1
|
Berisha B, Thaqi G, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Effect of the gonadotropin surge on steroid receptor regulation in preovulatory follicles and newly formed corpora lutea in the cow. Domest Anim Endocrinol 2024; 89:106876. [PMID: 39047595 DOI: 10.1016/j.domaniend.2024.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The objective of the study was to characterize the mRNA expression patterns of specific steroid hormone receptors namely, estrogen receptors (ESRRA-estrogen related receptor alpha and ESRRB-estrogen related receptor beta) and progesterone receptors (PGR) in superovulation-induced bovine follicles during the periovulation and subsequent corpus luteum (CL) formation. The bovine ovaries (n = 5 cow / group), containing preovulatory follicles or early CL, were collected relative to injection of the gonadotropin-releasing hormone (GnRH) at (I) 0 h, (II) 4 h, (III) 10 h, (IV) 20 h, (V) 25 h (preovulatory follicles) and (VI) 60 h (CL, 2-3 days after induced ovulation). In this experiment, we analyzed the steroid receptor mRNA expression and their localization in the follicle and CL tissue. The high mRNA expression of ESRRA, ESRRB, and PGR analyzed in the follicles before ovulation is significantly reduced in the group of follicles during ovulation (25 h after GnRH), rising again significantly after ovulation in newly formed CL, only for ESRRA and PGR (P < 0.05). Immunohistochemically, the nuclei of antral follicles' granulosa cells showed a positive staining for ESRRA, followed by higher activity in the large luteal cells just after ovulation (early CL). In contrast, the lower PGR immunopresence in preovulatory follicles increased in both small and large luteal cell nuclei after follicle ovulation. Our results of steroid receptor mRNA expression in this experimentally induced gonadotropin surge provide insight into the molecular mechanisms of the effects of steroid hormones on follicular-luteal tissue in the period close to the ovulation and subsequent CL formation in the cow.
Collapse
Affiliation(s)
- Bajram Berisha
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany; Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtinë, Kosovo; Academy of Science of Albania, Tirana, Albania
| | - Granit Thaqi
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany.
| | - Dieter Schams
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany
| |
Collapse
|
2
|
Zhao Y, Wang J, Qin W, Hu Q, Li J, Qin R, Ma N, Zheng F, Tian W, Jiang J, Huang J, Qin A. Dehydroepiandrosterone promotes ovarian angiogenesis and improves ovarian function in a rat model of premature ovarian insufficiency by up-regulating HIF-1α/VEGF signalling. Reprod Biomed Online 2024; 49:103914. [PMID: 38917774 DOI: 10.1016/j.rbmo.2024.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 06/27/2024]
Abstract
RESEARCH QUESTION What impact does dehydroepiandrosterone (DHEA) have on ovarian angiogenesis and function in a rat model of with premature ovarian insufficiency (POI), and what are the potential mechanisms of action? DESIGN DHEA was added to a culture of human microvascular endothelial cells (HMEC-1) to investigate its effects on cell proliferation, migration and tube formation. A rat model of POI was established by intraperitoneal injection of cyclophosphamide, followed by continuous oral administration of DHEA or vehicle for 28 days. Ovarian angiogenesis, follicular growth and granulosa cell survival in ovarian tissues were assessed through haematoxylin and eosin staining, immunohistochemistry and TdT (terminal deoxynucleotidyl transferase)-mediated dUTP nick-end labelling (TUNEL). The effect of DHEA on the fertility of rats with POI was evaluated in pregnant animals. The expression levels of characteristic genes and proteins in the hypoxia-inducible factor (HIF)-1α/vascular endothelial growth factor (VEGF) pathway was determined using quantitative reverse transcription PCR and western blotting. RESULTS In-vitro experiments revealed that DHEA stimulated the proliferation, migration and tube formation of HMEC-1. In in-vivo studies, DHEA treatment improved the disruption of the oestrous cycle and hormone imbalances in POI rats. Key genes in the HIF-1α/VEGF pathway exhibited up-regulated expression, promoting ovarian angiogenesis in POI rats, and enhancing follicular development and granulosa cell survival, thereby restoring fertility in rats. CONCLUSIONS DHEA can potentially restore ovarian function in rats with cyclophosphamide-induced POI by up-regulating HIF-1α/VEGF signalling, which promotes the growth of blood vessels in the ovaries.
Collapse
Affiliation(s)
- Yunxiao Zhao
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, China; Center for Reproductive Medicine, Maternal and Child Health Hospital in Guangxi, Guangxi, Nanning, China
| | - Jiawei Wang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weili Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, China
| | - Qianwen Hu
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, China
| | - Jiaxu Li
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, China
| | - Rongyan Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, China
| | - Nana Ma
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, China
| | - Fengque Zheng
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, China
| | - Wencai Tian
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, China
| | - Jinghang Jiang
- The Reproductive Medicine Center, Jingmen People's Hospital, JingChu University of Technology Affiliated Central Hospital, Jingmen, China.
| | - Jialv Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China.
| | - Aiping Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, China.
| |
Collapse
|
3
|
Xu M, Liu D, Wang L. Role of oxylipins in ovarian function and disease: A comprehensive review. Biomed Pharmacother 2024; 178:117242. [PMID: 39094547 DOI: 10.1016/j.biopha.2024.117242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Ovaries are essential for healthy female reproduction, with the follicles as their fundamental functional units, which consist of an oocyte and surrounding granulosa cells. The development and formation of follicles in the ovaries are closely linked to reproductive health. Oxylipins refer to oxidative metabolites produced from the oxidation of polyunsaturated fatty acids, either through automatic oxidation or with the help of specific enzymes. They play crucial regulatory roles in the immune system, oxidative stress, and inflammatory reactions and are intimately linked to the development of numerous illnesses, such as diabetes, heart disease, asthma, and Alzheimer's disease. Furthermore, oxylipins have a complex relationship with ovarian function, and both prostaglandins and leukotrienes produced by arachidonic acid affect processes such as follicle growth and development, ovulation, and hormone regulation. The synthesis and metabolism of oxylipins in the ovaries are finely regulated. Oxylipin dysregulation has been linked to various ovarian diseases, including endometriosis, polycystic ovary syndrome, ovarian cancer, and premature ovarian insufficiency. In addition, potential therapeutic targets and interventions targeting the oxylipin pathway for the treatment of ovarian diseases have become a prominent research focus, including regulating the enzymes responsible for oxylipin synthesis, using anti-inflammatory agents, and regulating lipid metabolism. Recent research has been directed towards improving the reproductive outcomes of women with ovarian diseases through this series of interventions. An overview of the role of oxylipins in ovarian function and disease is provided in this article, which will aid researchers in understanding the current state of the field and in identifying future directions.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Dan Liu
- Finance Department of Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Lili Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China.
| |
Collapse
|
4
|
Zhang R, Xu W, Wei H, Li B, Wang Y, He X, Cao J, He X, Xu M, Lu W, Xu Y. Mechanism of YJKL Decoction in Treating of PCOS Infertility by Integrative Approach of Network Pharmacology and Experimental Verification. Drug Des Devel Ther 2024; 18:3853-3870. [PMID: 39219692 PMCID: PMC11366254 DOI: 10.2147/dddt.s456656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Currently, there is still no clear treatment for polycystic ovary syndrome (PCOS). YJKL has better therapeutic effects and lower toxic side effects for PCOS type infertility. This study aims to clarify the potential mechanism of YJKL Decoction in the treatment of PCOS based on network pharmacology and experiments verification. Patients and Methods Network pharmacology and experimental validation approach were used to investigate the bioactive ingredients, critical targets and potential mechanisms of YJKL Decoction against PCOS. Firstly, we use network pharmacology methods to collect core targets, and then validate their effects on diseases through experiments. Results Five core targets were screened, Threonine kinase 1 (AKT1), Cellular tumor antigen p53 (TP53), Tumor necrosis factor (TNF), Albumin (ALB) and Vascular endothelial growthfactor A (VEGFA). KEGG analysis showed that YJKL treatment for PCOS mainly include AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway and HIF-1 signaling pathway. The molecular docking results showed that compounds have higher affinity with targets. Finally, experimental results had shown that YJKL Decoction had an better therapeutic effects in the treatment of PCOS. Conclusion Based on a systematic network pharmacology approach and experimental verification, our results comprehensively illustrated the active ingredients, potential targets, and molecular mechanism of YJKL for application to PCOS and helps to illustrate mechanism of action on a comprehensive level.
