1
|
Xue J, Xiao Q, Zhang M, Li D, Wang X. Toxic Effects and Mechanisms of Polybrominated Diphenyl Ethers. Int J Mol Sci 2023; 24:13487. [PMID: 37686292 PMCID: PMC10487835 DOI: 10.3390/ijms241713487] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants used in plastics, textiles, polyurethane foam, and other materials. They contain two halogenated aromatic rings bonded by an ester bond and are classified according to the number and position of bromine atoms. Due to their widespread use, PBDEs have been detected in soil, air, water, dust, and animal tissues. Besides, PBDEs have been found in various tissues, including liver, kidney, adipose, brain, breast milk and plasma. The continued accumulation of PBDEs has raised concerns about their potential toxicity, including hepatotoxicity, kidney toxicity, gut toxicity, thyroid toxicity, embryotoxicity, reproductive toxicity, neurotoxicity, and immunotoxicity. Previous studies have suggested that there may be various mechanisms contributing to PBDEs toxicity. The present study aimed to outline PBDEs' toxic effects and mechanisms on different organ systems. Given PBDEs' bioaccumulation and adverse impacts on human health and other living organisms, we summarize PBDEs' effects and potential toxicity mechanisms and tend to broaden the horizons to facilitate the design of new prevention strategies for PBDEs-induced toxicity.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| | | | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| |
Collapse
|
2
|
Wang X, Lee E, Hales BF, Robaire B. Organophosphate Esters Disrupt Steroidogenesis in KGN Human Ovarian Granulosa Cells. Endocrinology 2023; 164:bqad089. [PMID: 37288667 PMCID: PMC10284341 DOI: 10.1210/endocr/bqad089] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Organophosphate esters (OPEs) are used extensively as flame retardants and plasticizers and are found ubiquitously in the environment and human matrices. Previous studies suggested that exposure to some of these chemicals may disrupt the homeostasis of female sex hormones and have detrimental effects on female fertility. Here, we determined the effects of OPEs on the function of KGN ovarian granulosa cells. We hypothesized that OPEs alter the steroidogenic ability of these cells by dysregulating the expression of transcripts involved in steroid and cholesterol biosynthesis. KGN cells were exposed for 48 hours to 1 of 5 OPEs (1-50μM): triphenyl phosphate (TPHP), tris(methylphenyl) phosphate (TMPP), isopropylated triphenyl phosphate (IPPP), tert-butylphenyl diphenyl phosphate (BPDP), and tributoxyethyl phosphate (TBOEP), or to a polybrominated diphenyl ether flame retardant, 2,2',4,4' tetrabromodiphenyl ether (BDE-47), in the presence or absence of Bu2cAMP. OPEs increased the basal production of progesterone (P4) and 17β-estradiol (E2) and had either no effect or inhibited Bu2cAMP-stimulated P4 and E2 synthesis; exposure to BDE-47 had no effect. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed that OPEs (≥5μM) increased the basal expression of critical genes (STAR, CYP11A1, CYP19A1, HSD3B2, and NR5A1) involved in steroidogenesis; upon stimulation, the expression of all genes tested was downregulated. An overall inhibition in cholesterol biosynthesis was induced by OPEs, characterized by a downregulation in HMGCR and SREBF2 expression. TBOEP consistently showed the least effect. Therefore, OPEs perturbed steroidogenesis in KGN granulosa cells by targeting the expression of steroidogenic enzymes and cholesterol transporters; these effects may have an adverse impact on female reproduction.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Elaine Lee
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
3
|
Chromatin modifiers: A new class of pollutants with potential epigenetic effects revealed by in vitro assays and transcriptomic analyses. Toxicology 2023; 484:153413. [PMID: 36581016 DOI: 10.1016/j.tox.2022.153413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
A great variety of endocrine-disrupting chemicals (EDCs) have been used extensively and become widespread in the environment nowadays. Limited mammalian studies have shown that certain EDCs may target chromosome and epigenome of the germline, leading to adverse effects in subsequent generations, despite these progenies having never been exposed to the EDC before. However, the underlying mechanisms of chromosomal changes induced by these pollutants remain poorly known. Using the human ovarian granulosa tumor cell line COV434 as a model, we investigated and compared the transcriptomic changes induced by nine EDCs with diverse chemical structures (i.e. BDE-47, BPA, BP-3, DEHP, DHP, EE2, TCS, TDCPP and NP), to inquire if there is any common epigenetic modification associated with reproductive functions induced by these EDCs. Our results showed that COV434 cells were more responsive to BP-3, NP, DEHP and EE2, and more importantly, these four EDCs altered the expression of gene clusters related to DNA damage response, cell cycle, proliferation, and chromatin remodeling, which can potentially lead to epigenetic modifications and transgenerational inheritance. Furthermore, dysregulation of similar gene clusters was common in DEHP and NP treatments. Bioinformatics analysis further revealed that BP-3 disturbed signaling pathways associated with reproductive functions, whereas alterations in telomere-related pathways were highlighted upon EE2 exposure. Overall, this study highlighted chromatin modifications caused by a class of chemicals which that may potentially lead to epigenetic changes and transgenerational reproductive impairments.
