studies on the receptors for LPXRF-amide peptides will also be reviewed.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | | |
Collapse
|
18
|
Swinnen E, Boussemaere M, Denef C. Stimulation and inhibition of prolactin release by prolactin-releasing Peptide in rat anterior pituitary cell aggregates. J Neuroendocrinol 2005; 17:379-86. [PMID: 15929743 DOI: 10.1111/j.1365-2826.2005.01313.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the G-protein coupled receptor GPR10 is highly expressed in the anterior pituitary, the action of its ligand prolactin-releasing peptide-31 (PrRP) in this tissue is controversial. The present study examined the acute effect of this peptide on prolactin secretion in perifused rat pituitary reaggregate cell cultures from adult male rats. PrRP readily and dose-dependently stimulated prolactin release at concentrations of 10 and 100 nM, although with a magnitude several times lower than that of thyrotropin-releasing hormone. Surprisingly, PrRP inhibited prolactin release at 0.1 and 1 nm in a pertussis toxin-sensitive manner. Inhibition was markedly favoured by long-term culture. Stimulation and inhibition were differentially affected by the presence of hormones during culture: dexamethasone favoured the inhibitory effect and decreased the magnitude of the stimulatory effect, while oestradiol and triiodothyronine strongly reduced stimulation, as well as inhibition. PrRP, even at 1 nm, counteracted the inhibition of prolactin release by dopamine. There was no effect of PrRP on growth hormone release in aggregates cultured either in the absence or presence of hormones. The present results confirm the prolactin-releasing capacity of PrRP at nanomolar doses and reveal a hitherto unrecognized inhibitory activity of this peptide. Furthermore, dopamine inhibition of prolactin release is antagonized by PrRP, irrespective of the PrRP dose.
Collapse
Affiliation(s)
- E Swinnen
- Laboratory of Cell Pharmacology, University of Leuven, Medical School, Campus Gasthuisberg, Belgium
| | | | | |
Collapse
|
19
|
Abstract
With the completion of the human genome, many genes will be uncovered with unknown functions. The 'orphan' G protein coupled receptors (GPCRs) are examples of genes without known functions. These are genes that exhibit the seven helical conformation hallmark of the GPCRs but that are called 'orphans' because they are activated by none of the primary messengers known to activate GPCRs in vivo. They are the targets of undiscovered transmitters and this lack of knowledge precludes understanding their function. Yet, because they belong to the supergene family that has the widest regulatory role in the organism, the orphan GPCRs have generated much excitement in academia and industry. They hold much hope for revealing new intercellular interactions that will open new areas of basic research which ultimately will lead to new therapeutic applications. However, the first step in understanding the function of orphan GPCRs is to 'deorphanize' them, to identify their natural transmitters. Here we review the search for the natural primary messengers of orphan GPCRs and focus on two recently deorphanized GPCR systems, the melanin-concentrating hormone (MCH) and prolactin-releasing peptide (PrRP) systems, to illustrate the strategies applied to solve their function and to exemplify the therapeutic potentials that such systems hold.
Collapse
Affiliation(s)
- Steven H S Lin
- Department of Pharmacology and Developmental Cellular Biology, College of Medicine, University of California, Irvine, California 92612, USA
| | | |
Collapse
|
20
|
Yano T, Iijima N, Kakihara K, Hinuma S, Tanaka M, Ibata Y. Localization and neuronal response of RFamide related peptides in the rat central nervous system. Brain Res 2003; 982:156-67. [PMID: 12915251 DOI: 10.1016/s0006-8993(03)02877-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RFamide related peptides (RFRP)-1 and RFRP-3 are neuropeptides derived from the same preproprotein. We have examined the distribution of RFRP-1 and RFRP-3 immunoreactivities (irs) in the rat central nervous system using specific antibodies. Neuronal cell bodies containing both RFRP-1 and RFRP-3 were detected within the caudal portion of the hypothalamus, the periventricular nucleus (PerVN), and the portion around or above the ventromedial nucleus of the hypothalamus. Both immunohistochemical and in situ hybridization analyses showed that neurons containing RFRP immunoreactivity and mRNA were distinct from those of neuropeptide FF, which contains the same structure at the C-terminus, Pro-Glu-Arg-Phe-NH2, as RFRP-3. Fibers containing both RFRP-1 and RFRP-3 were widely distributed in the brain: the lateral septal nucleus in the telencephalon, the paraventricular thalamic nucleus, various hypothalamic nuclei, the periaqueductal gray in the midbrain, the parabrachial nucleus in the pons, and the nucleus tractus solitarius (NTS) in the medulla oblongata. Only RFRP-1-ir was detected within the posterior gray horn in the spinal cord. Only RFRP-3-ir was detected in several thalamic nuclei and the spinal cord, especially at the posterior intermediate sulcus and within the anterior gray horn. Intracerebroventricular administration of RFRPs induced c-Fos expression in the anterior portion of the NTS, locus coeruleus, the nucleus of incertus, supraoptic nucleus, PerVN and the arcuate nucleus of the hypothalamus. These results show that RFRP-1 and RFRP-3 are widely distributed in the rat central nervous system and might be involved in various functions such as the neuroendocrine system or pain modulation.