Collapse
Affiliation(s)
- Rongrong Zhang
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Wenjun Xu
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Hongquan Wei
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Boshi Li
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Yaoxing Wang
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Xueqing He
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Jun Cao
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Xinyu He
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Mingxiang Xu
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Center for Scientific Research, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Wenjie Lu
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Youzhi Xu
- College of Basic Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
5
|
Burke S. Hypoxia, NSAIDs, and autism: A biocultural analysis of stressors in gametogenesis. Am J Hum Biol 2024; 36:e24042. [PMID: 38282542 DOI: 10.1002/ajhb.24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Cultural and generational trends have increasingly favored "anti-inflammatory" action, innovating a new class of analgesic, non-steroidal anti-inflammatory drugs (NSAIDs) in the 20th century. The modern human body has been molded over evolutionary time and while acknowledging inflammation can be pathologically entwined, it also serves an important role in healthy folliculogenesis and ovulation, shaping cues that drive needed vascular change. This review argues that because of anti-inflammatory action, the cultural invention of NSAIDs represents a particular stressor on female reproductive-age bodies, interacting with natural, underlying variation and placing limits on healthy growth and development in the follicles, creating potential autism risk through hypoxia and mutagenic or epigenetic effects. Since testes are analogs to ovaries, the biological grounding extends naturally to spermatogenesis. This review suggests the introduction of over-the-counter NSAIDs in the 1980s failed to recognize the unique functioning of reproductive-age bodies, challenging the cyclical inflammation needed for healthy gamete development. NSAIDs are framed as one (notable) stressor in an anti-inflammatory era focused on taming the risks of inflammation in modern human life.
Collapse
Affiliation(s)
- Stacie Burke
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Ma X, Wang M, Wang J, Han X, Yang X, Zhang H, Zhong D, Qiu S, Yu S, Wang L, Pan Y. Hypoxia-Inducible Factor 1α Affects Yak Oocyte Maturation and Early Embryonic Development by Regulating Autophagy. Antioxidants (Basel) 2024; 13:840. [PMID: 39061908 PMCID: PMC11273763 DOI: 10.3390/antiox13070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In animal assisted reproductive technology, the production of high-quality oocytes is crucial. The yak, having lived in the Qinghai-Tibet Plateau for an extended period, has reproductive cells that are regulated by hypoxia-inducible factor 1α (HIF-1α). This study aimed to investigate the impact of HIF-1α on yak oocyte maturation and early embryonic development in vitro through the regulation of autophagy. The in vitro maturation process of yak oocytes involved the addition of the HIF-1α inducer DFOM and the inhibitor LW6 to examine their effects on yak oocyte maturation, early embryonic development, cell autophagy, cytochrome P450s (CYP450s) enzyme expression, and cumulus diffusion factors. The findings revealed that DFOM significantly upregulated the expression of HIF-1α, resulting in increased the cumulus diffusion area, elevated first polar body expulsion rate of oocytes, enhanced mitochondrial and actin levels, decreased ROS production, and reduced early apoptosis levels of oocytes. Moreover, DFOM promoted the expression of autophagy-related proteins, CYP450s enzymes, and cumulus diffusion factors, thereby enhancing oocyte maturation and early embryonic development. Conversely, LW6 exhibited opposite effects. The inhibition of autophagy levels with 3-MA during DFOM treatment yielded similar outcomes. Furthermore, reducing autophagy led to increased apoptosis levels at all stages of early embryonic development, as well as a significant decrease in total cell number and ICM/TE ratio of blastocysts. Studies have shown that during the in vitro maturation of yak oocytes, HIF-1α can affect the cumulus expansion area of oocytes by regulating autophagy, the first polar body excretion rate, mitochondrial level, actin level, ROS and early apoptosis level, the CYP450s enzyme, and the expression of cumulus expansion factors, thereby improving the in vitro maturation and early embryonic development of yak oocytes. These findings offer valuable insights into the reproductive regulation mechanism of yaks in hypoxic environments and suggest potential strategies for the advancement of yak assisted reproductive technology.
Collapse
Affiliation(s)
- Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Xiaohong Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Xiaoqing Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Hui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Donglan Zhong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| |
Collapse
|
7
|
Fiorentino G, Merico V, Zanoni M, Comincini S, Sproviero D, Garofalo M, Gagliardi S, Cereda C, Lin CJ, Innocenti F, Taggi M, Vaiarelli A, Ubaldi FM, Rienzi L, Cimadomo D, Garagna S, Zuccotti M. Extracellular vesicles secreted by cumulus cells contain microRNAs that are potential regulatory factors of mouse oocyte developmental competence. Mol Hum Reprod 2024; 30:gaae019. [PMID: 38745364 DOI: 10.1093/molehr/gaae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocysts, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs' release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-h transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilization (N = 1), and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Valeria Merico
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Mario Zanoni
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Sergio Comincini
- Functional Genomics Laboratory, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Daisy Sproviero
- IFOM, IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milan, Italy
| | - Chih-Jen Lin
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | | | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Einenkel R, Schallmoser A, Sänger N. High FSH levels impair VEGF secretion of human, frozen-thawed ovarian cortical tissue in vitro. Sci Rep 2024; 14:3287. [PMID: 38332226 PMCID: PMC10853201 DOI: 10.1038/s41598-024-53402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Cryopreservation and reimplantation of human ovarian tissue restore the ovarian hormonal function and fertility due to the preservation of follicles. As the success depends on proper angiogenesis, different approaches aim to support this process. In mice, pretreatment of ovarian tissue with FSH shows increased follicular numbers probably due to the supported angiogenesis by an increased vascular endothelial factor (VEGF) expression. However, in human tissue it remains completely unclear, which effect the hormonal status of the patient has at the time point of reimplantation. Frozen-thawed human ovarian cortical tissue was cultured for 48 h with 0, 1 or 10 ng/mL recombinant human FSH. VEGF-A expression was assessed by ELISA and immunohistofluorescence (IHF) analysis. By IHF, HIF-1α and FSHR expression dependency on culture and FSH concentration was analyzed. Follicles at all stages expressed VEGF-A, which increases during folliculogenesis. Frozen-thawed human ovarian cortical tissue secreted a not statistically different amount of VEGF-A, when cultured in presence of 1 ng/mL FSH (17.5 mIU/mL). However, the presence of 10 ng/mL FSH (175 mIU/mL) significantly decreased VEGF-A expression and secretion. The high FSH concentration increased especially the VEGF-A expression of already growing follicles. The presence of pre-menopausal concentrations of FSH had no significant effect on VEGF-A expression, whereas the presence of elevated FSH levels decreased cortical VEGF-A expression. A hormonal pre-treatment of women with elevated FSH concentrations prior to reimplantation might be considered to support angiogenesis. Here, we show that VEGF-A expression by follicles is affected by FSH dependent on the concentration.