Collapse
|
4
|
Land KL, Miller FG, Fugate AC, Hannon PR. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev 2022; 89:608-631. [PMID: 36580349 PMCID: PMC10100123 DOI: 10.1002/mrd.23652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is unavoidable, which represents a public health concern given the ability of EDCs to target the ovary. However, there is a large gap in the knowledge about the impact of EDCs on ovarian function, including the process of ovulation. Defects in ovulation are the leading cause of infertility in women, and EDC exposures are contributing to the prevalence of infertility. Thus, investigating the effects of EDCs on the ovary and ovulation is an emerging area for research and is the focus of this review. The effects of EDCs on gametogenesis, uterine function, embryonic development, and other aspects of fertility are not addressed to focus on ovarian- and ovulation-related fertility issues. Herein, findings from epidemiological and basic science studies are summarized for several EDCs, including phthalates, bisphenols, per- and poly-fluoroalkyl substances, flame retardants, parabens, and triclosan. Epidemiological literature suggests that exposure is associated with impaired fecundity and in vitro fertilization outcomes (decreased egg yield, pregnancies, and births), while basic science literature reports altered ovarian follicle and corpora lutea numbers, altered hormone levels, and impaired ovulatory processes. Future directions include identification of the mechanisms by which EDCs disrupt ovulation leading to infertility, especially in women.
Collapse
Affiliation(s)
- Katie L. Land
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Frances G. Miller
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Ava C. Fugate
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Patrick R. Hannon
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
5
|
Lin N, Lin J, Plosch T, Sun P, Zhou X. An Oxidative Stress-Related Gene Signature in Granulosa Cells Is Associated with Ovarian Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1070968. [PMID: 36466095 PMCID: PMC9713466 DOI: 10.1155/2022/1070968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Ovarian aging is associated with a decrease in fecundity. Increased oxidative stress of granulosa cells (GCs) is an important contributor. We thus asked whether there is an oxidative stress-related gene signature in GCs associated with ovarian aging. Public nonhuman primate (NHP) single-cell transcriptome was processed to identify GC cluster. Then, a GC signature for ovarian aging was established based on six oxidative stress-related differentially expressed genes (MAPK1, STK24, AREG, ATG7, ANXA1, and PON2). Receiver operating characteristic (ROC) analysis confirmed good discriminating capacity in both NHP single-cell and human bulk transcriptome datasets. Gene expression levels were investigated using qPCR in the human ovarian granulosa-like tumor cell line (KGN) and mouse GCs. In an oxidative stress model, KGN cells were treated with menadione (7.5 μM, 24 h) to induce oxidative stress, after which upregulation of MAPK1, STK24, ATG7, ANXA1, and PON2 and downregulation of AREG were observed (p < 0.05). In an aging model, KGN cells were continuously cultured for 3 months, leading to increased expressions of all genes (p < 0.05). In GCs of reproductively aged (8-month-old) Kunming mice, upregulated expression of Mapk1, Stk24, Atg7, and Pon2 and downregulated expression of Anxa1 and Areg were observed (p < 0.01). We therefore here identify a six-gene GC signature associated with oxidative stress and ovarian aging.
