1
|
Kamaraju S, Fowler AM, Tarima S, Chaudhary LN, Burkard ME, Giever T, Cheng YC, Parkes A, Lange CA, Pipp-Dahm M, Hegeman R, Siddiqui N, Stella A, Rajguru S, Twaroski K, Zurbriggen L, Jorns JM, Rui H, Keigley QJ, Perlman SB, Salem K, Bradshaw TJ, Sahmoud T, Wisinski K. A Phase II Trial of Onapristone and Fulvestrant for Patients With ER+ and HER2- Metastatic Breast Cancer. Clin Breast Cancer 2024:S1526-8209(24)00333-1. [PMID: 39824712 DOI: 10.1016/j.clbc.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND The SMILE study is a multi-institutional phase II clinical trial to determine the efficacy and safety of an antiprogestin, onapristone, in combination with fulvestrant as second-line therapy for patients with ER+, PgR+/-, HER2- metastatic breast cancer. This study was terminated early and herein, we report patient characteristics, and outcomes. METHODS Eligibility criteria included disease progression on ≥2 lines of prior therapy, ECOG performance status ≤ 2, measurable disease per RECIST 1.1 criteria, and optional 18F-fluorofuranylnorprogesterone (18F-FFNP) PET/CT imaging. RESULTS Consented subjects received standard-dose fulvestrant plus onapristone 50 mg orally, twice daily, until disease progression, or unacceptable toxicity. The study enrolled 11 women from 2 sites within the Wisconsin Oncology Network from November 2021 through March 2023. Mean age of the subjects was 58.5 years. Other than grade 1 toxicities, the treatment was well tolerated. None of the 11 subjects met RECIST 1.1 definition of response. The median time to progression was 63 days. A total of 4 of 11 patients had stable disease as best response and 2 of them were on treatment for 5.5 and 7.7 months. Two of the 11 subjects underwent functional imaging with 18F-FFNP PET/CT before and 10 or 14 days after starting treatment. For both subjects, tumor uptake of 18F-FFNP was stable or increased in all target lesions while 18F-FFNP uptake in the uterus, a normal PgR-rich internal control organ, was decreased. CONCLUSION The study regimen was well-tolerated with no significant toxicities. Future studies may evaluate antiprogestins with various combinations such as targeted therapies.
Collapse
Affiliation(s)
- Sailaja Kamaraju
- Froedtert & Medical College of Wisconsin, Cancer Center, Milwaukee, WI, 53226.
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252
| | - Sergey Tarima
- Froedtert & Medical College of Wisconsin, Cancer Center, Milwaukee, WI, 53226; Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Lubna N Chaudhary
- Froedtert & Medical College of Wisconsin, Cancer Center, Milwaukee, WI, 53226
| | - Mark E Burkard
- UI Holden Comprehensive Cancer Center, Iowa City, IA 52242
| | - Thomas Giever
- Froedtert & Medical College of Wisconsin, Cancer Center, Milwaukee, WI, 53226
| | - Yee C Cheng
- Froedtert & Medical College of Wisconsin, Cancer Center, Milwaukee, WI, 53226
| | - Amanda Parkes
- Department of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Michele Pipp-Dahm
- Department of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Robert Hegeman
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715-2052
| | - Nauman Siddiqui
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715-2052
| | - Amy Stella
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53718
| | - Saurabh Rajguru
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53713-1997
| | | | - Luke Zurbriggen
- Hematology, Medical Oncology and Palliative Care, Clinical Science Center, University of Wisconsin School of Medicine and Public Health, Madison WI 53792-0001
| | - Julie M Jorns
- Froedtert & Medical College of Wisconsin, Cancer Center, Milwaukee, WI, 53226; Pathology, Froedtert & Medical College of Wisconsin, Milwaukee, WI 53226
| | - Hallgeir Rui
- Thomas Jefferson University, Philadelphia, PA 19107
| | - Quinton J Keigley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252
| | - Scott B Perlman
- Radiology, Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3252
| | - Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Tyler J Bradshaw
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Tarek Sahmoud
- Oncology Drug Development, New Hope, Pennsylvania, PA
| | - Kari Wisinski
- Medical Oncology and Palliative Care, Department of Medicine, Breast Cancer Disease Oriented Team, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3252
| |
Collapse
|
2
|