Collapse
Affiliation(s)
- Takahiko Yano
- Pharmacology Research Laboratories I, Pharmaceutical Research Division, Takeda Chemical Industries Ltd, 2-17-85 Juso-Honmachi, Yodogawaku, Osaka 532-8686, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Anderson ST, Kokay IC, Lang T, Grattan DR, Curlewis JD. Quantification of prolactin-releasing peptide (PrRP) mRNA expression in specific brain regions of the rat during the oestrous cycle and in lactation. Brain Res 2003; 973:64-73. [PMID: 12729954 DOI: 10.1016/s0006-8993(03)02543-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Real-time Taqman RT-PCR was used to make quantitative comparisons of the levels of PrRP mRNA expression in micropunch brain samples from rats at different stages of the oestrous cycle and in lactation. The nucleus of the solitary tract and ventrolateral reticular nuclei of the medulla oblongata contained significantly (P<0.05) greater levels of PrRP mRNA than any hypothalamic region. Within the hypothalamus, the highest level of PrRP expression was localised to the dorsomedial aspect of the ventromedial hypothalamus. All other hypothalamic regions exhibited significantly (P<0.05) lower levels of expression, including the rostral and caudal dorsomedial hypothalamus. Very low levels of PrRP expression were observed in the arcuate nucleus, paraventricular nucleus, medial preoptic nucleus and ventrolateral aspect of the ventromedial hypothalamus. No significant changes in PrRP expression were noted in any sampled region between proestrus, oestrus or dioestrus. Similarly, PrRP expression in hypothalamic regions did not differ between lactating and non-lactating (dioestrous) animals. During validation of RT-PCR techniques we cloned and sequenced a novel splice variant of PrRP from the hypothalamus. This variant arises from alternative splicing of the donor site within exon 2, resulting in an insert of 64 base pairs and shift in the codon reading frame with the introduction of an early stop codon. In the hypothalamus and brainstem, mRNA expression of the variant was restricted to regions that expressed PrRP. These results suggest that PrRP expression in the hypothalamus may be more widespread than previously reported. However, the relatively low level of PrRP in the hypothalamus and the lack of significant changes in expression during the oestrous cycle and lactation provides further evidence that PrRP is unlikely to be involved in the regulation of prolactin secretion.
Collapse
Affiliation(s)
- S T Anderson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | |
Collapse
|
22
|
Vergoni AV, Watanobe H, Guidetti G, Savino G, Bertolini A, Schiöth HB. Effect of repeated administration of prolactin releasing peptide on feeding behavior in rats. Brain Res 2002; 955:207-13. [PMID: 12419538 DOI: 10.1016/s0006-8993(02)03462-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Prolactin releasing peptide (PrRP) has been reported to reduce food intake in rats. We tested the effect of i.c.v. administration of PrRP-31 on food intake in both food deprived and free-feeding rats. We did not find any effect of PrRP-31 on food intake after single injections of up to an 8-nmol dose, but observed a marked decrease in food intake and body weight in rats that received a repeated twice daily administration of 8 nmol of PrRP-31. This effect was associated with an adverse behavioral pattern, indicating that the repeated high doses of the peptide caused non-specific effects inducing anorexia. We also tested several other behavioral parameters like locomotion and exploratory time, grooming and resting time, using lower doses of PrRP that did not cause the adverse behavior. Moreover, we carried out locomotor and sensory motor activity tests at the doses that exerted the most pronounced effect on the food intake. None of these tests suggested any specific behavioral effect of PrRP. We conclude that the behavioral pattern induced by PrRP is likely to be different from those induced by many other neuropeptides affecting food intake in rats.