Collapse
Affiliation(s)
- Nuan Lin
- Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, Netherlands
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jiazhe Lin
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Torsten Plosch
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, Netherlands
| | - Pingnan Sun
- Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
6
|
Shaoyong W, Liu Y, Xu B, Pan B, Xianmi X, Wang Y, Jin M. Exposure to BDE-47 causes female infertility risk and induces oxidative stress and lipotoxicity-mediated ovarian hormone secretion disruption in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156885. [PMID: 35752246 DOI: 10.1016/j.scitotenv.2022.156885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
2,2,4,4-Tetrabromodiphenyl ether (BDE-47) has received considerable attention because of its high level in biological samples and potential developmental toxicity. Whether BDE-47 ingestion affects ovarian hormone secretion and the detailed underlying mechanism have not been clearly elucidated. The present study aimed to evaluate the toxicity of BDE-47 on ovarian hormone secretion and explored the underlying mechanism. The results showed that exposure to BDE-47 caused ovarian lipid deposition and ovarian hormone disruption accompanied by oxidative stress (OS) and downregulation of hormone biosynthesis-related proteins in mice. Mechanistically, using ovarian granulosa cells (GCs) as a cellular model, it was shown that BDE-47 inhibited two ovarian hormone secretion-associated pathways: i) BDE-47 exposure induced OS via the Nrf2/HO-1 signaling pathway and further inhibited the expressions of ovarian hormone biosynthesis-related proteins, such as StAR, 3-βHSD, CYP11A1, and CYP17A1; ii) BDE-47 induced endoplasmic reticulum (ER) stress, mitochondrial abnormalities, and lipotoxicity, which in turn disrupted the hormone biosynthesis process and inhibited ovarian hormone secretion. Interestingly, autophagy could promote hormone secretion via downregulating the transcription levels of PPARγ and C/EBPα involved in lipid deposition. Moreover, the reactive oxygen species (ROS) scavenger NAC and ER stress inhibitor 4-PBA not only inhibited the decrease in mitochondrial membrane potential but also blocked apoptosis induced by BDE-47, indicating that two individual pathways mediated apoptosis in GCs: the ER stress-mediated signaling pathway and the ROS-mediated mitochondrial signaling pathway. Together, these findings indicate the possible health risks of BDE-47 pollution areas to women, particularly affecting their ovarian hormone secretion.
Collapse
Affiliation(s)
- Weike Shaoyong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yalin Liu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Bocheng Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Xinuer Xianmi
- School of Life Sciences, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
7
|
Wang X, Luu T, Beal MA, Barton-Maclaren TS, Robaire B, Hales BF. The Effects of Organophosphate Esters Used as Flame Retardants and Plasticizers on Granulosa, Leydig, and Spermatogonial Cells Analyzed Using High-Content Imaging. Toxicol Sci 2022; 186:269-287. [PMID: 35135005 PMCID: PMC8963303 DOI: 10.1093/toxsci/kfac012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The replacement of regulated brominated flame retardants and plasticizers with organophosphate esters (OPEs) has led to their pervasive presence in the environment and in biological matrices. Further, there is evidence that exposure to some of these chemicals is associated with reproductive toxicity. Using a high-content imaging approach, we assessed the effects of exposure to 9 OPEs on cells related to reproductive function: KGN human granulosa cells, MA-10 mouse Leydig cells, and C18-4 mouse spermatogonial cells. The effects of OPEs were compared with those of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a legacy brominated flame retardant. Alterations in several important cell features, including cell survival, mitochondrial dynamics, oxidative stress, lysosomes, and lipid droplets, were analyzed. Most of the OPEs tested displayed higher cytotoxicity than BDE-47 in all 3 cell lines. Effects on phenotypic parameters were specific for each cell type. Several OPEs increased total mitochondria, decreased lysosomes, increased the total area of lipid droplets, and induced oxidative stress in KGN cells; these endpoints were differentially affected in MA-10 and C18-4 cells. Alterations in cell phenotypes were highly correlated in the 2 steroidogenic cell lines for a few triaryl OPEs. Potency ranking using 2 complementary approaches, Toxicological Prioritization Index analyses and the lowest benchmark concentration/administered equivalent dose method, revealed that while most of the OPEs tested were more potent than BDE-47, others showed little to no effect. We propose that these approaches serve as lines of evidence in a screening strategy to identify the potential for reproductive and endocrine effects of emerging chemicals and assist in regulatory decision-making.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Marc A Beal
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- To whom correspondence should be addressed at Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 110, Montreal, QC H3G1Y6, Canada. E-mail:
| |
Collapse
|
8
|
Huang P, Du S, Lin Y, Huang Z, Li H, Chen G, Chen S, Chen Q, Da L, Shi H, Wei W, Yang L, Sun Y, Zheng B. Identification of Three Potential circRNA Biomarkers of Polycystic Ovary Syndrome by Bioinformatics Analysis and Validation. Int J Gen Med 2021; 14:5959-5968. [PMID: 34588800 PMCID: PMC8473987 DOI: 10.2147/ijgm.s324126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Objective It is well known that circRNAs are closely involved in the progression of various diseases. However, their functions and potential regulatory mechanisms in polycystic ovary syndrome (PCOS) remain largely unknown. In the present study, our aim was to investigate the potential diagnostic value of circRNAs in PCOS. Methods The circRNA dataset GSE145296, mRNA dataset GSE155489 and miRNA GSE138572 were downloaded from Gene Expression Omnibus (GEO) database. Then, differentially expressed genes (DEGs) were identified. Based on the potential interactions, a network of cirRNA-related competing endogenous RNAs (ceRNAs) was constructed. Biological functions were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. For further validation, qRT-PCR method was used to detect the expression level of the candidate circRNAs. Then, receiver operating characteristics (ROC) were constructed to evaluate the diagnostic value of the three differentially expressed circRNA (DE-circRNA). Results We constructed a network of cirRNA-related ceRNA network. Hsa_circ_0075691, hsa_circ_0075692 and hsa_circ_0085997 were validate to be dysregulated in PCOS. Conclusion Hsa_circ_0075691, hsa_circ_0075692 and hsa_circ_0085997 may be potential diagnostic biomarkers of PCOS, but their specific regulatory mechanisms still need to be further studied.