Collapse
Affiliation(s)
- Rebekka Einenkel
- Gynecologic Endocrinology and Reproductive Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Andreas Schallmoser
- Gynecologic Endocrinology and Reproductive Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Nicole Sänger
- Gynecologic Endocrinology and Reproductive Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
9
|
Li C, Fu C, He T, Liu Z, Zhou J, Wu G, Liu H, Shen M. FSH preserves the viability of hypoxic granulosa cells via activating the HIF-1α-GAS6-Axl-Akt pathway. J Cell Physiol 2024; 239:e31162. [PMID: 37994152 DOI: 10.1002/jcp.31162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
The developmental fate of ovarian follicles is primarily determined by the survival status (proliferation or apoptosis) of granulosa cells (GCs). Owing to the avascular environment within follicles, GCs are believed to live in a hypoxic niche. Follicle-stimulating hormone (FSH) has been reported to improve GCs survival by governing hypoxia-inducible factor-1α (HIF-1α)-dependent hypoxia response, but the underlying mechanisms remain poorly understood. Growth arrest-specific gene 6 (GAS6) is a secreted ligand of tyrosine kinase receptors, and has been documented to facilitate tumor growth. Here, we showed that the level of GAS6 was markedly increased in mouse ovarian GCs after the injection of FSH. Specifically, FSH-induced GAS6 expression was accompanied by HIF-1α accumulation under conditions of hypoxia both in vivo and in vitro, whereas inhibition of HIF-1α with small interfering RNAs/antagonist repressed both expression and secretion of GAS6. As such, Luciferase reporter assay and chromatin immunoprecipitation assay showed that HIF-1α directly bound to a hypoxia response element site within the Gas6 promoter and contributed to the regulation of GAS6 expression in response to FSH. Notably, blockage of GAS6 and/or its receptor Axl abrogated the pro-survival effects of FSH under hypoxia. Moreover, phosphorylation of Axl by GAS6 is required for FSH-mediated Akt activation and the resultant pro-survival phenotypes. Finally, the in vitro findings were verified in vivo, which showed that FSH-induced proliferative and antiapoptotic effects in ovarian GCs were diminished after blocking GAS6/Axl using HIF-1α antagonist. These findings highlight a novel function of FSH in preserving GCs viability against hypoxic stress by activating the HIF-1a-GAS6-Axl-Akt pathway.
Collapse
Affiliation(s)
- Chengyu Li
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chen Fu
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tong He
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Liu
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Zhou
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gang Wu
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Shen
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Liu Z, Li C, Chen Q, Bai C, Wu G, Fu C, He T, Shen M, Feng C, Liu H. Follicular fluid meiosis-activating sterol prevents porcine ovarian granulosa cells from hypoxia-induced apoptosis via inhibiting STAT4 expression. J Anim Sci 2024; 102:skae125. [PMID: 38713167 PMCID: PMC11245709 DOI: 10.1093/jas/skae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Follicular fluid meiosis-activating sterol (FF-MAS) is a small molecule compound found in FF, named for its ability to induce oocyte resumption of meiosis. Granulosa cells (GCs) within the follicle are typically located in a hypoxic environment under physiologic conditions due to limited vascular distribution. Previous research suggests that hypoxia-induced cell cycle arrest and apoptosis in GCs may be crucial triggering factors in porcine follicular atresia. However, the impact of FF-MAS on GCs within follicles has not been explored so far. In this study, we uncovered a novel role of FF-MAS in facilitating GC survival under hypoxic conditions by inhibiting STAT4 expression. We found that STAT4 expression was upregulated in porcine GCs exposed to 1% O2. Both gain and loss of function assays confirmed that STAT4 was required for cell apoptosis under hypoxia conditions, and that the GC apoptosis caused by hypoxia was markedly attenuated following FF-MAS treatment through inhibition of STAT4 expression. Correlation analysis in vivo revealed that GC apoptosis was associated with increased STAT4 expression, while the FF-MAS content in follicular fluid was negatively correlated with STAT4 mRNA levels and cell apoptosis. These findings elucidate a novel role of FF-MAS-mediated protection of GCs by inhibiting STAT4 expression under hypoxia, which might contribute to the mechanistic understanding of follicular development.
Collapse
Affiliation(s)
- Zhaojun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianqian Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenyu Bai
- Beijing 101 High School, Beijing, 100084, China
| | - Gang Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Fu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Liu L, Hao M, Zhang J, Chen Z, Zhou J, Wang C, Zhang H, Wang J. FSHR-mTOR-HIF1 signaling alleviates mouse follicles from AMPK-induced atresia. Cell Rep 2023; 42:113158. [PMID: 37733588 DOI: 10.1016/j.celrep.2023.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
The majority of activated ovarian follicles undergo atresia during reproductive life in mammals, and only a small number of follicles are ovulated. Though hormone treatment has been widely used to promote folliculogenesis, the molecular mechanism behind follicle selection and atresia remains under debate due to inconsistency among investigation models. Using a high-throughput molecular pathology strategy, we depicted a transcriptional atlas of mouse follicular granulosa cells (GCs) under physiological condition and obtained molecular signatures in healthy and atresia GCs during development. Functional results revealed hypoxia-inducible factor 1 (HIF1) as a major effector downstream of follicle-stimulating hormone (FSH), and HIF1 activation is essential for follicle growth. Energy shortage leads to prevalent AMP-activated protein kinase (AMPK) activation and drives follicular atresia. FSHR-mTOR-HIF1 signaling helps follicles escape from the atresia fate, while energy stress persists. Our work provides a comprehensive understanding of the molecular network behind follicle selection and atresia under physiological condition.
Collapse
Affiliation(s)
- Longping Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Hao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School, Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials, Digital Medical Devices, Beijing 100081, P.R. China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Thyroid Transcriptomics Revealed the Reproductive Regulation of miRNA in the Follicular and Luteal Phases in Small-Tail Han Sheep with Different FecB Genotypes. Genes (Basel) 2023; 14:2024. [PMID: 38002966 PMCID: PMC10671830 DOI: 10.3390/genes14112024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNA (miRNA) is a type of endogenous short-stranded ncRNA that influences many biological processes such as animal growth, development and metabolism. The thyroid gland is an important endocrine gland in sheep, and an increasing number of studies have shown that the thyroid gland plays an important role in animal reproduction, but the molecular mechanisms of the thyroid gland in sheep reproduction are poorly understood. In this study, RNA-seq was used to detect transcriptome expression patterns in the thyroid gland between the follicular phase (FP) and luteal phase (LP) in FecB BB (MM) and FecB ++ (ww) small-tail Han (STH) sheep, respectively, and to identify differentially expressed miRNAs (DEMs) associated with reproduction. Bioinformatic analysis of the target genes of these DEMs revealed that they can be enriched in multiple GO terms associated with the reproductive process in animals and in the KEGG signaling pathway. The miRNA-mRNA coexpression network revealed that oar-miR-133 and oar-miR-370-3p may play an important role in sheep reproduction. The results of the dual-luciferase reporter assay suggest a possible targeting relationship between novel-51 and TARBP2. These results provided a novel resource for elucidating regulatory mechanisms underlying STH sheep prolificacy.