Elia A, Pataccini G, Saldain L, Ambrosio L, Lanari C, Rojas P. Antiprogestins for breast cancer treatment: We are almost ready. J Steroid Biochem Mol Biol 2024; 241:106515. [PMID: 38554981 DOI: 10.1016/j.jsbmb.2024.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The development of antiprogestins was initially a gynecological purpose. However, since mifepristone was developed, its application for breast cancer treatment was immediately proposed. Later, new compounds with lower antiglucocorticoid and antiandrogenic effects were developed to be applied to different pathologies, including breast cancer. We describe herein the studies performed in the breast cancer field with special focus on those reported in recent years, ranging from preclinical biological models to those carried out in patients. We highlight the potential use of antiprogestins in breast cancer prevention in women with BRCA1 mutations, and their use for breast cancer treatment, emphasizing the need to elucidate which patients will respond. In this sense, the PR isoform ratio has emerged as a possible tool to predict antiprogestin responsiveness. The effects of combined treatments of antiprogestins together with other drugs currently used in the clinic, such as tamoxifen, CDK4/CDK6 inhibitors or pembrolizumab in preclinical models is discussed since it is in this scenario that antiprogestins will be probably introduced. Finally, we explain how transcriptomic or proteomic studies, that were carried out in different luminal breast cancer models and in breast cancer samples that responded or were predicted to respond to the antiprogestin therapy, show a decrease in proliferative pathways. Deregulated pathways intrinsic of each model are discussed, as well as how these analyses may contribute to a better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Andrés Elia
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Gabriela Pataccini
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Leo Saldain
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Luisa Ambrosio
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Paola Rojas
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Raheem F, Karikalan SA, Batalini F, El Masry A, Mina L. Metastatic ER+ Breast Cancer: Mechanisms of Resistance and Future Therapeutic Approaches. Int J Mol Sci 2023; 24:16198. [PMID: 38003387 PMCID: PMC10671474 DOI: 10.3390/ijms242216198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Endocrine therapy is the main treatment for hormone receptor-positive (HR+) breast cancer. However, advanced tumors develop resistance to endocrine therapy, rendering it ineffective as the disease progresses. There are several molecular mechanisms of primary and secondary endocrine resistance. Resistance can develop due to either alteration of the estrogen receptor pathway (e.g., ESR1 mutations) or upstream growth factors signaling pathways (e.g., PI3K/Akt/mTOR pathway). Despite progress in the development of molecularly targeted anticancer therapies, the emergence of resistance remains a major limitation and an area of unmet need. In this article, we review the mechanisms of acquired endocrine resistance in HR+ advanced breast cancer and discuss current and future investigational therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Aya El Masry
- Phoenix Country Day School, Paradise Valley, AZ 85253, USA
| | - Lida Mina
- Mayo Clinic, Phoenix, AZ 85054, USA; (F.R.)
| |
Collapse
|
4
|
Parent EE, Fowler AM. Nuclear Receptor Imaging In Vivo-Clinical and Research Advances. J Endocr Soc 2022; 7:bvac197. [PMID: 36655003 PMCID: PMC9838808 DOI: 10.1210/jendso/bvac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 01/01/2023] Open
Abstract
Nuclear receptors are transcription factors that function in normal physiology and play important roles in diseases such as cancer, inflammation, and diabetes. Noninvasive imaging of nuclear receptors can be achieved using radiolabeled ligands and positron emission tomography (PET). This quantitative imaging approach can be viewed as an in vivo equivalent of the classic radioligand binding assay. A main clinical application of nuclear receptor imaging in oncology is to identify metastatic sites expressing nuclear receptors that are targets for approved drug therapies and are capable of binding ligands to improve treatment decision-making. Research applications of nuclear receptor imaging include novel synthetic ligand and drug development by quantifying target drug engagement with the receptor for optimal therapeutic drug dosing and for fundamental research into nuclear receptor function in cells and animal models. This mini-review provides an overview of PET imaging of nuclear receptors with a focus on radioligands for estrogen receptor, progesterone receptor, and androgen receptor and their use in breast and prostate cancer.
Collapse
Affiliation(s)
- Ephraim E Parent
- Mayo Clinic Florida, Department of Radiology, Jacksonville, Florida 32224, USA
| | - Amy M Fowler
- Correspondence: Amy M. Fowler, MD, PhD, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792-3252, USA.