Collapse
Affiliation(s)
- Pengyu Huang
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Shengrong Du
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Yunhong Lin
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Zhiqing Huang
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Haiyan Li
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Gangxin Chen
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Suzhu Chen
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Qingfen Chen
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Lincui Da
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Hang Shi
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Wei Wei
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Lei Yang
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Yan Sun
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Beihong Zheng
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| |
Collapse
|
9
|
Wang X, Hales BF, Robaire B. Effects of flame retardants on ovarian function. Reprod Toxicol 2021; 102:10-23. [PMID: 33819575 DOI: 10.1016/j.reprotox.2021.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Flame retardants have been added to a variety of consumer products and are now found ubiquitously throughout the environment. Epidemiological, in vivo, and in vitro studies have shown that polybrominated diphenyl ether (PBDE) flame retardants may have a negative impact on human health; this has resulted in their phase-out and replacement by alternative flame retardants, such as hexabromocyclododecane (HBCDD), tetrabromobisphenol A (TBBPA), and organophosphate esters (OPEs). Evidence suggests that some of these chemicals induce ovarian dysfunction and thus may be detrimental to female fertility; however, the effects of many of these flame retardants on the ovary remain unclear. In this review, we present an overview of the effects of brominated and organophosphate ester flame retardants on ovarian function and discuss the possible mechanisms which may mediate these effects.
Collapse
Affiliation(s)
- Xiaotong Wang
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Barbara F Hales
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Bernard Robaire
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Lefèvre PLC, Nardelli TC, Son WY, Sadler AR, Rawn DFK, Goodyer C, Robaire B, Hales BF. Polybrominated Diphenyl Ethers in Human Follicular Fluid Dysregulate Mural and Cumulus Granulosa Cell Gene Expression. Endocrinology 2021; 162:6128707. [PMID: 33543239 PMCID: PMC7853176 DOI: 10.1210/endocr/bqab003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 01/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a major class of flame retardants incorporated into numerous consumer products, leach out into dust resulting in widespread exposure. There is evidence from in vitro and in vivo animal studies that PBDEs affect ovarian granulosa cell function and follicular development, yet human studies of their association with female infertility are inconclusive. Here, we tested the hypothesis that exposure to the PBDEs in follicular fluid is associated with dysregulation of gene expression in the mural and cumulus granulosa cells collected from women undergoing in vitro fertilization by intracytoplasmic sperm injection. The median concentration of the ∑ 10PBDEs detected in the follicular fluid samples (n = 37) was 15.04 pg/g wet weight. RNA microarray analyses revealed that many genes were differentially expressed in mural and cumulus granulosa cells. Highest vs lowest quartile exposure to the Σ 10PBDEs or to 2 predominant PBDE congeners, BDE-47 or BDE-153, was associated with significant effects on gene expression in both cell types. Mural granulosa cells were generally more sensitive to PBDE exposure compared to cumulus cells. Overall, gene expression changes associated with BDE-47 exposure were similar to those for ∑ 10PBDEs but distinct from those associated with BDE-153 exposure. Interestingly, exposure to BDE-47 and ∑ 10PBDEs activated the expression of genes in pathways that are important in innate immunity and inflammation. To the best of our knowledge, this is the first demonstration that exposure to these environmental chemicals is associated with the dysregulation of pathways that play an essential role in ovulation.
Collapse
Affiliation(s)
- Pavine L C Lefèvre
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Thomas C Nardelli
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Weon-Young Son
- Research Institute of the McGill University Health Centre (RI-MUHC), Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Amy R Sadler
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Dorothea F K Rawn
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Cindy Goodyer
- Research Institute of the McGill University Health Centre (RI-MUHC), Royal Victoria Hospital, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Correspondence: Barbara F. Hales, PhD, Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|