Collapse
Affiliation(s)
- Cheng Chang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| |
Collapse
|
13
|
Shukla SK, Gaudriault P, Corbera A. Lab-on-chip (LoC) application for quality sperm selection: An undelivered promise? OPEN RESEARCH EUROPE 2023; 3:188. [PMID: 38645796 PMCID: PMC11031645 DOI: 10.12688/openreseurope.16671.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 04/23/2024]
Abstract
Quality sperm selection is essential to ensure the effectiveness of assisted reproductive techniques (ART). However, the methods employed for sperm selection in ART often yield suboptimal outcomes, contributing to lower success rates. In recent years, microfluidic devices have emerged as a promising avenue for investigating the natural swimming behavior of spermatozoa and developing innovative approaches for quality sperm selection. Despite their potential, the commercial translation of microfluidic-based technologies has remained limited. This comprehensive review aims to critically evaluate the inherent potential of lab-on-chip technology in unraveling sophisticated mechanisms encompassing rheotaxis, thermotaxis, and chemotaxis. By reviewing the current state-of-the-art associated with microfluidic engineering and the swimming of spermatozoa, the goal is to shed light on the multifaceted factors that have impeded the broader commercialization of these cutting-edge technologies and recommend a commercial that can surmount the prevailing constraints. Furthermore, this scholarly exploration seeks to enlighten and actively engage reproductive clinicians in the profound potential and implications of microfluidic methodologies within the context of human infertility.
Collapse
Affiliation(s)
- Shiva K Shukla
- Research and Development Unit, Beez Biotech SAS, RENNES, Ille-et-Villain, 35000, France
| | - Pierre Gaudriault
- Research and Development Unit, Cherry Biotech SAS, Paris, 93100, France
| | - Antoni Corbera
- Research and Development Unit, Cherry Biotech SAS, Paris, 93100, France
| |
Collapse
|
14
|
Emery A, Dunning KR, Dinh DT, Akison LK, Robker RL, Russell DL. Dynamic regulation of semaphorin 7A and adhesion receptors in ovarian follicle remodeling and ovulation. Front Cell Dev Biol 2023; 11:1261038. [PMID: 37941899 PMCID: PMC10628455 DOI: 10.3389/fcell.2023.1261038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
The ovarian follicle is a complex structure that protects and helps in the maturation of the oocyte, and then releases it through the controlled molecular and structural remodeling process of ovulation. The progesterone receptor (PGR) has been shown to be essential in regulating ovulation-related gene expression changes. In this study, we found disrupted expression of the cellular adhesion receptor gene Sema7A in the granulosa cells of PGR-/- mice during ovulation. We subsequently found that expression of Sema7A in preovulatory follicles is promoted by gonadotropins and hypoxia, establishing an asymmetrical pattern with the SEMA7A protein enriched at the apex of large antral follicles. Sema7A expression was downregulated through a PGR-dependent mechanism in the periovulatory period, the abundance of SEMA7A protein was reduced, and the asymmetric pattern became more homogeneous after an ovulatory stimulus. Receptors for Sema7A can either repel or promote intercellular adhesion. During ovulation, striking inverse regulation of repulsive Plxnc1 and adhesive Itga5/Itgb1 receptors likely contributes to dramatic tissue remodeling. The adhesive receptor Itga5 was significantly increased in periovulatory granulosa cells and cumulus-oocyte complexes (COCs), and functional assays showed that periovulatory granulosa cells and COCs acquire increased adhesive phenotypes, while Sema7A repels granulosa cell contact. These findings suggest that the regulation of Sema7A and its associated receptors, along with the modulation of integrin α5, may be critical in establishing the multilaminar ovarian follicle structure and facilitating the remodeling and apical release of the cumulus-oocyte complex during ovulation.
Collapse
Affiliation(s)
- Alaknanda Emery
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Kylie R. Dunning
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Doan T. Dinh
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Lisa K. Akison
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Rebecca L. Robker
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Darryl L. Russell
- The Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
15
|
Song Z, Song K, Zhao H, He Y, Hu J. Network analysis and experimental approach to investigate the potential therapeutic mechanism of zishen yutai pills on premature ovarian insufficiency. Heliyon 2023; 9:e20025. [PMID: 37809603 PMCID: PMC10559743 DOI: 10.1016/j.heliyon.2023.e20025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background As society continues to develop, women are more at risk of gonadotoxic substance exposure. Consequently, the incidence of premature ovarian insufficiency (POI) has increased significantly in the past decades. Hormone replacement therapy (HRT) is recommended as the standard treatment to relieve hypoestrogenic symptoms; however, its potential side effects and contraindications have drawn widespread controversy and concern. As such, the Chinese medicine Zishen Yutai Pill (ZSYTP) commonly used for treating miscarriage and menoxenia, is a highly promising alternative drug candidate against POI, however its therapeutic mechanism has not been completely elucidated. Objective To systematically analyze the potential therapeutic targets of ZSYTP on POI, we combined network pharmacology analysis and molecular docking to predict critical target genes, with experimental validation on POI murine models. Methods The active compounds of ZSYTP were collected from three online databases, and the candidate targets were predicted based on the chemical structure. The POI-related targets were obtained from four databases. A PPI network was constructed to find the key target genes between ZSYTP and POI, while GO and KEGG enrichment analyses were employed to study the mechanism of ZSYTP against POI. The binding capability of the key co-targets with active components was examined by molecular docking. We used a cyclophosphamide (CTX)-inducible POI mouse model to verify our predictions by histopathological observation, immunohistochemical staining (caspase-3, TUNEL assay), hormone determination (FSH, AMH) and ribonucleic acid sequencing (RNA Seq). Progynova was also used to study the difference between ZSYTP and HRT. Result We identified 21 target genes as the hub between ZSYTP and POI. The GO and KEGG analyses revealed that the molecular mechanism of ZSYTP against POI were mainly based on the regulation of gene and protein expression. A variety of signaling pathways may be involved in the treatment of ZSYTP against POI, especially PI3K-AKT, HIF-1 and the AGE-RAGE cascades. Docking simulation showed that G1, C1, SR5, and F1 had relatively lower binding energy. In vivo, ZSYTP significantly reversed CTX-induced ovarian damage in follicle number, hormone level and apoptosis, with an overall improved therapeutic effect compared to Progynova. Results from RNA-Seq revealed that the PI3K-AKT, Hippo, AGE-RAGE, and Rap1 signaling pathways and regulation of inflammation, immune response, and lipid metabolism may mediate the protective effects of ZSYTP against POI, which is different than Progynova's mechanism of action. Conclusions Collectively, this study indicates that ZSYTP could be a highly promising alternative as a non-HRT-based therapy for POI. Its mechanism involves multiple signaling pathways, alleviating ovarian apoptosis and recovering AMH and FSH level. However, the discrepancy between different research techniques highlight the necessity of further experimental verification from other aspects such as translation and posttranslational modification.
Collapse
Affiliation(s)
- Zifan Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kuangyu Song
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Hongru Zhao
- Department of Microbiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Yuanqiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Laboratory Animal, Nanchang, Jiangxi, 330031, PR China
- Nanchang Royo Biotech Co,. Ltd, Nanchang, Jiangxi, China
| | - Jia Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Jin J, Ren P, Li X, Zhang Y, Yang W, Ma Y, Lai M, Yu C, Zhang S, Zhang YL. Ovulatory signal-triggered chromatin remodeling in ovarian granulosa cells by HDAC2 phosphorylation activation-mediated histone deacetylation. Epigenetics Chromatin 2023; 16:11. [PMID: 37076890 PMCID: PMC10116676 DOI: 10.1186/s13072-023-00485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/07/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Epigenetic reprogramming is involved in luteinizing hormone (LH)-induced ovulation; however, the underlying mechanisms are largely unknown. RESULTS We here observed a rapid histone deacetylation process between two waves of active transcription mediated by the follicle-stimulating hormone (FSH) and the LH congener human chorionic gonadotropin (hCG), respectively. Analysis of the genome-wide H3K27Ac distribution in hCG-treated granulosa cells revealed that a rapid wave of genome-wide histone deacetylation remodels the chromatin, followed by the establishment of specific histone acetylation for ovulation. HDAC2 phosphorylation activation coincides with histone deacetylation in mouse preovulatory follicles. When HDAC2 was silenced or inhibited, histone acetylation was retained, leading to reduced gene transcription, retarded cumulus expansion, and ovulation defect. HDAC2 phosphorylation was associated with CK2α nuclear translocation, and inhibition of CK2α attenuated HDAC2 phosphorylation, retarded H3K27 deacetylation, and inactivated the ERK1/2 signaling cascade. CONCLUSIONS This study demonstrates that the ovulatory signal erases histone acetylation through activation of CK2α-mediated HDAC2 phosphorylation in granulosa cells, which is an essential prerequisite for subsequent successful ovulation.