| |
Collapse
|
5
|
Salem K, Reese RM, Alarid ET, Fowler AM. Progesterone Receptor-Mediated Regulation of Cellular Glucose and 18F-Fluorodeoxyglucose Uptake in Breast Cancer. J Endocr Soc 2022; 7:bvac186. [PMID: 36601022 PMCID: PMC9795483 DOI: 10.1210/jendso/bvac186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 12/05/2022] Open
Abstract
Context Positron emission tomography imaging with 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) is used clinically for initial staging, restaging, and assessing therapy response in breast cancer. Tumor FDG uptake in steroid hormone receptor-positive breast cancer and physiologic FDG uptake in normal breast tissue can be affected by hormonal factors such as menstrual cycle phase, menopausal status, and hormone replacement therapy. Objective The purpose of this study was to determine the role of the progesterone receptor (PR) in regulating glucose and FDG uptake in breast cancer cells. Methods and Results PR-positive T47D breast cancer cells treated with PR agonists had increased FDG uptake compared with ethanol control. There was no significant change in FDG uptake in response to PR agonists in PR-negative MDA-MB-231 cells, MDA-MB-468 cells, or T47D PR knockout cells. Treatment of T47D cells with PR antagonists inhibited the effect of R5020 on FDG uptake. Using T47D cell lines that only express either the PR-A or the PR-B isoform, PR agonists increased FDG uptake in both cell types. Experiments using actinomycin D and cycloheximide demonstrated the requirement for both transcription and translation in PR regulation of FDG uptake. GLUT1 and PFKFB3 mRNA expression and the enzymatic activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were increased after progestin treatment of T47D cells. Conclusion Thus, progesterone and progestins increase FDG uptake in T47D breast cancer cells through the classical action of PR as a ligand-activated transcription factor. Ligand-activated PR ultimately increases expression and activity of proteins involved in glucose uptake, glycolysis, and the pentose phosphate pathway.
Collapse
Affiliation(s)
- Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Rebecca M Reese
- McArdle Laboratory for Cancer Research, Department of Oncology and Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elaine T Alarid
- McArdle Laboratory for Cancer Research, Department of Oncology and Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA.,Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
6
|
Abou-Fadel J, Grajeda B, Jiang X, Cailing-De La O AMD, Flores E, Padarti A, Bhalli M, Le A, Zhang J. CmP signaling network unveils novel biomarkers for triple negative breast cancer in African American women. Cancer Biomark 2022; 34:607-636. [DOI: 10.3233/cbm-210351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most diagnosed cancer worldwide and remains the second leading cause of cancer death. While breast cancer mortality has steadily declined over the past decades through medical advances, an alarming disparity in breast cancer mortality has emerged between African American women (AAW) and Caucasian American women (CAW). New evidence suggests more aggressive behavior of triple-negative breast cancer (TNBC) in AAW may contribute to racial differences in tumor biology and mortality. Progesterone (PRG) can exert its cellular effects through either its classic, non-classic, or combined responses through binding to either classic nuclear PRG receptors (nPRs) or non-classic membrane PRG receptors (mPRs), warranting both pathways equally important in PRG-mediated signaling. In our previous report, we demonstrated that the CCM signaling complex (CSC) consisting of CCM1, CCM2, and CCM3 can couple both nPRs and mPRs signaling cascades to form a CSC-mPRs-PRG-nPRs (CmPn) signaling network in nPR positive(+) breast cancer cells. In this report, we furthered our research by establishing the CSC-mPRs-PRG (CmP) signaling network in nPR(-) breast cancer cells, demonstrating that a common core mechanism exists, regardless of nPR(+/-) status. This is the first report stating that inducible expression patterns exist between CCMs and major mPRs in TNBC cells. Furthermore, we firstly show mPRs in TNBC cells are localized in the nucleus and participate in nucleocytoplasmic shuttling in a coordinately synchronized fashion with CCMs under steroid actions, following the same cellular distribution as other well-defined steroid hormone receptors. Finally, for the first time, we deconvoluted the CmP signalosome by using systems biology and TNBC clinical data, which helped us understand key factors within the CmP network and identify 6 specific biomarkers with potential clinical applications associated with AAW-TNBC tumorigenesis. These novel biomarkers could have immediate clinical implications to dramatically improve health disparities among AAW-TNBCs.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Xiaoting Jiang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Alyssa-Marie D. Cailing-De La O
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Esmeralda Flores
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Muaz Bhalli
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Alexander Le
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| |
Collapse
|
7
|
Ward AV, Matthews SB, Fettig LM, Riley D, Finlay-Schultz J, Paul KV, Jackman M, Kabos P, MacLean PS, Sartorius CA. Estrogens and Progestins Cooperatively Shift Breast Cancer Cell Metabolism. Cancers (Basel) 2022; 14:1776. [PMID: 35406548 PMCID: PMC8996926 DOI: 10.3390/cancers14071776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming remains largely understudied in relation to hormones in estrogen receptor (ER) and progesterone receptor (PR) positive breast cancer. In this study, we investigated how estrogens, progestins, or the combination, impact metabolism in three ER and PR positive breast cancer cell lines. We measured metabolites in the treated cells using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). Top metabolic processes upregulated with each treatment involved glucose metabolism, including Warburg effect/glycolysis, gluconeogenesis, and the pentose phosphate pathway. RNA-sequencing and pathway analysis on two of the cell lines treated with the same hormones, found estrogens target oncogenes, such as MYC and PI3K/AKT/mTOR that control tumor metabolism, while progestins increased genes associated with fatty acid metabolism, and the estrogen/progestin combination additionally increased glycolysis. Phenotypic analysis of cell energy metabolism found that glycolysis was the primary hormonal target, particularly for the progestin and estrogen-progestin combination. Transmission electron microscopy found that, compared to vehicle, estrogens elongated mitochondria, which was reversed by co-treatment with progestins. Progestins promoted lipid storage both alone and in combination with estrogen. These findings highlight the shift in breast cancer cell metabolism to a more glycolytic and lipogenic phenotype in response to combination hormone treatment, which may contribute to a more metabolically adaptive state for cell survival.