Collapse
|
23
|
Moriyama S, Ito T, Takahashi A, Amano M, Sower SA, Hirano T, Yamamori K, Kawauchi H. A homolog of mammalian PRL-releasing peptide (fish arginyl-phenylalanyl-amide peptide) is a major hypothalamic peptide of PRL release in teleost fish. Endocrinology 2002; 143:2071-9. [PMID: 12021171 DOI: 10.1210/endo.143.6.8744] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two PRL-releasing peptides (PrRP20 and PrRP31) were recently identified from mammalian hypothalamus by an orphan receptor strategy, and a C-terminal RF (arginyl-phenylalamyl-) amide peptide (RFa), structurally related to mammalian PrRP, was also identified from the brain of the Japanese crucian carp (C-RFa) by an intestine-contracting assay. However, to date there have been no reported studies that have examined the PRL-releasing effects of RFa in fish. In the present study we determined the cDNA, primary structure, and function of a homolog of the mammalian PrRP20 in the chum salmon, Oncorhynchus keta. An RFa cDNA encoding a preprohormone of 155 amino acids was cloned from the hypothalamus of chum salmon by 3'- and 5'-rapid amplification of cDNA ends. A native RFa was purified from an acid extract of salmon hypothalami by a Sep-Pak C(18) cartridge, affinity chromatography using anti-synthetic C-RFa, and reverse phase HPLC on an ODS-120T column. The salmon RFa proved to be identical with C-RFa on the basis of elution position on reverse phase HPLC. Immunocytochemical staining in rainbow trout, Oncorhynchus mykiss, revealed that C-RFa-immunoreactive cell bodies were located in the posterior part of hypothalamus and C-RFa-immunoreactive fibers were abundant from the hypothalamus to the ventral telencephalon. A small number of immunoreactive fibers were projected to the pituitary and terminated close to the PRL cells in the rostral pars distalis and to the somatolactin (SL) cells in the pars intermedia. The hypophysiotropic effects of the fish homolog were determined on the release of PRL, SL, and GH from the pituitary of the rainbow trout. Plasma PRL and SL levels were increased at 3 and 9 h, respectively, after ip injection of the synthetic C-RFa into the rainbow trout at doses of 50 and 500 ng/g body weight. In contrast, plasma GH levels were decreased after 1 h at 500 ng/g body weight. Perifusion of the trout pituitaries with synthetic C-RFa at concentrations of 10 pM to 100 nM demonstrated maximum PRL release at 100 pM and maximum SL release at 10 and 100 nM. However, GH release was not affected. These data are the first to demonstrate that a homolog of mammalian PrRP (fish RFa) is a major hypothalamic peptide of PRL release in teleost fish.
Collapse
Affiliation(s)
- Shunsuke Moriyama
- Kitasato University School of Fisheries Sciences, Sanriku, Iwate 022-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee DK, George SR, O'Dowd BF. Novel G-protein-coupled receptor genes expressed in the brain: continued discovery of important therapeutic targets. Expert Opin Ther Targets 2002; 6:185-202. [PMID: 12223080 DOI: 10.1517/14728222.6.2.185] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The rhodopsin family of G-protein-coupled receptors (GPCRs) is the largest known group of cell-surface mediators of signal transduction. The vast majority of these receptors were discovered by methods based upon shared sequence homologies found throughout this family. While such efforts identified a multitude of receptor subtypes for previously known ligands, numerous receptors have been discovered for which endogenous ligands were unknown. These receptors are commonly referred to as orphan receptors. One of the most important tasks of modern pharmacology lies in elucidating the functions of these receptors. Of particular interest are receptors with recognised expression in the central nervous system, given that many psychiatric and neurodegenerative disorders are mediated by unknown mechanisms. Hence, this collection of putative neurotransmitter and neuromodulator signal mediators represents a substantial and untapped resource for novel drug discovery. Recently, various methodologies have accelerated the discovery of novel ligands for these orphan receptors, identifying the basic components required for further physiological ligand/receptor system characterisation. Equipped with proven ligand identification strategies, the characterisation of all orphan GPCRs and the exploitation of their exciting potential as targets for the discovery of novel drugs is anticipated.
Collapse
Affiliation(s)
- Dennis K Lee
- Department of Pharmacology, University of Toronto, Medical Science Building, 8 Taddle Creek Rd. Rm. 4352, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|