Collapse
Affiliation(s)
- Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Xiang Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yinyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Mengru Lai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Chao Yu
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
| | - Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
17
|
Guzmán A, Hernández-Coronado CG, Gutiérrez CG, Rosales-Torres AM. The vascular endothelial growth factor (VEGF) system as a key regulator of ovarian follicle angiogenesis and growth. Mol Reprod Dev 2023; 90:201-217. [PMID: 36966489 DOI: 10.1002/mrd.23683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The vascular endothelial growth factor-A (VEGFA) system is a complex set of proteins, with multiple isoforms and receptors, including both angiogenic (VEGFxxx, VEGFR2) and antiangiogenic members (VEGFxxxb, VEGFR1 and soluble forms of VEGFR). The members of the VEGF system affect the proliferation, survival, and migration of endothelial and nonendothelial cells and are involved in the regulation of follicular angiogenesis and development. The production of VEGF by secondary follicles stimulates preantral follicular development by directly affecting follicular cells and promoting the acquisition of the follicular vasculature and downstream antrum formation. Additionally, the pattern of expression of the components of the VEGF system may provide a proangiogenic milieu capable of triggering angiogenesis and stimulating follicular cells to promote antral follicle growth, whereas, during atresia, this milieu becomes antiangiogenic and blocks follicular development.
Collapse
Affiliation(s)
- Adrian Guzmán
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Cyndi G Hernández-Coronado
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Carlos G Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana M Rosales-Torres
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| |
Collapse
|
18
|
Liao X, Wu L, Yin D, Tian D, Zhou C, Liu J, Li S, Zhou J, Nie Y, Liao H, Peng C. The role of zinc in follicular development. Mol Biol Rep 2023; 50:4527-4534. [PMID: 36848006 DOI: 10.1007/s11033-023-08331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023]
Abstract
Follicles consist of specialized somatic cells that encase a single oocyte. Follicle development is a process regulated by a variety of endocrine, paracrine, and secretory factors that work together to select follicles for ovulation. Zinc is an essential nutrient for the human body and is involved in many physiological processes, such as follicle development, immune response, homeostasis, oxidative stress, cell cycle progression, DNA replication, DNA damage repair, apoptosis, and aging. Zinc deficiency can lead to blocked oocyte meiotic process, cumulus expansion, and follicle ovulation. In this mini-review, we summarize the the role of zinc in follicular development.
Collapse
Affiliation(s)
- Xingyue Liao
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Liujianxiong Wu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Dan Yin
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Dewei Tian
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Cuilan Zhou
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Suyun Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, 421001, Hunan, PR China
| | - Yulin Nie
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, 421001, Hunan, PR China
| | - Hongqing Liao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, 421001, Hunan, PR China.
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
19
|
Wu Y, Yang R, Lan J, Wu Y, Huang J, Fan Q, You Y, Lin H, Jiao X, Chen H, Cao C, Zhang Q. Iron overload modulates follicular microenvironment via ROS/HIF-1α/FSHR signaling. Free Radic Biol Med 2023; 196:37-52. [PMID: 36638901 DOI: 10.1016/j.freeradbiomed.2022.12.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
Iron is essential for the health of reproductive system, and women with iron overload suffer from ovarian dysfunction and lack effective treatment in fertility preservation. However, the underlying mechanism of the detrimental effects of iron overload on ovarian function remains ambiguous. Here, we confirmed the excess iron in the circumjacent follicle near endometriomas, which negatively impacted the oocyte development in the affected ovaries. Further, by integrating cell line and chronic iron overload mice model, we demonstrated that iron overload can function as a ROS inducer to amplify mitochondria damage, which significantly elevated the release of cytochrome C and ultimately induced the apoptosis of granular cells. Besides, for the first time, our findings revealed that disruption of HIF-1α/FSHR/CYP19A1 signaling was critical for decreased estrogen synthesis of granular cells in response to iron overload, which can lead to apparent oocyte maldevelopment and subfertility. Overall. this study uncovered that iron overload modulated the follicular microenvironment and generated a deleterious effect on female infertility via ROS/HIF-1α/FSHR signaling. These results might provide potential implications for future clinical risk management of patients with endometrioma and hemopathy.
Collapse
Affiliation(s)
- Yaoqiu Wu
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Rong Yang
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Jie Lan
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yingchen Wu
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Jianyun Huang
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Qi Fan
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yang You
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Haiyan Lin
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Xuedan Jiao
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Hui Chen
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
| | - Chunwei Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China; Guangzhou Laboratory, Guangzhou, 510320, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qingxue Zhang
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
20
|
Takeuchi H, Yamamoto M, Fukui M, Inoue A, Maezawa T, Nishioka M, Kondo E, Ikeda T, Matsumoto K, Miyamoto K. Single‐cell profiling of transcriptomic changes during
in vitro
maturation of human oocytes. Reprod Med Biol 2022; 21:e12464. [PMID: 35582522 PMCID: PMC9084694 DOI: 10.1002/rmb2.12464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose In vitro maturation (IVM) of human oocytes offers an invaluable opportunity for infertility treatment. However, in vitro matured oocytes often show lower developmental abilities than their in vivo counterparts, and molecular mechanisms underlying successful maturation remain unclear. In this study, we investigated gene expression profiles of in vitro matured oocytes at the single‐cell level to gain mechanistic insight into IVM of human oocytes. Methods Human oocytes were retrieved by follicular puncture and in vitro matured. In total, 19 oocytes from 11 patients were collected and subjected to single‐cell RNA‐seq analyses. Results Global gene expression profiles were similar among oocytes at the same maturation stage, while a small number of oocytes showed distinct transcriptomes from those at the corresponding maturation stage. Differential gene expression analysis identified hundreds of transcripts that dynamically altered their expression during IVM, and we revealed molecular pathways and upstream regulators that may govern oocyte maturation. Furthermore, oocytes that were delayed in their maturation showed distinct transcriptomes. Finally, we identified genes whose transcripts were enriched in each stage of oocyte maturation. Conclusions Our work uncovers transcriptomic changes during human oocyte IVM and the differential gene expression profile of each oocyte.