Collapse
Affiliation(s)
- Ashley V. Ward
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Shawna B. Matthews
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Lynsey M. Fettig
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Duncan Riley
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Jessica Finlay-Schultz
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Kiran V. Paul
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.V.P.); (P.K.)
| | - Matthew Jackman
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.); (P.S.M.)
| | - Peter Kabos
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.V.P.); (P.K.)
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.); (P.S.M.)
| | - Carol A. Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| |
Collapse
|
8
|
Housten AJ, Okere UC, Colditz GA, Ma C, Liu J, Harriss C, Lin NU, Rooney M, Dill J, Popalzai M, Badiu J, Huang K, Burton C, Peterson L. Developing an Academic and Community Practice Collaborative Care Model for Metastatic Breast Cancer Care: A Protocol using the Dynamic Adaptation Process (Preprint). JMIR Res Protoc 2021; 11:e35736. [PMID: 35475732 PMCID: PMC9361152 DOI: 10.2196/35736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Metastatic breast cancer (MBC) remains incurable despite significant treatment advances. Coordinating care for patients with MBC can be challenging given the various treatment options, available clinical trials, and frequent need for ancillary services. To optimize MBC care, we designed a project for adapting and developing an academic and community practice collaborative care model for MBC care (Project ADAPT), based on the Ending Metastatic Breast Cancer for Everyone (EMBRACE) program developed at Dana Farber Cancer Institute. Objective We aim to describe the implementation science–based study design and innovative components of Project ADAPT. Methods Project ADAPT uses the Dynamic Adaptation Process informed by the Exploration, Preparation, Implementation, Sustainment framework. Washington University School of Medicine (WUSM) partnered with 3 community hospitals in the St. Louis region covering rural and urban settings. The exploration and preparation phases provide patient and provider feedback on current referral practices to finalize the approach for the implementation phase. At the implementation phase, we will enroll patients with MBC at these 3 community sites to evaluate potential collaborative care at WUSM and assess the impact of this collaborative care model on referral satisfaction and acceptability for patients with MBC and their providers. Patients may then return to their community site for care or continue to receive part of their care at WUSM. We are incorporating virtual and digital health strategies to improve MBC care coordination in order to minimize patient burden. Results The exploration phase is ongoing. As of August 2021, we have recruited 21 patient and provider participants to complete surveys of the current collaborative care process at WUSM. Using a 2-tailed paired t test, 44 patients (including 10 patients from the exploration phase) and 32 oncologists are required to detect an effect size of 0.5 with 80% power at a level of significance of .05. Throughout this phase and in preparation for the implementation phase, we have iteratively updated and refined our surveys for the implementation phase based on testing of our data collection instruments. Our partner sites are in various stages of the single institutional review board (IRB) approval process. We have ongoing engagement with all partner sites, which has helped solidify our participant recruitment strategies and design patient-friendly recruitment materials. In addition, we have included a patient advocate on the research team. Members of the research team have launched a single IRB Support Network at WUSM to create a repository of the single IRB procedures in order to streamline the partner site onboarding process and facilitate enhanced collaboration across institutions. Conclusions With this robust model, we expect that patients with MBC will receive optimal care regardless of geographical location and the model will improve patient and provider experiences when navigating the health system. International Registered Report Identifier (IRRID) DERR1-10.2196/35736
Collapse
Affiliation(s)
- Ashley J Housten
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Uzoma Charles Okere
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Graham A Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Cynthia Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Courtney Harriss
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Nancy U Lin
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Melissa Rooney
- Missouri Baptist Medical Center, St. Louis, MO, United States
| | - Jennifer Dill
- Missouri Baptist Medical Center, St. Louis, MO, United States
| | - Muhammad Popalzai
- SIH Cancer Institute, Southern Illinois Healthcare, Carterville, IL, United States
| | - Jennifer Badiu
- SIH Cancer Institute, Southern Illinois Healthcare, Carterville, IL, United States
| | - Kan Huang
- Phelps Health Delbert Day Cancer Institute, Rolla, MO, United States
| | - Casey Burton
- Phelps Health Delbert Day Cancer Institute, Rolla, MO, United States
| | - Lindsay Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|