Collapse
Affiliation(s)
- Hiroki Takeuchi
- Department of Obstetrics and Gynecology Graduate School of Medicine Mie University Mie Japan
| | - Mari Yamamoto
- Graduate School of Biology‐Oriented Science and Technology Kindai University Wakayama Japan
| | - Megumi Fukui
- Department of Obstetrics and Gynecology Graduate School of Medicine Mie University Mie Japan
| | - Akihiro Inoue
- Graduate School of Biology‐Oriented Science and Technology Kindai University Wakayama Japan
| | - Tadashi Maezawa
- Department of Obstetrics and Gynecology Graduate School of Medicine Mie University Mie Japan
| | - Mikiko Nishioka
- Department of Obstetrics and Gynecology Graduate School of Medicine Mie University Mie Japan
| | - Eiji Kondo
- Department of Obstetrics and Gynecology Graduate School of Medicine Mie University Mie Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology Graduate School of Medicine Mie University Mie Japan
| | - Kazuya Matsumoto
- Graduate School of Biology‐Oriented Science and Technology Kindai University Wakayama Japan
| | - Kei Miyamoto
- Graduate School of Biology‐Oriented Science and Technology Kindai University Wakayama Japan
| |
Collapse
|
21
|
Wu G, Li C, Tao J, Liu Z, Li X, Zang Z, Fu C, Wei J, Yang Y, Zhu Q, Zhang JQ, Shen M, Liu H. FSH mediates estradiol synthesis in hypoxic granulosa cells by activating glycolytic metabolism through the HIF-1α-AMPK-GLUT1 signaling pathway. J Biol Chem 2022; 298:101830. [PMID: 35300979 PMCID: PMC9036125 DOI: 10.1016/j.jbc.2022.101830] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/31/2022] Open
Abstract
Owing to the avascular environment within ovarian follicles, granulosa cells (GCs) are believed to live in a hypoxic niche. Follicle-stimulating hormone (FSH)-mediated steroidogenesis is crucial for normal growth and maturation of ovarian follicles, but it remains unclear how FSH stimulates estradiol (E2) synthesis under hypoxic conditions. Here, we aimed to explore whether FSH affects the ATP production required for estrogen synthesis from the perspective of glucose metabolism. It was observed that the levels of both E2 and HIF-1α were markedly increased in a dose-dependent manner in mouse ovarian GCs after the injection of FSH in vivo, indicating that hypoxia/HIF-1α may be relevant to FSH-induced E2 synthesis. By treating hypoxic GCs with FSH in vitro, we further revealed that the activation of the AMP-activated protein kinase (AMPK)–GLUT1 pathway, which in turn stimulates ATP generation, may be essential for FSH-mediated E2 production during hypoxia. In contrast, inhibition of AMPK or GLUT1 with siRNAs/antagonist both repressed glycolysis, ATP production, and E2 synthesis despite FSH treatment. Moreover, blocking HIF-1α activity using siRNAs/PX-478 suppressed AMPK activation, GLUT1 expression, and E2 levels in FSH-treated GCs. Finally, the in vitro findings were verified in vivo, which showed markedly increased AMPK activity, GLUT1 expression, glycolytic flux, ATP levels, and E2 concentrations in ovarian GCs following FSH injection. Taken together, these findings uncovered a novel mechanism for FSH-regulating E2 synthesis in hypoxic GCs by activating glycolytic metabolism through the HIF-1α–AMPK–GLUT1 pathway.
Collapse
Affiliation(s)
- Gang Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jingli Tao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxuan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ziyu Zang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chen Fu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiayuan Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yaxing Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qian Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
22
|
Geng T, Sun Y, Cheng L, Cao Y, Zhang M, Hong Z, Ma L, Zhang Y. Downregulation of LHCGR Attenuates COX-2 Expression and Induces Luteinized Unruptured Follicle Syndrome in Endometriosis. Front Endocrinol (Lausanne) 2022; 13:853563. [PMID: 35600595 PMCID: PMC9114297 DOI: 10.3389/fendo.2022.853563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
An association between endometriosis and luteinized unruptured follicle syndrome (LUFs) has long been identified. Although inactivating mutation of luteinizing hormone/choriogonadotropin receptor (LHGCR) results in LUFs, whether LHCGR contributes to promoting LUFs in endometriosis remains elusive. To investigate the effect of LHCGR signaling in the development of endometriosis-associated LUFs and dissect the underlying mechanism in vivo mouse endometriosis model was established to measure the effect on ovarian folliculogenesis. In vitro cultures of primary human GCs collected from patients undergoing in vitro fertilization were performed and treated with human chorionic gonadotropin (hCG), dibutyryl cyclic-AMP (db-cAMP), LHCGR or CCAAT/enhancer binding protein-α (C/EBPα) small interfering RNA to identify the potential mechanisms. KGN cell line was used to investigate the mechanistic features of transcriptional regulation. Results showed an increased incidence of LUFs was observed in mice with endometriosis. The expression of LHCGR was decreased in the GCs of endometriosis mice. In in vitro cell models, LHCGR signaling increased the expression of C/EBPα and cyclooxygenase-2(COX-2), while inhibiting C/EBPα mitigated the induced COX-2 expression. Mechanically, C/EBPα bounded to the promoter region of COX-2 and increased the transcriptional activity under the stimulation of hCG or db-cAMP. Taken together, this study demonstrated that the LHCGR signaling was reduced in GCs of endometriosis and resulted in a decrease in gonadotropin-induced COX-2 expression. Our study might provide new insights into the dysfunction of GCs in endometriosis.
Collapse
Affiliation(s)
- Ting Geng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifan Sun
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Cheng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuming Cao
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Zhidan Hong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Ling Ma
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yuanzhen Zhang,
| |
Collapse
|
23
|
Santos LC, Dos Anjos Cordeiro JM, Santana LDS, Barbosa EM, Santos BR, da Silva TQM, de Souza SS, Corrêa JMX, Lavor MSL, da Silva EB, Silva JF. Expression profile of the Kisspeptin/Kiss1r system and angiogenic and immunological mediators in the ovary of cyclic and pregnant cats. Domest Anim Endocrinol 2022; 78:106650. [PMID: 34399365 DOI: 10.1016/j.domaniend.2021.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/03/2022]
Abstract
The Kisspeptin/Kiss1r system has been studied in mammalian ovaries. However, there are still no studies on the modulation of this system and its relationship with angiogenic and immunological mediators in the ovary of domestic cats, especially during pregnancy. We evaluated the expression of Kisspeptin/Kiss1r and angiogenic and immunological mediators during folliculogenesis, luteogenesis and luteal regression of cyclic and pregnant cats. The ovary exhibited moderate to intense expression for Kiss1, VEGF, Flk-1, INFγ and MIF in oocytes and the follicular wall, while Kiss1r expression was low in granulosa cells. In these cells, there was also a greater expression of Kiss1, INFγ and MIF, mainly in secondary follicles, while tertiary and preovulatory follicles exhibited greater expression of VEGF and Flk-1 in this layer. In luteogenesis, Kiss1 immunostaining was higher in mature corpora lutea (MCL) of pregnant cats compared to vacuolated CL (VCL) and corpus albicans (CA). Pregnancy also increased the luteal gene expression of Kiss1 as well as Kiss1, Kiss1r, Flk-1, and MIF immunostaining in MCL, while reduced the area of VEGF expression in VCL and luteal mRNA expression of Mif when compared to non-pregnant animals. In addition, positive gene correlation between Kiss1r and Mif was observed in the CL. Kiss1, Kiss1r, Vegf and Mif expression were lower in the CA of cats in anestrus. These findings reveal that the expression of Kisspeptin/Kiss1r and angiogenic and immunological mediators, in the ovary of domestic cats, depend on the follicular and luteal stage, and the luteal expression of these mediators is influenced by pregnancy.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | | | - Larissa da Silva Santana
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Erikles Macêdo Barbosa
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Bianca Reis Santos
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Thayná Queiroz Menezes da Silva
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Sophia Saraiva de Souza
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Janaina Maria Xavier Corrêa
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Mário Sergio Lima Lavor
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Elisângela Barboza da Silva
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Juneo Freitas Silva
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil.
| |
Collapse
|
24
|
Chen Y, Chai X, Zhao Y, Yang X, Zhong C, Feng Y. Investigation of the Mechanism of Zishen Yutai Pills on Polycystic Ovary Syndrome: A Network Pharmacology and Molecular Docking Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6843828. [PMID: 34956381 PMCID: PMC8702313 DOI: 10.1155/2021/6843828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/30/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Zishen Yutai Pills (ZSYTP) is a prescription based on traditional Chinese medicine used to treat kidney-deficient pattern in traditional Chinese medicine. It is also widely used clinically for the treatment of polycystic ovary syndrome (PCOS) with positive results. This study aims to explore the potential pharmacological mechanism of ZSYTP for the treatment of PCOS by a network pharmacology approach. METHODS Compounds were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine and TCM Database@ Taiwan, and the corresponding targets were retrieved from PubChem, Swiss Target Prediction, STITCH, and DrugBank. Meanwhile, PCOS targets were retrieved from the GeneCards database, the Online Mendelian Inheritance in Man database, National Center for Biotechnology Information Database, and DrugBank. Subsequently, multiple network construction and gene enrichment analyses were conducted with Cytoscape 3.8.2 software. Based on the previous results in the study, molecular docking simulations were done. RESULTS 205 active compounds and 478 ZSYTP target genes were obtained after screening by ADME consideration. 1881 disease-related targets were obtained after removing duplicates. 148 intersection target genes between drug and disease targets were isolated. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes analysis highlighted multiple gene functions and different signaling pathways to treat PCOS. Further molecular docking demonstrated the practicality of in vivo action of ZSYTP to a certain extent. CONCLUSIONS It is possible that the pharmacological effect of ZSYTP on PCOS is linked to the hypoxia-inducible factor 1 (HIF-1) signaling pathway, improving insulin resistance, the variation on gene expression such as RNA splicing, and regulation of mRNA metabolic process. This study paves the way for further research investigating its mechanisms.
Collapse
Affiliation(s)
- Yingyin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinyi Chai
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinqian Yang
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Caiting Zhong
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yihui Feng
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
25
|
Pan Y, Zhu J, Lv Q, Shi D, Yang S, Xing Q, Zhang R, Cheng J, Deng Y. Follicle-stimulating hormone regulates glycolysis of water buffalo follicular granulosa cells through AMPK/SIRT1 signalling pathway. Reprod Domest Anim 2021; 57:185-195. [PMID: 34741362 DOI: 10.1111/rda.14039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023]
Abstract
Glycolysis in follicular granulosa cells (GCs) is the primary source of energy metabolism substrate of oocytes and is closely related to follicular development in mammals. Many physiological functions of GCs are regulated by follicle-stimulating hormone (FSH). In contrast, whether FSH regulates the glycolysis of GCs and its mechanism remains unclear. This study explored the correlation between FSH concentration and glycolysis level of GCs from different diameters of water buffalo follicles, and further explored the mechanism of FSH regulation in glycolysis in vitro cultured GCs. Results showed the variation trend of lactic acid concentration in follicular fluid and the expression level of glycolysis-related genes in GCs were consistent with the variation trend of FSH concentration in follicular fluid from follicles with different diameters. When GCs were treated with FSH in vitro, the expression level of glycolysis-related genes, lactate production and glucose uptake increased correspondingly (p < .05). Furthermore, we found that expression trend of AMPK/Sirtuin1 (SIRT1) pathway-related genes in GCs was consistent with the expression trend of glycolysis-related genes and was positively correlated with FSH concentrations in vivo or cultured in vitro. Activation of SIRT1 increased the expression level of glycolytic key proteins and lactic acid production in GCs, while inhibition of SIRT1 showed the opposite effect. In general, glycolysis in water buffalo GCs in vivo or cultured in vitro was positively correlated with FSH concentration. AMPK/SIRT1 pathway plays an important role in the regulation of FSH on glycolysis in GCs. Our findings will enrich the understanding of FSH regulating the development of water buffalo follicles.
Collapse
Affiliation(s)
- Yu Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Jianzong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qiao Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Sufang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qinghua Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ruimen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
26
|
Tao J, Zhang L, Zhang X, Chen Y, Chen Q, Shen M, Liu H, Deng S. Effect of Exogenous Melatonin on the Development of Mice Ovarian Follicles and Follicular Angiogenesis. Int J Mol Sci 2021; 22:ijms222011262. [PMID: 34681919 PMCID: PMC8540648 DOI: 10.3390/ijms222011262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/21/2022] Open
Abstract
In mammalian, the periodic growth and development of ovarian follicles constitutes the physiological basis of female estrus and ovulation. Concomitantly, follicular angiogenesis exerts a pivotal role in the growth of ovarian follicles. Melatonin (N-acetyl-5-methoxytryptamine, Mel), exists in follicle fluid, was suggested to affect the development of follicles and angiogenesis. This research was conducted to investigate the effects and mechanisms of Mel on the development of ovarian follicles and its angiogenesis. In total, 40 ICR mice at age of 3 weeks were allocated into four groups at liberty: control, Mel, FSH and FSH + Mel for a 12-day trial. Ovaries were collected at 8:00 a.m. on Day 13 for detecting the development of ovarian follicles and angiogenesis. Results indicated that Mel promoted the development of ovarian follicles of 50–250 μm (secondary follicles) and periphery angiogenesis, while FSH remarkably increased the number of antral follicles and periphery angiogenesis. Mechanically, Mel and FSH may regulate the expression of VEGF and antioxidant enzymes in different follicular stages. In conclusion, Mel primarily acted on the secondary follicles, while FSH mainly promoted the development of antral follicles. They both conduced to related periphery angiogenesis by increasing the expression of VEGF. These findings may provide new targets for the regulating of follicular development.
Collapse
Affiliation(s)
- Jingli Tao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Liangliang Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Xuan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Yuanyuan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Qianqian Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
- Correspondence: (H.L.); (S.D.); Tel.: +86-138-1398-3156 (H.L.); +86-188-0102-7688 (S.D.)
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (H.L.); (S.D.); Tel.: +86-138-1398-3156 (H.L.); +86-188-0102-7688 (S.D.)
| |
Collapse
|
27
|
Feng Y, Chai X, Chen Y, Ning Y, Zhao Y. Network Pharmacology Approach for Predicting Targets of Zishen Yutai Pills on Premature Ovarian Insufficiency. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8215454. [PMID: 34394393 PMCID: PMC8357500 DOI: 10.1155/2021/8215454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/16/2021] [Indexed: 01/08/2023]
Abstract
METHODS A comprehensive strategy based on several Chinese herb databases and chemical compound databases was established to screen active compounds of ZSYTP and predict target genes. For network pharmacological analysis, network construction and gene enrichment analysis were conducted and further verified by molecular docking. RESULTS A total of 476 target genes of ZSYTP were obtained from 205 active compounds. 13 herbs of ZSYTP overlapped on 8 active compounds based on the compound-target-disease network (C-T network). 20 biological processes and 9 pathways were strongly connected to the targets of ZSYTP in treating POI, including negative regulation of gene expression, mRNA metabolic process, hypoxia-inducible factor 1 (HIF-1) signaling pathway, and gluconeogenesis. Finally, molecular docking was visualized. CONCLUSION Intriguingly, the signal pathways and biological processes uncovered in this study implicate inflamm-aging and glucose metabolism as potential pathological mechanisms of POI. The therapeutic effect of ZSYTP could be mediated by regulating glucose metabolism and HIF-1 signal pathway. Collectively, this study sheds light on the therapeutic potential of ZSYTP on POI.
Collapse
Affiliation(s)
- Yihui Feng
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinyi Chai
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Singapore Thong Chai Medical Institution, 169874, Singapore
| | - Yingyin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yan Ning
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
28
|
Shi Y, Hu Y, Cui B, Zhuang S, Liu N. Vascular endothelial growth factor-mediated peritoneal neoangiogenesis in peritoneal dialysis. Perit Dial Int 2021; 42:25-38. [PMID: 33823711 DOI: 10.1177/08968608211004683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for patients with end-stage renal diseases, which is limited by peritoneal neoangiogenesis leading to ultrafiltration failure (UFF). Vascular endothelial growth factor (VEGF) and its receptors are key angiogenic factors involved in almost every step of peritoneal neoangiogenesis. Impaired mesothelial cells are the major sources of VEGF in the peritoneum. The expression of VEGF will be up-regulated in specific pathological conditions in PD patients, such as with non-biocompatible peritoneal dialysate, uremia and inflammation, and so on. Other working cells (i.e. vascular endothelial cells, macrophages and adipocytes) can also stimulate the secretion of VEGF. Meanwhile, hypoxia and activation of complement system further aggravate peritoneal injury and contribute to neoangiogenesis. There are several signalling pathways participating in VEGF-mediated peritoneal neoangiogenesis including tumour growth factor-β, Wnt/β-catenin, Notch and interleukin-6/signal transducer and activator of transcription 3. Moreover, VEGF is highly expressed in dialysate effluent of long-term PD patients and is associated with peritoneal transport function, which supports its role in the alteration of peritoneal structure and function. In this review, we systematically summarize the angiogenic effect of VEGF and evaluate it as a potential target for the prevention of peritoneal neoangiogenesis and UFF. Preservation of the peritoneal membrane using targeted therapy of VEGF-mediated peritoneal neoangiogenesis may increase the longevity of the PD modality for those who require life-long dialysis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Hua R, Liu J, Li Y, Fan Y, Zeng B, Geng G, Li Q. Novel Functional Recombinant Human Follicle-Stimulating Hormone Acquired from Goat Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2793-2804. [PMID: 33645971 DOI: 10.1021/acs.jafc.0c07208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An animal mammary bioreactor is regarded as an excellent biological system which is applied to produce large-scale recombinant proteins in milk. However, there are no effective methods to produce a large amount of some pharmaceutical proteins, such as human follicle-stimulating hormone (FSH), by large animal mammary gland bioreactors due to the fact that accumulation of excessive bioactive FSH might cause serious diseases in animals. Here, we report a novel strategy of preparing recombinant human FSH (rhFSH) from goat mammary glands, which could avoid the accumulation of bioactive FSH in goats. First, the single inactive FSHα and FSHβ subunits expressed in goat mammary epithelial cells and goat mammary glands were performed to reassemble in vitro and were found to self-assemble into a complete heterodimer rhFSH at 4 °C and pH 7.4. Further, a cyclic adenosine monophosphate (cAMP) induction assay showed that the cAMP levels in cell lysate of HEK 293/FSHR cells were increased by about 8-fold in reassembled rhFSH groups than that in the control group (P < 0.01). Pharmacokinetic analysis indicated that the reassembled rhFSH from goat mammary glands was comparable to that of the commercially available Gonal-F (P > 0.05). In addition, the increasing dose of reassembled rhFSH significantly promoted ovulation of mouse and ovary weight gain of Sprague Dawley rat compared with the control groups and maximum values were up to 3-fold (P < 0.01) and 2.8-fold (P < 0.01), respectively. The reassembled rhFSH showed a similar effect to Gonal-F in inducing expression of FSH target genes in vivo and activating the PI3K pathway in granulosa cells. Our study developed a novel method to produce rhFSH and provided the basis for preparing FSH by the goat mammary gland bioreactor with less health problems on the producing animals.
Collapse
Affiliation(s)
- Rongmao Hua
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Jianxi Liu
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, P. R. China
| | - Yuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Yan Fan
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, P. R. China
| | - Bin Zeng
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, P. R. China
| | - Guoxia Geng
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, P. R. China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
30
|
Guo Y, Wu Y, Shi J, Zhuang H, Ci L, Huang Q, Wan Z, Yang H, Zhang M, Tan Y, Sun R, Xu L, Wang Z, Shen R, Fei J. miR-29a/b1 Regulates the Luteinizing Hormone Secretion and Affects Mouse Ovulation. Front Endocrinol (Lausanne) 2021; 12:636220. [PMID: 34135859 PMCID: PMC8202074 DOI: 10.3389/fendo.2021.636220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
miR-29a/b1 was reportedly involved in the regulation of the reproductive function in female mice, but the underlying molecular mechanisms are not clear. In this study, female mice lacking miR-29a/b1 showed a delay in vaginal opening, irregular estrous cycles, ovulation disorder and subfertility. The level of luteinizing hormone (LH) was significantly lower in plasma but higher in pituitary of mutant mice. However, egg development was normal in mutant mice and the ovulation disorder could be rescued by the superovulation treatment. These results suggested that the LH secretion was impaired in mutant mice. Further studies showed that deficiency of miR-29a/b1 in mice resulted in an abnormal expression of a number of proteins involved in vesicular transport and exocytosis in the pituitary, indicating the mutant mice had insufficient LH secretion. However, the detailed mechanism needs more research.
Collapse
Affiliation(s)
- Yang Guo
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
| | - Youbing Wu
- Shanghai Model Organisms, Shanghai, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hua Zhuang
- Shanghai Model Organisms, Shanghai, China
| | - Lei Ci
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Qin Huang
- Shanghai Model Organisms, Shanghai, China
| | - Zhipeng Wan
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yutong Tan
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms, Shanghai, China
| | - Leon Xu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhugang Wang
- Department of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruling Shen
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| |
Collapse
|
31
|
Berisha B, Schams D, Sinowatz F, Rodler D, Pfaffl MW. Hypoxia-inducible factor-1alpha and nitric oxide synthases in bovine follicles close to ovulation and early luteal angiogenesis. Reprod Domest Anim 2020; 55:1573-1584. [PMID: 32869370 DOI: 10.1111/rda.13812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/23/2020] [Indexed: 11/30/2022]
Abstract
The objective of the study was to characterize expression patterns of hypoxia-inducible factor-1alpha (HIF1A), inducible nitric oxide synthase (iNOS) and endothelial (eNOS) isoforms in time-defined follicle classes before and after GnRH application in the cow. Ovaries containing pre-ovulatory follicles or corpora lutea were collected by transvaginal ovariectomy (n = 5 cows/group) as follow: (I) before GnRH administration; (II) 4h after GnRH; (III) 10h after GnRH; (IV) 20h after GnRH; (V) 25h after GnRH; and (VI) 60h after GnRH (early corpus luteum). The mRNA abundance of HIF1A in the follicle group before GnRH was high, followed by a significant down regulation afterwards with a minimum level 25h after GnRH (close to ovulation) and significant increase only after ovulation. The mRNA abundance of iNOS before GnRH was high, decreased significantly during LH surge, with minimum levels afterwards. In contrast, the mRNA of eNOS decreased in the follicle group 20h after GnRH, followed by a rapid and significant upregulation just after ovulation. Immunohistochemically, the granulosa cells of antral follicles and the eosinophils of the theca tissue as well of the early corpus luteum showed a strong staining for HIF1A. The location of the eosinophils could be clearly demonstrated by immunostaining with an eosinophil-specific antibody (EMBP) and transmission electron microscopy. In conclusion, the parallel and acute regulated expression patterns of HIF1A and NOS isoforms, specifically during the interval between the LH surge and ovulation, indicate that these paracrine factors are involved in the local mechanisms, regulating final follicle maturation, ovulation and early luteal angiogenesis.
Collapse
Affiliation(s)
- Bajram Berisha
- Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtinë, Kosovo.,Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dieter Schams
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|